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Abstract: Users’ queries for data or services in a mobile computing environment are highly relevant to their current 
locations. A nearest neighbor (NN) query finds the data object closest to the user’s location; and hence, NN 
query issued at different locations may lead to different results. The nearest neighbor validity region 
(NNVR) is the area where an NN query result remains valid. A cached NN result can be used to answer 
semantically equivalent NN queries issued in the same NNVR. Our analysis discovers that NNVRs carry 
useful information about neighboring objects’ locations. This paper proposes an algorithm data mining the 
hidden information in cached NNVRs to increase the proxy caching performance. The experimental results 
and analysis have demonstrated the effectiveness of the proposed algorithm in reducing query response time 
and workload on the database server. 

1 INTRODUCTION 

In a mobile computing environment, mobile users 
may issue queries related to their current locations 
(Barbara, 1999), e.g., “Find the nearest hospital”. 
Such a query is a location dependent query (LDQ) 
as its result depends on the user’s current location. 
An LDQ may returns different results in different 
regions. The validity region (VR) is the region 
where an LDQ result remains valid.  

If the user issues the same query at a new 
location, the query needs to be resubmitted to the 
database (DB) server. It leads to unnecessary 
network traffic and DB server workload if the 
mobile user is still within the VR of a previously 
resolved query. The VR aware LDQ caching scheme 
is one solution to address this problem. The LDQ 
cache stores the most frequently (or recently) issued 
LDQs, query results, and their VRs. The cache can 
determine if the querying location is within the VR 

of a cached result of a semantically equivalent LDQ 
as defined in Gao and Hurson (2005) - some queries 
can be resolved based on the cache contents.  

The most common LDQ is the nearest neighbor 
(NN) query, normally in the form of NN 
(object_category, x, y), which retrieves the object in 
the specified category that is the closest to the user’s 
querying location (x, y). The nearest neighbor 
validity region (NNVR) is the VR of a NN result, 
and it is determined by the locations of the result 
object and neighboring non-result objects (Zheng 
and Lee 2001).  

Because it requires the knowledge of all data 
object’s locations to generate VRs, most existing 
LDQ caching schemes rely on the DB server to 
provide VRs for LDQ results. VR computation 
introduces extra storage and processing overhead, so 
the DB server may not provide VR service or 
provide it only when workload permits. The 
uncertainty in VR availability limits the feasibility 
of those LDQ caching schemes. Alternatively, Gao 
and Hurson (2005) and Gao, Sustersic, & Hurson 
(2006) proposed the LDQ proxy caching scheme 
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that is capable to estimate the VR based on the 
observed querying events. When the DB server does 
not provide the NNVRs, the proxy cache server 
invokes the Right-hand algorithm proposed in Gao 
and Hurson (2005) to compute the nearest neighbor 
estimated validity region (NNEVR) with 3 or more 
querying events known to be within the result 
object’s NNVR. 

Our analysis revealed that NNVRs imply 
neighboring objects’ locations and their partial 
NNVRs. This research identifies the value of the 
hidden information and proposes an iNN_EVR 
algorithm, which generates NNEVR by exploiting 
both querying history and the cached content at the 
proxy cache server. The experimental results will 
demonstrate that iNN_EVR algorithm improves the 
proxy cache performance by reducing the query 
response time as well as the number of NN queries 
processed by the DB server. 

The rest of this paper is organized as follows. 
Section 2 reviews the existing work related to LDQ 
caching and NNVR estimation. Section 3 reveals the 
information carried in NNVRs, proposes the 
iNN_EVR algorithm, and examines the algorithm 
with a running example. Section 4 presents the 
simulation model and analyzes the experimental 
results. Finally, section 5 concludes this paper and 
outlines our future research directions. 

2 RELATED WORK 

The idea of queries with location constraints was 
originally introduced by Imielinski and Badrinath 
(1992), and has been further discussed in many other 
research works such as Forman and Zahorjan 
(1994), Dunham and Kumar (1998), Seydim, 
Dunham, & Kumar (2001), Lee, Lee, Xu, et al 
(2002). Naturally, mobile users are likely to query 
data and services relevant to their current positions. 
Barbara (1999) named this class of queries the 
location dependent query (LDQ). Seydim, Dunham, 
& Kumar (2001) distinguished LDQs from other 
queries with location constraints: a query whose 
result depends on certain location attributes is a 
location aware query (LAQ), while a LDQ is a query 
whose result depends on the mobile user’s current 
location. Two common types of LDQ are NN 
queries and range queries. A NN query retrieves the 
data object satisfying the query that is the closest to 
the querying location, while a range query retrieves 
all satisfying data objects within the specific range 
(Guting 1994). 

Location dependent data cache also received 
much research attention. Ren and Dunham (2000) 
proposed a semantic caching scheme for location 
dependent results, which stores the query results and 
the semantic description of the queries (i.e., the 
query selection relationships, selection attributes, 
selection conditions, and the bound of locations). 
This semantic caching scheme reduces the network 
traffic and allows partial query resolution as well as 
query resolution during the disconnection. Taking 
validity information into the consideration, Zheng, 
Xu, & Lee (2002) presented algorithms for cache 
invalidation and cache replacement strategies. Hu, 
Xu, Wong, et al (2005) presented a proactive 
caching approach, which caches both query results 
and their index in order to answer different types of 
queries.  

There are several algorithms for the DB server 
to determine NNVRs. Zheng and Lee (2001) built 
the static Voronoi diagram (VD) to partition the 
search space based on the VR of each data object. 
The NN query result is the object whose Voronoi 
cell (VC) covers the querying location, and its VC is 
the corresponding NNVR. The VD, however, is 
expensive to maintain due to database updates, and 
it is also inapplicable for the k nearest neighbor (k-
NN) query when k is unknown. Even when k is 
known, an order-k VD is very expensive in terms of 
computational and storage overhead as pointed out 
by Zhang, Zhu, Papadias, et al (2003). 
Consequently, Zhang, Zhu, Papadias, et al (2003) 
introduced algorithms to calculate NNVRs during 
the run time. It avoids the large storage overhead but 
introduces extra computing and I/O cost.  

In an attempt to obtain the validity region, Gao 
and Hurson (2005) proposed a proxy cache scheme 
associated with Right_hand algorithm to compute 
NNEVRs based on the querying history observed by 
the proxy server. This algorithm works for NN 
query and other LDQs with convex VRs. To 
generate the NNEVR for a NN result, Right_hand 
algorithm searches the querying history and finds 
the querying locations where the same NN query 
returns the identical result. Because all these 
querying locations lie in the result’s NNVR and all 
NNVRs are convex polygons, Right_hand algorithm 
returns the convex hull, minimum convex polygon, 
of these querying locations as the NNEVR.  

The works thus far discussed have overlooked 
useful information in the cached NNVRs that 
implies neighboring objects’ locations. Section 3 
will identify the hidden information and illustrate 
the approaches to improve NN caching performance. 
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3 GENERATING NNEVRS 

This section data mines the hidden information in 
cached NNVRs. A cached NNVR implies the 
locations and partial NNVRs of its neighbors. Based 
on this discovery, we propose the iNN_EVR 
algorithm, which generates NNEVRs by exploring 
both querying history and cached content. We 
examine the algorithm through a working example 
and analyze its characteristics and complexity. 

3.1 Analysis of NNVR 

The NNVR of an object is its VC formed by 
perpendicular bisectors between the object and its 
neighbors (Zheng and Lee 2001). An NNVR carries 
valuable information about its neighbors: their 
locations and two vertices in their NNVRs. Figure 1 
shows a data space with 9 objects (a, b, … i) and the 
surrounding polygons as their NNVRs. Take NNVR 
for object e, for example, the 6 NNVR edges are the 
perpendicular bisectors between object e and its 6 
neighbors. 

 
Figure 1: NN results and their validity regions. 

An NNVR implies its neighbors’ locations and 
their partial NNVRs. There are two types of NNVR 
edges: boundary NNVR edges which lie on the data 
space boundary and the non-boundary NNVR edges. 
Each non-boundary NNVR edge is the 
perpendicular bisector between the two neighboring 
objects. Therefore, an object and a non-boundary 
NNVR edge determine one neighbor’s location, 
which is the object’s mirror image point across the 
edge. Taking object e’s NNVR in figure 1 for 
example, it implies the locations of all 6 neighbors 
(b, c, d, f, h, and i). 

Two neighboring NNVRs share one edge and 
two vertices. The shared edge and the data object 
determine a triangle, which is guaranteed to be a 
sub-region of the corresponding object’s NNVR. 

Figure 2 shows a client cache with NN result e and 
its NNVR, illustrated by the polygon around e. It 
implies its 6 neighbors’ location as well as their 
partial NNVRs.  

 

 
Figure 2: NN VR and its implication. 

The objective of this work is to improve the 
Right-hand algorithm, Gao and Hurson (2005), and 
enhance the performance of LDQ caching systems. 
The Right-hand algorithm requires at least three 
querying locations in the same NNVR to generate an 
NNEVR. We propose improved nearest neighbor 
estimated validity region (iNN_EVR) algorithm that 
exploits the hidden information in cached NNVRs to 
generate larger NNEVRs with fewer querying 
events, thus improving the performance of systems. 

3.2 iNN_EVR Algorithm 

Before examining the iNN_EVR algorithm 
(algorithm 2 in figure 4), we first introduce the 
Immediate_Neighbor algorithm (algorithm 1 in 
figure 3), which determines whether the result object 
shares an NNVR edge with any cached object. If 
yes, this algorithm also returns two shared NNVR 
vertices, which will be used to generate the NNEVR 
for the result object. The iNN_EVR algorithm 
generates NNEVR as the convex hull of all locations 
known to be within the result object’s NNVR, 
including the result object, querying locations 
returning the same NN result, and the known 
vertices of the result object’s NNVR.  
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Algorithm: Immediate_Neighbor  (R, Ci) 

Input:     R  The Result Object (x, y) 
                Ci  Cached entry with result object Oi 
Output:   B  A Boolean value 
   V  Vertices 
Procedure: 
1. B  False 
2. For each edge E of Ci 
3.      If (x, y) is the image point of Oi across E 
4.            B  True    // Find immediate neighbor 
5.         V  Vertices of E  // Find two shared NNVR 

vertices 
6.            Exit For Loop 
7.     End If 
8. End For 
9. Return B, V 

Figure 3: Algorithm 1 - Immediate_Neighbor. 

Algorithm: iNN_EVR (Q, R, C, H) 
Input:      Q  The Query  (object_class, x, y)  
       R  The Result Object (Rx, Ry) 
       C  The Cached Results 
       H  Querying History 
Output:      P  NNEVR Polygon 

Procedure: 
1.  Build an empty list L 
2.  Let B, V be a Boolean and a set of vertices 
3.  Let HRi be the result object of Hi,  
4.  Let (HRx, HRy) be the location of HRi 
5.  Let (Hx, Hy) be the querying location of Hi 
6.  For each entry Ci in C 
7.      If Ci does not have an NNVR 
8.         Continue 
9.      Else //Find NNVR vertices shared with neighbors 
10.         (B, V)  Immediate_neighbor(R, Ci) 
11.         If B is True  //Add two vertices to list L 
12.             Add V to L  
13.        End If 
14.     End If 
15. End For  
16. If every vertex v in L appears twice 
17.     P  convex hull formed by the entries in L 
18.     Return P  //Return the accurate NNVR 
19. End If 
20. Add (Rx,Ry) to L //Result object is always in NNVR 
      //Find querying locations in same NNVR 
21. For each entry Hi in H   
22.     If Q and Hi are semantically equivalent and  

    (HRx, HRy) = (Rx,Ry) 
23.         Add (Hx, Hy) to L   
24.     Else 
25.         Continue 
26.     End If  
27. End For 
       // Generate the NNEVR 
28. P  convex hull formed by the entries in L  
29. Return P 

Figure 4: Algorithm 2 - iNN_EVR. 

Figure 5 is a working example to examine 
algorithm 2 and illustrate the generated NNEVR. 
The proxy server has object e and its NNVR in its 
cache when it receives an NN query issued at Q. As 
Q is outside of any cached NNVRs, the proxy cache 
cannot resolve the query, so it forwards the query to 
the DB server, which returns the result object h 
without its NNVR. The proxy cache calls on 
iNN_EVR algorithm to generate NNEVR for result 
object h. iNN_EVR employs Immediate_Neighbor 
algorithm and finds that h and e share an NNVR 
edge (E1). Result object h’s NNEVR is the polygon 
covering h, Q, and edge E1. In contrast to 
iNN_EVR, the original Right-hand algorithm was 
not able to generate an NNEVR for query Q under 
the aforementioned conditions. 

The complexity of Immediate_Neighbor 
(algorithm 1) to verify a cached NNVR with m 
edges is O (m). The iNN_EVR algorithm consists of 
searching for NNVR vertices, searching for 
querying locations, and generating the convex hull. 
The complexity of finding the hidden NNVR 
vertices in a cache with n entries is O (m*n). The 
complexity of finding the querying locations in a 
querying history of h entries is O (h).  After finding 
p known locations in the NNVRs, the complexity of 
generating the convex hull is O (p*lg p) (Graham 
1972). As a result, algorithm 2 has a complexity of 
O (m*n + p*lgp + h). 

 
Figure 5: Example of the iNN_EVR algorithm. 

3.3 iNN_EVR Finds NNVRs 

The iNN_EVR algorithm normally returns an 
NNEVR as a sub-region of the actual NNVR. 
However, there is a scenario where iNN_EVR 
algorithm returns the precise NNVR. Given a new 
result object, if all of its immediate neighbors and 
their NNVRs are in the cache, the shared NNVR 
vertices form the NNVR of the result object. Figure 
6 illustrates this scenario in which objects b, i, d, f, 
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h, i, and their NNVRs (the gray polygons covering 
different objects) are cached. An NN query is issued 
at location Q, whose result is not cached. The proxy 
server forwards the query to the DB server which 
returns result e without its NNVR. To determine e’s 
NNEVR, iNN_EVR algorithm discovers that all 
vertices are shared by two cached NNVRs, which 
indicates that these shared vertices form the accurate 
NNVR for result object e. 

 
Figure 6: iNN_EVR finds an accurate NNVR. 

The iNN_EVR algorithm has several 
advantages over the existing Right_hand algorithm. 
First, it exploits the hidden information in cached 
NNVRs and obtains NNEVRs with fewer querying 
events. Second, it can calculate the actual NNVR of 
a result object under special circumstances. Given a 
new result object, if all of its immediate neighbors 
and their NNVRs are stored in the cache, the shared 
NNVR edges form the NNVR for the result object.  
Finally, the NNEVRs generated by iNN_EVR 
algorithm are relatively larger than those generated 
by the Right-hand algorithm. Section 4 presents the 
experimental results and shows the performance 
improvement obtained by iNN_EVR algorithm with 
respect to the query response time and the number of 
NN queries processed by the DB server. 

4 SIMULATIONS AND 
EVALUATIONS 

4.1 Simulation Model 

We evaluated the performance improvement of the 
iNN_EVR algorithm over the Right-hand algorithm 
using a proxy caching simulator in CSIM (CSim). 
For a fair comparative analysis, we ran three 
configurations with similar environmental setup as 
that used by Gao, Sustersic, & Hurson (2006). The 

first configuration, named “iNN”, employs 
iNN_EVR algorithm. The second configuration, 
named “RH”, is equipped with the Right-hand 
algorithm, Gao and Hurson (2005), to generate 
NNEVR. The third configuration, named “NO”, 
does not use any EVR algorithm. 

The simulator in Gao, Sustersic, & Hurson 
(2006) modeled a mid-size town, considering the 
demographic information. It partitioned the 
simulated area into different regions to reflect the 
population density during and outside of working 
hours. Mobile users are categorized into different 
groups each with different mobility patterns. As 
listed in table 1, our simulator uses the same 
parameters as Gao, Sustersic, & Hurson (2006) for 
DB servers, proxy server cache, client cache, and 
network traffic.  

Table 1: Major simulation parameters. 

Parameters Value 
Number of data objects about this city 680 
Proxy cache size (NN result entries) 100 
Client cache size (NN result entries) 10 

Proxy querying history size 500 
Network bandwidth, base station (BS) to 

DB link (Mbps) 
1000 

Background network (BS to DB) 
utilization 

0.4 

Client to BS link bandwidth (Kbps) 19.2 
BS to client link bandwidth (Kbps) 144 

NN query request size (byte) 32 
Average NN query result size (byte) 80 

Average NNVR descriptor size (byte) 60 
Average query rate, daytime (hours) 0.5 

Average query rate, night (hours) 0.2 
 
The performance improvement is measured by 

two metrics: the relative speedup of NN query 
response time and the relative DB server workload 
reduction. The DB server workload reduction can be 
approximated by the number of queries sent to DB 
servers.  

NQDBRH is the number of NN queries sent to 
the DB servers in RH configuration, and NQDBiNN 
represent the number of NN queries sent to the DB 
server in iNN configuration. The DB server 
workload reduction (Rworkload) is the difference 
between NQDBRH and NQDBiNN divided by 
NQDBRH (see equation 1). The average query 
response time for a RH configuration is termed as 
RTRH. RTiNN represents the average query response 
time in iNN configuration. The speedup of NN 
query response time (Sresponse) is the difference 
between RTRH and RTiNN divided by RTRH (see 
equation 2). 
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Rworkload =

RH

iNNRH

NQDB
NQDB - NQDB   (Eq. 1) 

 

Sresponse = 
RH

iNNRH

RT
RTRT −    (Eq. 2) 

4.2 Evaluations and Analysis 

We simulated and compared the performance of 
Right-hand and iNN_EVR algorithms under 
different scenarios in which the DB server provides 
NNVRs with probabilities (0%, 20%, 40%, 60%, 
80%, and 100%). Figures 7 and 9 show percentage 
of NN queries sent to the DB server and the average 
query response time for the aforementioned 
configurations, respectively. Figure 8 and 10 depict 
the relative workload reduction and relative speed 
up of query response time, achieved by iNN 
configuration over RH configuration as formulated 
in equation 1 and 2.  

The NNEVRs in RH and iNN configurations 
help to resolve more NN queries at proxy cache 
server and thus reduce the query traffic sent to DB 
servers. From figure 7, one can conclude that both 
RH and iNN configurations significantly reduce the 
workload sent to the DB server, especially when 
NNVR availability is low. In the scenario where DB 
servers do not provide NNVR services, the proxy 
caching scheme in NO configuration can only 
answer queries issued at the same location as a 
cached result. As a result, many NN queries are 
forwarded to DB servers. The iNN configuration 
employs iNN_EVR algorithm and generates larger 
NNEVR than those generated by Right_hand 
algorithm (in RH configuration), which explains the 
fact that iNN outperforms RH in reducing the 
number of NN queries sent to DB servers. 

Figure 8 illustrates the improvement achieved 
by iNN_EVR algorithm over Right-hand algorithm 
with respect to the workload at the DB server. In the 
case that the DB server always provides NNVRs, 
both algorithms lead to the same performance. When 
the DB server never provides NNVRs, iNN_EVR 
algorithm achieves a relative workload reduction of 
12% over Right-hand algorithm. 
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Figure 8: Workload reduction at DB servers. 

Figures 9 show the average query response time 
observed in three configurations. The NNEVRs 
generated in RH and iNN configurations help to 
resolve some NN queries using proxy cache and 
thus reducing query response time. The fewer NN 
queries sent to the DB server, the shorter NN query 
response time. Due to this relationship, figure 9 
shows the average query response time for the three 
aforementioned configurations, which shows a 
similar pattern as the curves in figure 7. Both RH 
and iNN reduces the query response time and the 
improvement is significant when NNVR availability 
is low. iNN configuration leads to a shorter query 
response time than RH configuration because iNN 
resolves more queries at proxy server. Figure 10 
illustrates iNN_EVR algorithm’s relative speedup 
over Right-hand algorithm with respect to the 
response time as formulated in equation 2. When 
NNVR is always available, three configurations 
behave in the same way, as there is no need to 
generate NNEVRs. The relative response time speed 
up is 8% when the DB server does not provide VR 
services.   
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5 CONCLUSIONS AND FUTURE 
WORK 

Our analysis revealed that the cached NNVRs can be 
data mined to exploit valuable information on their 
neighbors’ locations and NNEVRs. We proposed an 
algorithm to generate NNEVRs by exploring both 
the querying history and the cached content. This 
algorithm was evaluated using a detailed simulation 
scenario modeled after a real, modern community 
and including components that consider actual 
population demographics and data objects. The 
simulation results showed that the iNN_EVR 
algorithm achieved better performance than the 
existing algorithm. 

The hidden information in cached NNVRs can 
help disconnected mobile users to answer queries 
issued in proximity of cached NNVRs. Our future 
research will seek schemes to resolve more queries 
for disconnected users. In addition, we will study the 
location-based services with respect to users’ 

mobility patterns based on the road network. 
Furthermore, some mobile users prefer fast response 
time and tolerate certain level of inaccuracy on LDQ 
results or their VRs. We will study Quality of 
Service (QoS) issues in LDQ cache management to 
further improve the system performance. 
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