
2SAP: A FLEXIBLE ARCHITECTURE FOR WEB SERVICE
ENABLEMENT OF COMMUNICATION SERVICES

Li Li, Wu Chou, Dan Zhuo and Feng Liu
Avaya Labs Research, Avaya Inc., 233 Moun Airy Road, Basking Ridge, USA

Keywords: Two-way Web services, session, meta-services, Web services enablement middleware, stateful transaction,
event notification.

Abstract: In this paper, we present a flexible Web service middleware framework based on the approach of 2SAP,
two-way Web service application proxy. 2SAP is to address some critical issues in Web service enablement
of communication services that require session based stateful transactions, two-way full duplex Web service
interaction, asynchronous operations and event notification. We introduce the concept of meta-services and
base-services in Web service middleware architecture design, and we investigate three options that can be
applied to synthesize the service interface descriptions of these services in current WSDL frameworks.
Based on the dependency and interaction pattern analyses, we describe the architecture of 2SAP that
modularizes the service implementation and components along two dimensions, i.e. stateful vs. stateless and
core vs. extension. We show that the architecture of 2SAP can support a variety of collocated and
distributed service integration configurations. Our experimental studies indicated that the service platform
of the proposed 2SAP architecture can support the needs of Web service and SOA enablement of real-time
communication services.

1 INTRODUCTION

Web services have gained tremendous momentum in
recent years as an emerging disruptive technology
with applications in various market sectors and
fields, including telecommunication (Chou et al
2005a, 2005b, 2006a, 2006b, Liu et al 2004, 2006a,
2006b). The fast adoption of Web services reflects
the current industrial paradigm shift from Object
Oriented Architecture (OOA) to Service-Oriented
Architecture (SOA) for business computing. It
reinforces the significance and importance of Web
service technologies in creating reusable, reliable
and scalable business services that are loosely
coupled with the physical implementations, and
agnostic to hardware devices, operating systems,
transport protocols, programming models and
languages.

One contributing factor to the success of Web
services is the maturity and proliferation of Web
service enablement packages and SOAP engines,
such as Axis (Axis 2006), and Web service
orchestration IDE based on WS-BPEL (WS-BPEL
2006). These Web service packages collectively
have made the development, testing and deployment

of stateless, synchronous and one-way Web services
a relatively straightforward task, when there is a
clear boundary and separation between the client and
server.

However, as pointed out in several Web service
studies (Chou et al 2005b, Li et al 2005a, 2006), the
use of Web services to enable communication
introduces many new technical challenges. In
particular, telecommunication services typically
exhibit some distinct characteristics as listed below:
• Stateful transactions: Telecommunication

services are stateful in two ways. First, it
usually requires the establishment of session
association among clients and service
providers before any subsequent message
exchange can happen. Secondly, the message
exchanges in communication often involve
many stateful resources.

• Two-way message exchange: In
telecommunication services, the role of client
and server can be reversed such that a client
can act as a server during the interaction.

• Asynchrony: Asynchronous messages are
prevalent in communication services because

305
Li L., Chou W., Zhuo D. and Liu F. (2007).
2SAP: A FLEXIBLE ARCHITECTURE FOR WEB SERVICE ENABLEMENT OF COMMUNICATION SERVICES.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 305-312
DOI: 10.5220/0001291403050312
Copyright c© SciTePress

of the scalability issue and event driven nature
of communication services.

• Conversational interaction patterns: The
message exchange patterns between the client
and server are highly conversational in the
sense that the client and server constantly
exchange messages back and forth in order to
reach a goal.

• Real-time factors: Message interactions must
occur in real-time to satisfy the Quality of
Service (QoS) requirements for certain
communication services.

• Reliability: Message delivery must be reliable.
Undelivered, delayed, out-of-order or
duplicated messages may put the system in
some incorrect state.

To address these issues, one needs to work with

the current Web service technologies and protocol
standards in order to achieve interoperable solutions
between services and platforms. Because Web
services are based on XML technologies which
support document composition, Web services
protocols can be more freely composed instead of
strictly layered as in traditional OSI Reference
Model for network protocols. This new feature
obviously offers architectural design freedom but it
posts the following complexities:
• The relationship between services is complex.

For example, a communication service may
depend on several other Web services, which
in turn may depend on each other. Without a
more generic framework, the cost of Web
service enablement can become prohibitive.

• Protocol standards could be unstable and
inconsistent. Standards will evolve at different
standard organizations. They can be merged,
divided, or rescinded. As a result, the
dependencies and references between
standards can be out of date or at conflict. It is
unrealistic and undesirable to require each
Web service implementation to individually
deal with these issues where they are common
to all services.

• It needs to be able to plug in services on-
demand once these services become available.
This includes those services implemented by
third party vendors as well as the management
of those services in service deployments and
interactions.

• A Web service middleware framework should
be as light-weighted as possible, so that it can
run on small devices with limited computing
resources, such as a phone. It also must be

compatible with current SOAP packages to
ensure interoperability.

 Motivated by the abovementioned issues and the
needs in Web service enablement of communication
services, we developed a Web service enablement
framework of 2SAP, which stands for 2-way Web
Service Application Proxy. The 2SAP framework
has been successfully applied to enable several
enterprise communication services, including CSTA
services (ECMA-366 2004) and Conference
services. The communication Web services enabled
by 2SAP encapsulate the complexities of
telecommunication protocols. It allows programmers
and application developers without special training
in the field to integrate telecommunication services
into various enterprise business applications.

The organization of this paper is as follows. In
Section 2, we review the related work and Web
service protocols. In Section 3, we describe some
critical use cases that motivated this research. In
Section 4, we discuss issues of Web service
interfaces integration. Based on that, we introduce
our design and describe the proposed approach of
2SAP (two-way Web service application proxy)
framework. Platform components and service
deployment configurations of 2SAP are described in
Section 6. Applications and use cases of 2SAP are
presented and studied in Section 7. The findings of
this paper are summarized in Section 8.

2 RELATED WORK

The runtime architecture of SOAP engines often
follows the Chain of Responsibility (Gamma et al
2004) design pattern. The engine provides handler
chains that allow customized interceptors (Völter
2005) to be invoked in a prescribed order. Most
SOAP engines allow only service level interceptors,
but some of them, e.g. Axis2 (Axis2 2006), support
message level interceptors as well. Another common
feature of SOAP engines is message context, i.e. a
“blackboard” that allows interceptors and service
object to exchange information asynchronously.
Most SOAP engines do not validate messages
against XML Schema as it is expensive, but instead
perform deserialization of XML message into
objects based on XML Schema.

Maheshwari (Maheshwari et al 2004) presented
WSMQ, a message-oriented middleware to enhance
the reliability of asynchronous Web service
interactions. Ostrowski (Ostrowski et al 2006)
proposed a hierarchical network architecture in
which each node can be a participant in notification

WEBIST 2007 - International Conference on Web Information Systems and Technologies

306

propagations based on the service scopes, sessions
and topics.

Hu (Hu et al 2005) described a Web service
container architecture for adapting Web services for
various backend services. It introduced some useful
techniques, such as Web service bean and agent, but
it did not address the issues of service interface
integration or asynchronous events as the proposed
approach of 2SAP does. Weiss (Weiss 2004)
proposed a Goal-oriented framework to detect and
resolve conflicts between Web services interactions
in Web service composition.

Some theoretic analyses and practical solutions
to issues in CSTA Web services are discussed in
several studies (Chou et al 2005b, Li et al 2005a,
2006) leveraging the Web service standards of WS-
Session (ECMA-366 2005), ECMA-348 (ECMA-
348 2004), ECMA TR-90 (ECMA TR-90 2005), and
WS-Eventing (WS-Eventing 2006). However, the
architectural details of 2SAP that enable those
services were not presented and addressed in those
papers.

3 USE CASE ANALYSES

From message exchange perspective, 2SAP serves
as a gateway between Web service clients and
backend services that may or may not be Web
services based. In general, the backend services can
be categorized as either message based system or
API based service platform component. Figure 1
illustrates some typical use cases of 2SAP in some
practical scenarios.

In use case (a), 2SAP provides both client and
middleware to access the backend CSTA server. It
provides support for ECMA-323 XML messages
over TCP/IP but without any session or event
subscription services. 2SAP needs to translate two-
way messages between ECMA-348, which is based
on Web services (WSDL), and ECMA-323, which is
a non-Web service XML protocol. This is in
addition to manage the session and event
subscription services for the backend server.

In use case (b), a conference server provides a
Java SDK for service access. The SDK provides
session and listener Java objects to access session
and event managements respectively. 2SAP needs to
translate between SOAP messages and Java objects
and map session and Web services for events into
SDK logic and API.

In use case (c), 2SAP acts as a SOAP broker
between a BPEL client and a group of backend Web
services. Here 2SAP manages the session and event

services on behalf of the backend services and
perform content-based routing.

In these use cases, because the complexities of
managing two-way, stateful, and asynchronous Web
service interactions are encapsulated in 2SAP,
backend services can focus on their business logic.

Figure 1: Typical use cases of 2SAP server.

4 SERVICE INTERFACE
INTEGRATION

One important issue is how to expose the integrated
service descriptions to the Web service clients using
standard WSDL definitions in a cohesive and
flexible way. The way the services are synthesized
determines how they should be accessed by the
clients and how they can be implemented and
maintained by the providers.

It is clear from the use cases that there are
actually two levels of Web services: the base
services that provide specific functions in a
particular domain, and meta-services that enforce
rules for certain common aspects, such as session,
event subscription, security, etc., of the base
services. Without a base service, a meta-service has
no effect on real world. For example, WS-Session
services must be combined with some base services
to create fully functional services. On the other
hand, meta-services are independent of base services
and they can be synthesized with different and even
multiple base services.

(a)

(b)

(c)

SOAP/
HTTP

ECMA
-323

TCP/IP

App

2SAP
Server

CSTA
Server

SOAP/
HTTP

TCP/IP

2SAP
Server

Confer
ence

Server

Servl
et

API

SOAP/
HTTP

SOAP/
HTTP

2SAP
Server

Web
Server

BPEL

2SAP
client

2SAP: A FLEXIBLE ARCHITECTURE FOR WEB SERVICE ENABLEMENT OF COMMUNICATION SERVICES

307

Given a WSDL description of a base service, we
consider the following factors in integrating meta-
services with the base services:
• Semantic relations between services
• Lifecycle dependency of services
• Modularity of services
• Transport binding control of services

In WSDL 1.1 and WSDL 2.0 frameworks, there

are three options to incorporate meta-services into a
base service, i.e. interface, port and service.

In interface based approach, the appropriate
portType or Interface of the base service is extended
to include the meta-service operations. Semantically,
the base service inherits the meta-service (WSDL
1.1 does not actually support portType inheritance
and the operations have to be copied over). This
approach enforces that the base and the meta-
services have the same lifecycle. However,
modularity of services is sacrificed in WSDL 1.1.
Multiple inheritance mechanism in WSDL 2.0
promotes modularity but may introduce common
problems in inheritance such as operation conflicts.
As base services and meta-services converges at
interface level, they will be bound to the same
transport and accessed on a single endpoint.

In port based approach, the port for the meta-
services is added to the ports of the base service.
Semantically, the base service aggregates the meta-
service. This is consistent with WSDL 1.1 view that
a service definition groups related ports (endpoints).
This is also a common practice in the Internet, where
related protocols run on different transport ports (for
example RTP and RTCP). The base service and
meta-service may or may not have the same
lifecycle, depending on whether they are bound to
the same endpoint. It is possible for several base
services to share a meta-service. As this approach
does not require any modifications to the service
interface of the base service, interface modularity is
therefore maintained. Port based approach allows
base service and meta-service use different
transports, for example JMS for reliable event
subscription and UDP for fast event delivery.

In service based approach, the meta-service is
defined as a new service in the base service WSDL
file. Semantically, the base and meta-services are
coordinated by the fact that service definitions have
the same target namespace. The base service and
meta-service may or may not have the same
lifecycle, depending on whether they are bound to
the same endpoint. It is possible for several base
services to share a meta-service. This approach
requires minimum changes to the base service

WSDL. Clearly, different transport bindings can be
used for base services and meta-services.

5 PROTOCOL INTERACTIONS

In the proposed 2SAP approach, there are three
types of relationship between services and protocols,
i.e. dependency, binding and utility.

Service X depends on service Y if the
specification of X reference XML definitions from
Y. For instance, WS-Eventing references WS-
Addressing definitions.

Binding maps an abstract service/protocol to a
concrete protocol. For instance, all services bind to
SOAP.

In utility, service X uses resources maintained by
service Y at runtime. For example, ECMA-348
services use event subscriptions created by WS-
Eventing and sessions created by WS-Session. In
addition, ECMA-348 can create its own monitor
resources and store them in a session resource
managed by WS-Session. WS-Eventing can also use
WS-Session when a client subscribes to events in the
sessions created by WS-Session. On the other hand,
WS-Session uses subscriptions of WS-Eventing to
deliver session events. Base services may also use
Generic Event Sink service to receive the subscribed
CSTA events (ECMA TR-90 2005).

Figure 2 illustrates the relationships among some
services that 2SAP supports, where dependency is
represented by solid arrows, binding by solid
lollipops, and utility by dashed arrows.

Figure 2: Three types of service/protocol relationships.

To realize these relationships at runtime, we
must allow services to interact with each other at
two levels: resource and message.

At resource level, a service needs to access the
resources created by another service or create certain
relationship between resources across services. In

Meta-services

Base services (ECMA-348, Conference, etc.)

SOAP

WS-Addressing

WS-Eventing
WS-Session

Generic Sink

WEBIST 2007 - International Conference on Web Information Systems and Technologies

308

this case, the service can be modelled as a “factory”
that manages the lifecycle and persistence of its
resources and expose them through well-defined
APIs.

At the message level, a service needs to access
or change the messages as well as call flows of
another service. For example, the ECMA-348
service must analyze WS-Eventing subscribe
message to determine if a session is the target of the
subscription. If so, the link between the subscription
and session must be established. Otherwise, it must
throw a fault message. To permit this kind of
interaction, the service must separate its core logic
from extensions so that the extension can be
manipulated while the core is protected and can be
invoked from different context. For extension, we
found the Interceptor design pattern is the most
flexible choice as it leaves the client, service and the
interceptors loosely coupled and fits well with
current SOAP framework.

6 2SAP ARCHITECTURE

To modularize the meta-service implementation, we
separate each service according to two dimensions:
stateless vs. stateful, and core vs. extension. The
stateless component is involved in the processing of
messages in stateful interactions but relies on
stateful component for managing stateful resources.
In particular, the stateful component provides local
and remote access APIs to manage subscriptions and
sessions as time-based leases (Völter et al 2005).
The core component implements the mandatory
logic of the service and leaves the extension part to
the integration interceptors. The main components of
2SAP architecture are illustrated in Figure 3 where
stateless components are shown as rectangles and
stateful ones as disks. An arrowed line indicates the
dependency between components and a circle
indicates that the particular service provides hooks
for interceptors.

To eliminate the dependency between event
subscription and diverse event sources, we introduce
a topic tree data model to facilitate creation of
hierarchical event topics. The topic tree abstracts
resources from various services into a uniform topic
hierarchy with event propagation rules. Such
abstraction enables a client to subscribe to a group of
event sources which may not exist yet.

Figure 4 illustrates a typical topic tree created for
ECMA-348 services when one subscription is
created for a session and the other for a monitor
within the session. The dotted arrows indicate the

possible paths of event propagation. In this topic
tree, if Session1 terminates, Subscription1 will
receive the event notification. Events from Monitor1
will also propagate to both Subscription1 and
Subscription2 along the topics, if event bubbling is
enabled.

Figure 3: Main components of 2SAP framework.

Figure 4: A typical event topic tree created by 2SAP for
ECMA-348 Web service.

The core of services provides well-defined
interfaces so that it can be invoked either from
SOAP engine or directly by client. Combined with
interceptors, same logic can be used conveniently to
create virtual resources that span client and server.
Figure 5 illustrates the message flow of WS-Session
StartApplicationSession that creates an association
consisting of a local session and a remote session
using the same core component intercepted by a
connector. This association can be shared by many
clients and servers, as defined by WS-Session.

To allow changes for the extension while
protecting the core logic of a service, the integration

Topic1

Topic2 Session1

Service

Monitor1

Subscription1

Subscription2 Topic3

Filter

Event Queues

Session
registry

Subscription
registry

Topic
tree

Service
registry

WS-Eventing
core

WS-Session
core

Base
service

Generic Sink

Connection Resources: TCP, JMS, RMI, SOAP, JBI

2SAP: A FLEXIBLE ARCHITECTURE FOR WEB SERVICE ENABLEMENT OF COMMUNICATION SERVICES

309

Client

Endpoint

BS/Proxy

MS1/Proxy

MS2/Proxy

Interceptor
Interceptor

interceptors can read the messages directly and
change the messages indirectly using message
context.

Figure 5: Creation of association between client and server
with reusable WS-Session core components.

For example, two integration interceptors, one
from WS-Session, the other one from ECMA-348,
intercept WS-Eventing event subscription message
and create topics for session and monitor services
respectively as shown in Figure 4. In case of Generic
Event Sink service, interceptors act as event listeners
that handle incoming events and dispatch them to
proper topics. As a result, both WS-Eventing and
Generic Event Sink core components are agnostic to
any service specific logic and resources.

Without sharing, it appears that N interacting
services could result in N(N-1) integration
interceptors. Fortunately this is not the case because
some services can share an interceptor with common
behaviour. For example, ECMA-348 and WS-
Eventing services share a session interceptor that
retrieves a session object of WS-Session from the
session registry according to the session ID provided
in the SOAP message.

The following subsections illustrate several
typical scenarios that 2SAP meta-services are
integrated with base services.

6.1 Collocated Services

In collocated case (Figure 6a, 6b), all services are
deployed at one endpoint for inheritance based
integration. To implement this configuration with
SOAP engines that permit only one service object
per endpoint, the meta-services (MS) can be
implemented as interceptors of the base service
(BS). Each meta-service module has to demultiplex
incoming messages (Figure 6a). For example, a WS-
Session interceptor will only handle its messages
and skip the others. While this approach is highly
modular and configurable, it has some drawbacks: 1)

sequential message dispatching is suboptimal; and 2)
meta-services have to cope with unchecked raw
SOAP messages instead of well-formed objects
deserialized by the SOAP engine.

To overcome these limitations while maintaining
the benefits, a dispatcher is employed to associate an
endpoint with multiple service objects, using a
routing table which is configurable at deployment
and runtime. To allow services and interceptors to
exchange information, a context is maintained by the
dispatcher and shared across message flows (Figure
6b).

Figure 6a: Collocated services integration with
interceptors.

Figure 6b: Collocated services integration with a
dispatcher.

In both configurations, the meta-services and
base services can be distributed to different hosts by
using proxies. The architecture in Figure 6b is
particularly suitable for content-based message
routing. This architecture supports various
distributed event broker architectures outlined in (Li
et al 2006) where interceptors are used to transform
WS-Eventing SOAP messages.

Client

Endpoint/Dispatcher(Context)

MS1/Proxy MS2/Proxy BS/Proxy

Interceptor
Interceptor

local
session core client

remote
session core server

connector

soap/http

WEBIST 2007 - International Conference on Web Information Systems and Technologies

310

6.2 Distributed Services

In this setup (Figure 7), services are deployed at
different endpoints, possibly on different machines,
using port or service based description integration.

Figure 7: Distributed services integration.

To reduce location coupling in this situation,
2SAP can dynamically provision a registered base
service according to the access control and return the
base service endpoint to the client when a session is
established.

6.3 Benefits of 2SAP

The modularization and abstraction of meta-services
and its resources in 2SAP creates the following
benefits:
• Each service is self-contained and can be

implemented independently even though it
may depend on other services.

• The stateless and stateful components of a
service can be collocated or distributed to
provide flexible architecture.

• The topic tree, factory pattern and integration
interceptors support asynchronous event
management and allow services to be
integrated while loosely coupled.

• Reusable core components facilitate
development 2SAP client and server for peer-
to-peer Web services.

• The three service description integration
options (inheritance, aggregation and
coordination) can be supported with
collocated and distributed services which
provide design freedom in scalable service
enablement and integration.

7 SERVICE ENABLEMENT
APPLICATIONS

The architecture and techniques developed in 2SAP
have been applied to Web service enablement of
some backend communication services, including
ECMA-348 service (Chou et al 2005a, 2005b,
2006a), real-time multimedia conference services,
call center and dialog system services (Li et al
2005b), and integrated with standard based SOA
framework of JBI (Java Business Integration) (JBI
2005) service bus. It is also applied to Web service
enable communication endpoints (Chou et al 2006b,
Liu et al 2004). The performance of 2SAP
architecture is satisfactory for communication
requirements that end-to-end signal delay is within
300 milliseconds (ms). In recent experiments, we
observe that the average processing time per
message for meta-services is within 20 ms while the
average roundtrip time of meta-service message is
about 60 ms, which includes local network transport
time and SOAP engine (Axis 2006) processing time.
The measurements were obtained on laptop
computers with 1.6 GHz CPU and 512 MB memory,
running Windows XP professional.

8 SUMMARY

In this paper, we studied several important and
practical issues in Web service enablement for
communication services that require two-way,
stateful and asynchronous interactions. We
presented some critical use cases that motivated our
2SAP, two-way Web service application proxy
framework. From these use cases, we proposed the
concept of base service and meta-service and we
analyzed three options, interface, port and service, to
synthesize the service interface descriptions of these
services in current WSDL frameworks. Following
these options, we discussed the relationships
between services and protocols, i.e. dependency,
binding and utility, as well as resource and message
level interactions that realize these relationships.
These analyses and discussions led us to the 2SAP
architecture which is based on modularization of
each service along two dimensions: stateful vs.
stateless and core vs. extension. 2SAP is
implemented with well-established factory and
interceptor design patterns. We demonstrate the
versatility of 2SAP with architectural variations that
2SAP can support. Finally, some communication
applications enabled by 2SAP and performance of

Client

Endpoint

MS1/Proxy MS2/Proxy BS/Proxy

Endpoint Endpoint

Interceptor
Interceptor

Interceptor
Interceptor

Interceptor
Interceptor

2SAP: A FLEXIBLE ARCHITECTURE FOR WEB SERVICE ENABLEMENT OF COMMUNICATION SERVICES

311

2SAP were discussed to demonstrate the approach of
2SAP is feasible for Web service and SOA
enablement of real-time communication.

Research is on-going to further extend and
enhance the 2SAP framework for Web service
enablement, including the improvement of the
backboard data model, integration with additional
meta-services to improve the platform reliability and
security, etc. The initial results indicated that the
proposed 2SAP framework is quite extensible to
support these extensions in a structural way.

REFERENCES

Axis, 2006. Apache Web Services - Axis,
http://ws.apache.org/axis/.

Axis2, 2006. Apache Axis2/Java,
http://ws.apache.org/axis2/.

Chou, W., Li, L., Liu, F., 2005a. Web Service for
Communication Service Management, The 17th Int.
Conf. on Software Engineering and Knowledge
Engineering (SEKE), page 584-589, Taipei, Taiwan,
July 2005.

Chou, W., Li, L., Liu, F., 2005b. Web Service Enablement
of Communication Services, Proceedings of ICWS
2005, Volume 2, page 393-400, Orlando, Florida, July
2005.

Chou, W., Liu, F., Li, L., 2006a. Web Services for Tele-
communication, Proceedings of Advanced
International Conference on Telecommunications
(AICT 2006), AICT 11: Special Mechanisms, 6 pages,
Guadeloupe, French Caribbean, February 2006.

Chou, W., Li, L., Liu, F., 2006b. Web Service Initiation
Protocol for Multimedia and Voice Communication
over IP, Proceedings of IEEE International
Conference on Web Services (ICWS 2006), page 515-
522, Chicago, September 2006.

ECMA-348, 2004. Standard ECMA-348
Web Services Description Language (WSDL) for
CSTA Phase III
2nd edition (June 2004), http://www.ecma-
international.org/publications/standards/Ecma-
348.htm.

ECMA-366, 2005. Standard ECMA-366
WS-Session - Web Services for Application Session
Services (June 2005), http://www.ecma-
international.org/publications/standards/Ecma-
366.htm

ECMA TR-90, 2005. Technical Report TR/90
Session Management, Event Notification, and
Computing Function Services - Amendments for
ECMA-348, December 2005, http://www.ecma-
international.org/publications/techreports/E-TR-
090.htm

Gamma, E., Helm, R., Johnson R., Vlissides, J., 1995.
Design Patterns, Addison-Wesley, 1995.

Hu, J., Guo, C., Zou, P., 2005. WSCF: A Framework for
Web Service-based Application Supporting
Environment, Proceedings of ICWS 2005, Volume 2,
page 445-452, Orlando, Florida, July 2005.

JBI 2005. JSR 208: JavaTM Business Integration (JBI),
http://jcp.org/en/jsr/detail?id=208

Li, L., Chou, W., 2005a. Two-way Web Service: from
Interface Design to Interface Verification, Proceedings
of ICWS 2005, Volume 2, page 525-532, Orlando
Florida, July 2005.

Li, L., Chou, W., Liu, F., 2005b. An Extensible Three-tier
XML Dialogue System Architecture for Multimodal
Interaction and Automated Agent Services,
Proceedings of 9th IASTED Conference on Internet
and Multimedia Systems, and Applications, page 13-
17, Hawaii, August 2005.

Li, L., Chou, W., 2006. Semantic Modelling and Design
Patterns for Asynchronous Events in Web Service
Interaction, Proceedings of IEEE International
Conference on Web Services (ICWS 2006), page 223-
230, Chicago, September 2006.

Liu, F., Chou, W., Li, L., Li J., 2004. WSIP-Web Service
SIP Endpoint for Converged Communication over IP,
Proceedings of 2004 IEEE International Conference
on Web Services (ICWS2004), San Diego, California,
USA, page 690-697, July 6-9, 2004.

Liu, F., Wang, G., Li, L., Chou, W., 2006a. Web Services
for Distributed Communication Systems, Proceedings
of 2006 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI
2006), page 1030-1035, Shanghai, China, June 2006.

Liu, F., Wang, G., Chou, W., Lookman, F. Li, L., 2006b.
Target: Two-way Web Service Router Gateway,
Proceedings of IEEE International Conference on
Web Services (ICWS 2006), page 629-636, Chicago,
September 2006.

Maheshwari, P., Tang, H., Liang, R., 2004. Enhancing
Web Services with Message-Oriented Middleware,
Proceedings of IEEE International Conference on
Web Services (ICWS 2004), page 88-95, San Jose,
July 2004

Ostrowski, K., Birman, K., 2006. Extensible Web Services
Architecture for Notification in Large-Scale Systems,
Proceedings of IEEE International Conference on
Web Services (ICWS 2006), page 383-392, Chicago,
September 2006.

Völter, M., Kircher, M., Zdun, U., 2004. Remoting
Patterns, John Wiley & Sons, 2004.

Weiss, M., Esfandiari, B., 2004. On Feature Interactions
among Web Services, Proceedings of IEEE
International Conference on Web Services (ICWS
2004), page 88-95, San Jose, July 2004

WS-BPEL, 2006. Web Services Business Process
Execution Language 2.0, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpe
l

WS-Eventing, 2006. Web Services Eventing (WS-
Eventing), W3C Member Submission 15 March 2006,
http://www.w3.org/Submission/WS-Eventing/

WEBIST 2007 - International Conference on Web Information Systems and Technologies

312

