
XML BASED FRAMEWORK FOR CONTACT CENTER
APPLICATIONS

Nikolay Anisimov, Brian Galvin and Herbert Ristock
Genesys Telecommunication Laboratories (an Alcatel-Lucent company)

2001 Junipero Serra, Daly City, CA, USA

Keywords: Call center, contact center application, VoiceXML, Call Control XML, organizational structure.

Abstract: W3C languages, VoiceXML and CCXML all play an important role in contact centers (CC) by simplifying
the creation of CC applications. However, they cover only a subset of contact center functions, such as
simple call control and interactive voice response (IVR) with automatic speech recognition. We discuss
ways to complement VoiceXML and CCXML in order to cover all necessary contact center functions
required to script end-to-end interactions in a consistent and seamless way. For this purpose we introduce an
XML forms-based framework called XContact comprising the CC platform and applications, multi-script
and multi-browsing, and interaction data processing. We also discuss how routing as a key CC capability
can be scripted/captured within such framework in order to demonstrate the overall approach.

1 INTRODUCTION

Contact centers (CC) play a very important role in
contemporary business. According to some
estimations (Batt et al, 2005, Brown et al, 2005,
Gans et al, 2003) 70% of all business interactions
are handled in contact centers. In the U.S., the
number of all contact center workers is about 4
million or 2.5-3% of the U.S. workforce.

Creating business applications in contemporary
Contact Centers is a very complex task. Indeed,
typical CC applications (Anisimov et al, 1999)
comprise Interactive Voice Response (IVR) scripts,
routing strategies, call control, agent scripting,
reporting, etc. Each of these functions has their
dedicated tools and scripting languages and a CC
application designer is required to be proficient in all
of them. More unfortunately, in most companies
there are pools of experts in each of several quite
distinct disciplines, making it extremely difficult to
design end-to-end interaction management
applications.

The heterogeneous structure of CC applications
is a challenge also because many of the applications,
such as routing strategies, are also strongly platform
dependent. Since most of the leading contact center
applications remain proprietary, it is quite common
that applications developed for a specific contact

center product cannot be easily transferred to
another one.

A proven way of achieving application
uniformity, platform independence, and
simplification of the task of creating business
applications is to employ XML-based standards and
related technologies. XML is increasingly used as a
basis for building applications in different vertical
businesses. Good examples of XML-based standards
for voice processing are the VoiceXML
(VoiceXML, 2004) and Call Control XML
(CCXML, 2005) protocols developed within W3C.
They enable representation of any voice application
as an XML document, and using VoiceXML and
CCXML it is already possible to build simple CC
applications involving only IVR (including
automatic speech recognition capabilities)
processing and simple call control and to represent
them as a single XML document. The main
advantages are obvious: uniformity, platform
independence, and leveraging web technologies.

However, VoiceXML and CCXML do not
address other important aspects of CC applications
such as interaction workflow/service chain
management (the process management task
specialized on customer interaction management),
interaction routing, scripting agent activities,
reporting on agent performance and traffic
management, using customer profiles, conducting

443
Anisimov N., Galvin B. and Ristock H. (2007).
XML BASED FRAMEWORK FOR CONTACT CENTER APPLICATIONS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 443-450
DOI: 10.5220/0001288304430450
Copyright c© SciTePress

outbound campaigns, and interactions that are conducted in media other than voice.
VoiceXML and CCXML are, in fact, good examples
of the strength and the limitations of the common
approach to standards. This approach emphasizes
bottom-up standardization, with each standard
addressing a limited problem space; one typically
solves the problem at hand and closely related
problems when developing a new standard. The
alternative top-down approach would be to design a
purpose-built standard that could accommodate all
of the elements needed for the

entire larger problem domain (in this case, end-
to-end interaction management in a media-
independent way). Such top-down standardization
seems attractive but is probably unwieldy, and any
failure to anticipate every possible contingency leads
inevitably to serious flaws that make such standards
likely to fail (in the sense that they do not achieve
widespread acceptance and multiple
implementations).

We introduce some ways of extending the
VoiceXML and CCXML approach in order to
provide coverage for additional important contact
center functionality. We propose a methodology that
is open to incremental extensions and that presents
basic interaction management concepts such as
platform and application, multi-script and multi-
browsing, and interaction data processing without
attempting a comprehensive top-down standard. The
proposed methodology consists of a general XML-
based interaction scripting framework called
XContact, as well as a protocol for expressing the
local interaction platform specifics (configuration,

rules/state machine and current state) called
XPlatform.

The focusc is on main concepts and principles
rather specific XML languages. The XML notation
used in examples is self explanatory and serves for
illustrative purposes only.

2 CONTACT CENTER
ENVIRONMENT

Fig. 1 shows a typical structure of a contact center.
The computing and telephony domains are
connected through Computer Telephony Integration
(CTI) technology (Chow et al, 2000) via CTI-Link
and CTI-Server. The computing domain usually
comprises several application services, each being
responsible for particular functions of contact center
operation, e.g. a routing server to find the most
appropriate resource for inbound calls or an
outbound server for outbound notification and
generation of outbound calls to customers. The
contact center database captures all information
related to customers and customer interactions.
Typical call processing is sometimes fully
automated (self service), but often also requires
providing assistance to the customer by Customer
Service Representatives (CSR). Each CSR is
represented in the contact center environment with a
desktop and a phone connected to the switch.

CTI-Server

Agent's workplace

DT App

Agent’s Desktop

PSTN/VoIP

Customer's
 phone PBX

App

Routing
Server

Outbound
Server

Reporting
Server

Database

DB Server

Customer's
 phone

Customer's
 phone

LAN

CTI-link

IVR

App

App App App App

App

Configuration
Server

App

CCXML

VoiceXML

Figure 1: Contact Center environment.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

444

Here is a typical scenario of inbound call
processing: The inbound call is transferred to an
IVR for collecting initial information. Sometimes
the customer is fully served from within the
application provided by the IVR; in other cases the
IVR assists in “call steering” by asking the customer
to specify what their service needs are. Then the call
is transferred to a Router whose job is to select the
most appropriate available CSR. The call is
transferred to this CSR’s phone. At the same time all
collected information – potentially together with
customer’s historical information - is submitted to
the CSR’s desktop, and the CSR starts conversation,
often guided during the conversation by prompts
(displayed on the CSR’s computer screen; this is
called agent scripting).

As discussed above, currently only two
components of the contact center application can be
expressed in terms of standardized XML, i.e. the
other functions require proprietary script languages
and tools.

3 XML-BASED CONTACT
CENTER FRAMEWORK

3.1 XContact and XPlatform

VoiceXML and CCXML were introduced to cover
IVR and telephony call control functionality.
Additional XML-based protocols are desirable to
cover call routing, generation of outbound calls,
agent scripting, multimedia interaction control, etc.
We will denote the set of all of these XML
languages (old and new) as XContact. Applications
written in these languages will be called as XML
scripts.

XContact contains also orchestration capabilities
for building and executing complex applications
composed of individual XML scripts. These
orchestration facilities should include mechanisms
for invocation of XML scripts, exchanging data
between scripts, and other synchronization
mechanisms, see Fig. 2. The XContact architecture
assumes that platform-dependent components are
clearly separated from XContact and its languages.

The term XPlatform is used to denote all
platform-dependent components and data indicating
that it shall also be extendable and expressed in
XML-based notation. The actual XPlatform
specification will usually vary across different
contact center instances, while XContact and
comprising languages do not depend on the actual
platform. However, during execution an application

written in XContact has to be aware of the
underlining platform and its specifics.

In summary XContact can be seen as a set of
concepts, models and XML-based languages for the
creation of complete contact center applications.

Figure 2: XContact and XPlatform.

3.2 Concept of Platform in
VoiceXML/CCXML

One of the main advantages of VoiceXML and
CCXML is application platform-independence.
Voice applications written in VoiceXML/CCXML
could run on any VoiceXML/CCXML platform
because VoiceXML has been created in a similar
way as HTML, and neither the VoiceXML language
itself nor VoiceXML applications have any
assumption about the platform structure.

However, with CCXML the situation is more
complex. CCXML was designed to provide
telephony call control as a complement to
VoiceXML. CCXML uses a relatively simple call
model that represents an abstraction of call models
such as CSTA (CSTA, 2002), ECTF C.001 (ECTF,
1997), and JAIN (JAIN, 2001). It is assumed that
CCXML applications could run on platforms with
different call models. However, we cannot say that
CCXML is fully platform-independent. Indeed, the
CCXML call model specifies telephony events an
application can receive from the platform. Some
parameters of the events are platform dependent. For
example, parameters such as ANI (Automatic
Number Identification) and DNIS (Dialed Number
Information Service), that are very important for
contact centers applications, depend essentially on
the underlining protocol.

One way to avoid such platform dependencies in
CCXML is to explicitly specify the used call model
as part of the platform. This specification may be

XML BASED FRAMEWORK FOR CONTACT CENTER APPLICATIONS

445

XML-based and contain the specification of at least
all events with parameters. It also may contain a
specification of requests and call model behavior in
form of a state machine. The designer of a CCXML
application shall be aware of the given call model
and shall design the application based on its
specification. Such approach allows one to not be
limited by a specific call model but to use the most
convenient and complete one that is appropriate for
the particular platform elements. For instance, one
can use the Genesys call model for voice
applications intended to be executed on the Genesys
platform - of course the specification of the Genesys
call model has to be available to the application
developer.

For end-to-end contact center applications the
platform relationship is even more complex. Beside
the telephony call model a contact center usually
contains many other components that can hardly be
unified. Examples are the organizational structure of
CC personnel taken into account for finding the
most appropriate CSR, interaction models for other
media like e-mail and chat, etc.

3.3 Platform Structure

A contact center Platform may contain different
parts responsible for operation of the contact center.
Let us consider some important parts of the
platform.

3.3.1 Interaction Platforms

The important parts of an “interaction platform” are
components that are responsible for the management
of “physical” interactions. There may be different
platforms that are related to different media and
different underlining network protocols. The
interaction platform description typically includes
the following parts:

• The interaction platform’s configuration
including description of configured objects
and resources like available communication
ports, directory numbers, devices, etc.

• The current state of the interaction platform
including all active interactions existing
within the platform. We will represent a
collection of active interactions as an XML
document containing a list of interaction
elements with parameters like call legs or
parties, their states, attached data (data that is
tightly coupled to the particular interaction,
such as customer account identification), and
so forth (see Example below).

• A description of the interaction model that
may include the set of events that may be
issued by the interaction platform, the set of
requests and associated parameters that can
be used to control interaction processing, and
the state machine that defines the behavior of
the interaction platform. A designer of an
XContact application should be aware of this
model and his application must be compliant
to the model.

3.3.2 Organizational Structure

The most important and expensive part of every
real-world contact center is its workforce that
comprises CSRs, managers, administrators, etc. The
organization of a workforce in workflow systems is
usually called organizational structure (CSTA,
2002). Each contact center has its own
organizational structure that may be formed of
branches, departments, groups, managers and CSRs.
The designer of a CC application must be aware of
the organizational structure in order to organize
resource management in his application in an
appropriate way.

3.3.3 System Data

The CC platform may maintain and expose to its
applications a wide range of system data. An
example is a time service providing applications
with information about current time and day.
Another example of system data is current values of
service objectives of applications like average
waiting time, abandonment rate, CSR occupancy,
etc. This information can be used, for instance, for
making routing decisions.

4 EXAMPLE: TOY CONTACT
CENTER PLATFORM

For illustration purpose let’s introduce an XML-
based specification of a very simplified Toy Contact
Center Platform (TCCP).

4.1 General Platform Structure

TCCP contains two main elements
<voiceConfiguration> and <organizationalStructure> that
will be described in more detail in the following
sections.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

446

<CCPlatform name=”ToyContactCenter”>
 <voiceConfiguration name=””>

 </voiceConfiguration>
 <organizationalStructure>

 </organizationalStructure>
</CCPlatform>

4.2 Voice Configuration Platform

The TCCP voice configuration platform is described
by the following XML document.

<voiceConfiguration name=”ToyVoiceConfig”>
 <switch name=”SW1”>
 <directoryNumbers>
 <dn num=”1120” type=”regular”/>
 <dn num=”1121” type=”regular”/>
 <dn num=”1122” type=”regular”/>
 <dn num=”2239” type=”routingPoint”/>
 </directoryNumbers >
 <calls>
 <call callID=”0238AB82” type=”voice”>
 <leg type=”external”/>
 <leg type=”internal” dn=”2239”/>
 <dnis value=”8001234567”/>
 </call>
 </calls>
 </switch>
</voiceConfiguration>

The platform consists of two parts: configuration
of directory number (DN) objects and description of
all current interactions (calls). In the given example
there are four configured DNs: 1120, 1121, 1122,
and 2239. First three of them are regular DNs that
represent CSRs’ phones. The fourth DN is of type
routing point that is associated with a routing
strategy.

At the given time the platform contains only one
active call specified by the element <call>. The call
comprises two legs, one is associated with a
customer and the other one with a routing point DN
with a corresponding routing strategy. The call’s
DNIS number is contained in the <dnis> element.

4.3 Organizational Structure

TCCP has a very simple organizational structure
consisting only of CSRs:

<organizationalStructure>
 <CSR Name=”Mike First” status=”Ready”>
 <skill name=”CustomerService” level=”5”/>
 <dn num=”1120”/>
 <occupancy value=”0.96”/>
 </CSR>
 <CSR Name=”John Second” status=”Ready”>
 <skill name=”CatalogSale” level=”5”/>
 <dn num=”1121”/>
 <occupancy value=”0.90”/>
 </CSR>
 <CSR Name=”Petr Wise” status=”Busy”>
 <skill name=” CustomerService” level=”2”/>

 <skill name=”CatalogSale” level=”5”/>
 <dn num=”1122”/>
 <occupancy value=”0.83”/>
 </CSR>
</organizationalStructure>

At the given time the TCCP has three CSRs.
Each CSR has skills represented by the element
<skill>. The first CSR, Mike First, has a skill related
to customer service activity. The second CSR, John
Second, has a skill related to catalogue sale activity.
The third CSR, Petr Wise, is cross-trained and has
both skills. Each CSR has a status representing his
availability, and its value is given by the attribute
“status”. Note that the two first CSRs are in state
“Ready” and can accept new calls. The third CSR is
in state “Busy” and is already engaged in a call.
Each CSR is associated with a directory number
(element <dn>) representing his telephone.
Moreover, each CSR has a statistic describing his
occupancy, i.e. a ratio of busy time to overall work
time within some time interval.

Note that attributes such as occupancy and status
are highly dynamic and can be extracted from a
separate server.

More generally, all data containing in XPlatform
can be instantiated in different servers of the CC.
This applies both to Organizational Structure and
also to Voice Configuration, where e.g. <calls> are
very dynamic.

5 MULTI-SCRIPT AND
MULTI-BROWSER MODEL

Typical real world CC applications consist of a set
of components, each component specifying the
application logic that implements a particular aspect
of CC application behavior. As a rule, these different
components are represented in different ways, using
different XML or proprietary protocols (for
example, self service might be implemented using
VoiceXML for voice and XMPP for IM self
service). In this section we will consider how to
organize multi-scripting in XContact.

5.1 Multi-scripting Example:
VoiceXML/CCXML

Consider a VoiceXML/CCXML voice application
that consists two types of components – CCXML
component(s) describing call control logic and
written in CCXML language and VoiceXML
component(s) describing logic of voice dialog(s) and
written in VoiceXML terms. We should stress that

XML BASED FRAMEWORK FOR CONTACT CENTER APPLICATIONS

447

both VoiceXML and CCXML have much in
common. First, they are built on XML and have
similar notation. Second, they have many common
constructs like tags for working with variables, flow
control mechanisms. However, this will not always
be the case; in some cases, application elements
implemented in very different ways still need to be
orchestrated in order to deliver effective interaction
management (for instance, routing logic using
proprietary routing tools and establishment of a
video session using SIP might need to be closely
coupled).

We will refer to these application components
written in different languages as scripts. Therefore a
VoiceXML/CCXML application is built with the aid
of two types of scripts – VoiceXML script(s) and
CCXML script(s).

During run time different scripts are executed by
different interpreters. For example,
VoiceXML/CCXML applications are executed with
the aid of two interpreters – VoiceXML browser and
CCXML browser. The Fig. 3 illustrates this relation.

Figure 3: Scripts and browsers in VoiceXML/CCXML.

The invocation of VoiceXML script from
CCXML one is organized by the element
<dialogstart>. When the dialog is ended, the
CCXML script receives a corresponding event
“dialog.exit”. Similarly, the CCXML script can
invoke another CCXMl script using element
<createccxml> whose completion is reported by an
event “ccxml.exit”.

5.2 Multi-scripting in XContact

Another example is a typical inbound voice
application that includes additional components
supporting CSR involvement like routing strategies
and CSR applications.

Figure 4: Scripts and browsers for real-world contact
center.

This voice CC application comprises three types
of scripts – routing strategy, IVR script and CSR
desktop application. When an incoming call enters
the CC, it is placed on a DN associated with Routing
Strategy 1. Based on call attributes (e.g. DNIS) the
call is distributed to an IVR that executes a
corresponding IVR Script. The script controls a
dialog with the customer collecting required
information. Based on these collected data the call is
transferred to Routing Strategy 2 that will find the
most appropriate CSR. During execution the routing
strategy may invoke another IVR script to collect
additional customer information. And finally when
the strategy determines an available CSR, the call is
transferred to his/her telephone. This transfer is
accompanied with initiation of agent’s (CSR)
scripting on his/her desktop assisting in conversation
with the customer.

It is clear that when there are several script
languages and scripts can invoke each other, we
need a more general means for script invocation and
termination. For such purposes we will use new
elements like <startscript> indicating explicitly the
type of script:

<startscript src=”dialog.vxml”
 type=”VXML” .../>

The completion of the script will be signaled by
an event “script.exit” with returned parameters.

6 EXAMPLE OF APPLICATION:
ROUTING STRATEGY

CC applications written in XContact languages will
use data maintained in the platform. In this section
we illustrate this using the example of a routing
XML language. In Fig.3 the routing application is
represented in a UML-like diagram.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

448

Figure 5: Application with routing.

The following strategy describes the routing of
an interaction between two service types (activities):
Customer Service and Catalogue Sale. It is assumed
that these activities correspond to DNIS numbers
800-123-4567 and 800-765-4321 respectively.

<xstrategy name=”ToyStrategy”>
 <var name=”dn”/>
 <!-- Rule for Customer Service activity -->
 <rule cond=”//call[@dnis=’8001234567’]”>
 <assign name=”dn” value=
 ”//CSR[/skill/@name=’CustomerService’]
 [@status=’Ready’]
 [min(@occupancy)]/@dn”/>
 <exit namelist=”dn”/>
 </rule>
 <!-- Rule for Catalogue Sale activity -->
 <rule cond=”//call[@dnis=’8007654321’]”>
 <assign name=”dn” value=
 ”//CSR[/skill/@name=’CatalogSale’]
 [@status=’Ready’]
 [min(@occupancy)]/@dn”/>
 <exit namelist=”dn”/>
 </rule>
</xstrategy>

The strategy consists of two rules, one

corresponding to each activity. The attribute “cond”
selects the appropriate call based on the value of the
attribute “dnis” of calls. Note that all expressions in
the strategy are represented in XPath notation
(XPath, 1999). Applying the strategy to the call in
the platform described above we realize that the call
corresponds to the first rule. Next the strategy
searches for the most appropriate CSR for the call.

The XPath condition for the variable “dn” returns a
DN of the CSR who (i) has skill ‘CustomerService”,
(ii) is in “ready” state, and (iii) has the minimum
occupancy (compared to all available, appropriately
skilled CSRs). Clearly, the third CSR will be
selected. His DN “1122” is returned and the call is
transferred to it using the call control request
<redirect>.

7 RELATION TO W3C WORK

Recommendations VoiceXML and CCXML are
being developed within the W3C voice browser
working group. More general cases with different
modalities are being developed within the W3C
multimodal interaction group.

A VoiceXML environment is represented in
Figure 6. The VoiceXML script is rendered by a
VoiceXML browser controlling spoken dialog with
a customer.

Figure 6: Scripts and browsers in VoiceXML
environment.

Agent involvement in a contact with a customer can also
be considered from web perspective, see Figure 7.

Figure 7: Agent as a voice browser.

One could think of it as the CSR playing the role
of a browser “rendering” agent script dialog
instructions written in HTML. Similar to VoiceXML
an agent script specifies a dialog with a customer but
in different terms. Moreover, CSRs usually use
additional knowledge acquired during training
process and sometime referred to as skills.

We can consider such environment as another
modality or more strictly as another implementation
of voice modality. The main difference here is that a
CSR-browser should be found before starting the
browsing session. Moreover, the CSR should have
appropriate skills and be available (not busy). This

XML BASED FRAMEWORK FOR CONTACT CENTER APPLICATIONS

449

searching logic can be expressed in an XML-based
form as routing strategy, see previous section.

The CSR environment can be considered as a
special case of a W3C Multimodal architecture
(Multimodal, 2006). In this architecture, VoiceXML
and Agent scripts play the role of markup languages
for modality components. CCXML and XML
strategy are markup languages for controller and
interaction management.

One can also use W3C State Chart XML
(SCXML, 2006) as a good markup candidate for
creation of a controller document that could organise
combined use IVR and CSRs in one CC application.

8 CONCLUSION

Within this paper we introduced main concepts that
we believe will be important for a comprehensive
and consistent scripting of all contact center
functions. In particular, the notion of a generalized
XPlatform has been introduced representing the
structure, capabilities and current state of the
underlying real systems which are needed to handle
interactions, and it is complemented by a
standardized XContact specification that allows for
end-to-end scripting of interaction management
rules. A key element of the XContact approach is to
allow usage of existing “bottom-up” protocols such
as VoiceXML, CCXML, XMPP and many others
within an orchestrated application framework that
also provides missing elements such as routing
strategy specification, outbound campaign rules
specification, and so forth. Our future plans include
the incorporation of applicable existing XML
specifications and the development of XML
languages for specific areas of contact centers that
do not currently have coverage, as well as the more
complete articulation of the XContact and
XPlatform protocols.

REFERENCES

Anisimov N. et al. 1999. Formal Model, Language and
Tool for Design Agent's Scenarios in Call Center
Systems, Proceedings of the 32nd IEEE Hawaii
International Conference on System Sciences, Hawaii,
USA.

Batt R., Doellgast V., Kwon H. Service Management and
Employment Systems In U.S and Indian Call Centres.
Working paper 05-12. Industrial and Labor Relations
School. Cornell University. July 2005.

Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Zeltyn,
S., Zhao, L. and Haipeng, S. Statistical Analysis of a

Telephone Call Center: A Queueing-Science
Perspective. (2005) Journal of the American
Statistical Association, Vol 100, pp. 36-50.

CCXML. Voice Browser Call Control: Version 1.0. W3C
Working Draft 29 June 2005. See
http://www.w3.org/voice/

CSTA. Services for Computer Supported
Telecommunications Applications (CSTA) Phase III.
Standard ECMA-269. 5th Edition – December 2002.

ECTF. Call Control Model. Enterprise Computer
Telephony Forum (ECTF) C.001. 1997.

Gans N., Koole G., Mandelbaum A. 2003. Telephone Call
Centers: Tutorial, Review and Research Prospects,
Manufacturing and Service Operations Management,
vol.5, no.2, pp. 79–141.

JAIN Call Control, JSR 000021, 2001.
M. zur Muehlen. 2004. Organizational Management in

Workflow Applications – Issues and Perspectives.
Information Technology and Management Journal.
Kluwer Academic Publishers, Vol. 5, No. 3, pp.271-
291.

Multimodal Architecture and Interfaces. W3C Working
Draft, April 14, 2006, http://www.w3.org/2002/mmi/

SCXML: State Chart XML: State Machine Notation for
Control Abstraction, W3C Working Draft 24 January
2006. See http://www.w3.org/voice/

Sheng-Lin Chou, Yi-Bing Lin, 2000. Computer Telephony
Integration and Its Applications, In IEEE
Communications Surveys & Tutorials. vol. 3, no.1,
pp.2-11.

VoiceXML. Voice Extensible Markup Language. Version
2.0. W3C Recommendation 16 March 2004. See
http://www.w3.org/voice/

XPath. XML Path Language, Version 1.0, W3C
Recommendation, 16 November 1999, See
http://www.w3.org/TR/xpath

WEBIST 2007 - International Conference on Web Information Systems and Technologies

450

