
ENSURING HIGH PERFORMANCE IN VALIDATING XML
PARSER

Donglei Cao, Shuang Yu, Beijie Dai and Beihong Jin
 Technology Center of Software Engineering, Institute of Software

Chinese Academy of Sciences, Beijing 100080, China

Keywords: XML Parser, Validation, Performance Tuning.

Abstract: An XML parser is the fundamental software for analyzing and processing XML documents. This paper
presents the optimized validation algorithms in OnceXMLParser, a full-validating XML Parser.
OnceXMLParser adopts a lightweight architecture and implements several efficient algorithms for
validating. Since the element validating is a great challenge to the performance of a validating XML parser,
this paper focused on two key algorithms to resolve it. The first one involves in an optimized automaton
used to build these element validating rules efficiently. The second one is a statistical predictive algorithm
to reduce the name string recognizing process. For a valid document, this algorithm could make precise
prediction when the child elements are sequentially defined, and could fulfil the least cost prediction
according to the cost function when the child elements are optionally defined. Performance testing shows
OnceXMLParser after performance tuning has outstanding parsing efficiency.

1 INTRODUCTION

The Extensible Markup Language (XML) (W3C,
1998) has been widely used in electronic businesses,
web services and enterprise data exchanges and
integrations; it actually becomes a standard for data
representation and exchange over network. In
addition, as a meta-language, XML can be used to
define a wide range of markup languages, such as
Web Service Definition Language, Resource
Description Framework and Mathematical Markup
Language. However, text-based format of XML
sometimes leads to a large document. Moreover,
XML-based data exchange happens much frequently
in some scenarios, for example, in Web service
applications. Thus, XML parsing in those
applications will become a system bottleneck which
demands to improve the performance of XML
parsers.

This paper gives the optimization techniques of
validity checking in OnceXMLParser which is a
high-performance full-validating XML Parser
supporting Simple API for XML (SAX), Document
Object Model (DOM) and Streaming API for XML
(StAX). The paper is organized as follows. Section 2
introduces some popular XML parsers; section 3
gives the system architecture of OnceXMLParser;

section 4 presents key validity checking algorithms;
section 5 shows our test results, mainly in StAX, and
at last is the summary.

2 RELATED WORK

There are many popular XML parsers for Java, such
as Xerces (Apache, 2004), Crimson (Apache, 2001),
Piccolo (Oren, 2002), etc. Among these parsers,
Xerces is the most popular validating XML parser
supporting DOM and SAX, and it is also the default
parser since JDK 5.0. Crimson supports XML1.0,
SAX2, DOM Core 2 and JAXP1.1. Piccolo is a
validating SAX parser which is generated by parser
generator tools JFlex and BYACC/J. However,
Crimson is not perfect in parsing; for example, it
cannot recognize byte order mark in UTF-8 coding,
and invalid character references in attribute values.
Similarly, Piccolo also has defects in parsing and
validating, for instance, it cannot resolve relative
paths in entity references correctly, and does not
check the validity constraint (VC): Proper
Conditional Section/PE Nesting. In brief, Xerces is
excellent in SAX and DOM although it enters loop
after reading 10M-size comment or PI.

210
Cao D., Yu S., Dai B. and Jin B. (2007).
ENSURING HIGH PERFORMANCE IN VALIDATING XML PARSER.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 210-215
DOI: 10.5220/0001276102100215
Copyright c© SciTePress

Recently, StAX, a promising pull API for XML
processing, is implemented by some XML parsers,
for example BEA StAX RI (BEA, 2003), Sun Java
Streaming XML Parser (Sun, 2005), Oracle StAX
Pull Parser (Oracle, 2003) and Woodstox (Codehaus,
2006). But all of them have some fatal defects. For
example, BEA StAX RI cannot recognize invalid
characters in character data part of the document,
cannot parse entity references in the default attribute
values and cannot get the correct character text when
it reports a characters event; Sun Java Streaming
XML Parser cannot correctly deal with the external
parameter entity references in Document Type
Definition (DTD), cannot recognize legal characters
ranged from #x10000 to #x10FFFF and surrogate
pairs, and it doesn’t read attribute-list declarations in
the external subset; Oracle StAX Pull Parser is based
on the SAX Parser of Oracle XDK which leads to its
inefficient; Woodstox cannot fully support UTF-8,
especially the surrogate pairs, and it cannot
recognize some invalid names. As the only
validating parser among those StAX parsers,
Woodstox doesn’t report errors when it meets
invalid XML documents; instead it reports
exceptions and stops parsing.

Besides these common XML parsers, some
researches also focus on automatically generating
XML parsers from an XML Schema. XML
Screamer (Kostoulas et al, 2006) is such an
experimental system. Its parsing is integrated with
Schema-based validation and deserialization to
achieve high performance. But these automatically
generated parsers are not common XML parsers.
Each generated parser only fits those Schema-based
valid documents under a particular XML Schema.

OnceXMLParser is a common XML parser and
fully implements XML1.0/1.1 and Namespaces in
XML (W3C, 1999). It passes all the API tests for
StAX (Tatu, 2004), DOM (W3C, 2004) and SAX
(David, 2001) and all the XML conformance tests
(W3C, 2003), it also shows outstanding parsing
performance after adopting some efficient
performance tuning algorithms.

3 SYSTEM ARCHITECTURE

OnceXMLParser adopts a lightweight architecture
and consists of the following components shown in
Figure 1.

Like common lexical analysis used for traditional
programming language, Scanner is implemented as a
Deterministic Finite Automaton (DFA) to recognize
terminals from the input streams. Some well-

formedness constraints (WFCs), such as checking
valid name characters and valid attribute values, are
checked while recognizing those tokens. But before

regular lexical analysis, Scanner has to decode
characters denoted by encoding signature in the
scanning buffer and then put the decoded characters
into a pre-allocated character buffer. Considering
that the smaller size of character buffer needs more
filling buffer operations and more saving actions for
unparsed tokens at the end of character buffer, but
the larger size of character buffer increases costs for
normalization operations, we adjust the proper size
of character buffer in order to improve performance.

CoreParser is the core syntax processor, which
uses tokens got from Scanner and returns interested
information to applications through some standard
APIs. In addition, CoreParser checks most WFCs.
For example, in order to conform to WFC: Element
Type Match (W3C, 1998), CoreParser must check
whether these element names in start tags and
corresponding end tags are equal. CoreParser
resolves markups and characters according to their
statistical frequencies of occurrences, first for the
highest frequency.

DTDParser is a syntax analyzer for processing
declarations in DTD. It is also responsible for
building VC rules. In order to make the building
process efficiently, especially for those VC rules
about elements’ relations, DTDParser needs efficient
algorithms which will be discussed in the next
section. In addition, in order to facilitate the building
and checking processes of VC rules, efficient data
structures, such as light-weighed hash map, are
implemented.

Validation module checks VC rules collected by
DTDParser. The design of validation module is
crucial for performance, because these checking are
always burdensome tasks, for example, VC rules of
elements usually concern with the relationships
among elements and the content’s format of a
particular element; rules of attributes always concern
with the type and the default value of this attribute.
Moreover the efficient checking of VC: Element
Valid (W3C, 1998) is the largest challenge as we
will discuss soon, so we present some key
algorithms to solve it in the next section.

Figure 1: Architechture of OnceXMLParser.

 ENSURING HIGH PERFORMANCE IN VALIDATING XML PARSER

211

NSUtility resolves namespace declarations and
manages namespace scopes and mappings. It also
takes charge of namespace constraints (NSC)
checking. For example, to conform to NSC: Prefix
Declared (W3C, 1999), NSUtility must check
whether the prefix xml is bound to
http://www.w3.org/XML/1998/namespace or not.
EUtility manages entities referenced in the
document. It also has to check some WFCs, such as
WFC: No Recursion (W3C, 1998).

4 ALGORITHMS FOR
VALIDATING

Checking VC: Element Valid (W3C, 1998) means
examining whether elements occurred in the
document can match the declarations in DTD.
Moreover, validity checking contains many
reiterating processing, such as comparing name
strings. The following algorithms aim to improve the
performance of validity checking.

4.1 Optimized Automaton for
Element Valid

According to (W3C, 1998), the element content,
which defines the relationship of elements, is
defined by a regular language with ε-operations such
as * and ?, so it is natural to build a
Nondeterministic Finite Automaton (NFA) to
represent and check these definitions. Of course, we
could build a DFA as Woodstox did. But DFA
usually has more states than NFA. Moreover, to
build a DFA must translate these definitions with ε-
operations to the equivalent forms containing no ε-
operations. This will cause additional costs. At last,
we should notice that the relations of elements
appeared in the document are usually quite simple,
though their definitions would be rather complex.
Each automaton, no matter DFA or NFA, takes
charge of checking all the child elements of one
element type declaration. Each automaton starts at
its initial state, and transforms the state according to
the state transition function. For a valid document,
the automaton stops when the last child defined in
the corresponding declaration is matched. In fact,
DFA and NFA will traversal element content from
the initial state to the final state. So an NFA with
less building costs usually performs better than a
DFA, while the checking costs of the two are
approximately equal due to the relatively simple
structure of an XML document.

In order to show the performance between
OnceXMLParser with built-in NFA and Woodstox
integrated with DFA, we choose dozens of XML
documents where DTD parts occupy most portions.
These DTDs only have element type declarations.
Each declaration contains ten child elements, and
16% of these child elements are defined to be
optional. We let the two parsers parse those
documents for 1000 times, and record the time (for
building NFA/DFA) they used respectively. We
tabulate these results in Table 1. The values of the
Count column denote the number of element type
declarations in DTD.

Count NFA
(OnceXMLParser)

DFA
(Woodstox)

1000 65188 ms 81141 ms
2000 124765 ms 163781 ms
5000 328110 ms 378297 ms
7000 373735 ms 578438 ms
10000 579203 ms 750407 ms

These data show that NFA can perform better than
DFA in those situations for about 32.7% on average
which supports our NFA solution in
OnceXMLParser.

4.2 Statistical Predictive Algorithm

Names, which are defined by P[5]: Name Product of
(W3C, 1998), occur much frequently in a normal
XML document. Moreover, name recognizing is an
exhaustive process, because parser must check all
the characters appeared in the name whether they are
in valid name characters set defined by (W3C, 1998).
Notice that in valid XML documents, all the element
names have firstly appeared in the DTD, and they
will then appear elsewhere in the document many
times. So a reasonable idea is that we only check
these names in DTD and cache all the checked
names in a buffer. Once a name appeared in the
document, we would look up in the buffer to find the
corresponding name. If we could find out one then
we can omit the valid name checking, otherwise the
document is invalid. This approach will introduce
new costs in looking each name up in the buffer
which should be controlled in a reasonable range. So
we try to reduce the name recognizing by predicting
the element name which is most likely to appear
next according to current element name and some
corresponding element type declarations. If we can
provide relatively precise prediction, we need not to

Table 1: Tests of NFA and DFA.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

212

look up through the buffer or we could only need to
look up in a small subset of the buffer.

Here is an example of element type declaration:
<!ELEMENT parentEle (seq1,seq2,(opt3|option))>

This declaration means the parent element
parentEle has three sequential children; they are
seq1, seq2 and one of the opt3 and option in order. It
is easy to know that after the element parentEle,
there must be an element seq1. Following seq1 there
must be seq2, because of the sequential definition.
After seq2 we have two choices, opt3 and option,
which are defined to appear optionally. We must get
the best prediction according to our cost function
(1), which takes the lengths of names as its
parameters.

1 1() failuresuccessC name C Cn n
= × + ×∑ (1)

Where n is the number of options in the element
type declaration which is recorded by DTDParser —
in our example n equals 2. Csuccess and Cfailure stand
for the costs of a successful prediction and a failed
prediction respectively. So C(name) is the
expectation of the cost of the prediction process.
Then we can evaluate each choice by the cost
function to decide the one cost least.

Csuccess is only concerned with the length of the
predicted name. Considering Scanner will compare
current characters in the character buffer with those
in the given predicted name. Csuccess denotes the cost
of the comparing. In the case of a successful
prediction, Scanner compares each character in
character buffer with corresponding characters in the
predicted name, liking string matching, till the end
of the predicted name. So the number of characters
read by Scanner is the length of the given name
exactly, therefore Csuccess is only concerned with the
length of the given name without respect to what the
name is, namely Csuccess = Csuccess(namepredict.length)
= Csuccess(namereal.length), where namepredict means
the predicted name and namereal means the real name
stored in the character buffer. On the other hand,
Cfailure does not only concern with the predicted name
only but is also concerns with the real name in the
character buffer. In the case of failed prediction,
there must be a character in the character buffer,
which does not match the corresponding character in
the predicted name. And this mismatch may happen
at any position during the comparing, so the cost of
this process also concerns with the real name,
namely Cfailure = Cfailure(namereal.length ,
namepredict.length). Notice that the real name must be
one of the options in the element type declaration,

since we assumed that the XML document is valid.
To evaluate the values of Csuccess and Cfailure, we
compute the comparing costs of vast different name
strings with various lengths and get the statistical
values. We can also establish the statistical values of
the cost of processing a name in the normal way
(without prediction), that means the cost of reading
several characters from character buffer and looking
up them in the valid name character set. Remember
that, with prediction, Scanner compares each
character in character buffer with just one
corresponding character in the predicted name. But
without prediction, Scanner compares each character
with delimiters of the valid name character set.
Obviously, for each character, the later operation
costs more than the former operation. And it is easy
to know that the cost is only concerned with the
length of the name string analogous to Csuccess. We
denote this as Cnonpredict = Cnonpredict(namereal.length).

We choose words in Oxford Dictionary as our
name strings. So we got 34,840 names with lengths
ranged between 1 and 21, we could put names
longer than 21 characters to the group of length 21.

Let Gi be the set of name strings whose length is
i, i<21, G21 be the set of name strings whose length
is not less than 21. Let CountTime(process) be the
function to count the time used by the process, and
Sizeof(set) be the function to get the number of
elements of the set. Let getName(namereal) be the
process of recognizing a name string namereal by the
normal way (without prediction), skip(namepredict) be
the process of trying to match a predicted name
namepredict, this process may be failed when the
predicted name mismatch the real name in the
document. Then we can evaluate Cnonpredict(i), Csuccess
(i) and Cfailure(i,j) as:

(())

() ()

real
name Greal i

nonpredict i

CountTime getName name

C i Sizeof G
∈

=

∑

(())

() (2)()

real
name Greal i

success i

CountTime skip name

C i Sizeof G
∈

=

∑

 (2)

,

(,)

(() ())

()

failure

predict real
name G name Gpredict j real i

j

C i j

CountTime skip name getName name

Sizeof G
∈ ∀ ∈

=

+∑

Notice that, when computing Cfailure(i,j), we
randomly select a name string namereal from Gi. If i
equals to j, we guarantee namereal is different from
namepredict. We implement this algorithm in Java, and

 ENSURING HIGH PERFORMANCE IN VALIDATING XML PARSER

213

our experiment environment is a Pentium4 2.4GHz
PC with 512M DDR, Windows XP, and JDK 1.4.2.
We got the following statistical value tables, the unit
of cost is10-4 millisecond. In Table 2, len denotes
namereal.length, and in Table 3 value of the ith row

 and the jth column denotes the value of Cfailure(i,j).

Table 2: Parts of the statistical values of Csuccess and
Cnonpredict.

L
en

Csuccess Cnonpredict len Csuccess Cnonpre

dict
1 0.533 2.284 12 1.486 3.515
3 0.692 2.378 14 1.666 3.786
4 0.877 2.609 15 1.720 4.073
5 0.948 2.692 16 1.802 4.295
6 1.023 2.766 17 1.886 4.447
8 1.180 3.121 19 2.003 4.790
10 1.334 3.323 21 2.171 5.963

 After the computation of C(name) comes into
available, we can compute C(opt3) and C(option) in
the former example respectively, and choose the one
costs least as the predicted name. In our example,

1
(3) (3.)2

1
(. , 3.)2

1 ((4) (6,4)) 2.132
2

C opt C opt lengthsuccess

C option length opt lengthfailure

C Csuccess failure

= ×

 + ×

 = × + =

1
() (.)2

1 (3. , .)
2
1 ((6) (4,6)) 2.0835
2

cuccess

failure

cuccess failure

C option C option length

C opt length option length

C C

= ×

 + ×

 = × + =

While (3.) (4) 2.609 (3)nonpredict nonpredictC opt length C C opt= = >

and (.) (6) 2.766 ()nonpredict nonpredictC option length C C option= = > .
So we decide option as the predicted name, as it has
the least cost according to our cost function ⑴.

But if the one costing least is still larger than the
corresponding Cnonpredict, the predicted name should
be null, which means no prediction is the best way.

5 PERFORMANCE TESTING

We use Sun XMLMark (Sun, 2004) as benchmark to
compare the performance of OnceXMLParser with
other XML parsers. We modified it to make StAX
into use. To make the results stable, we repeat each
test for seven times and get the average results. Our
experiment environment is a Pentium4 2.8GHz PC

(with Hyper Thread) and 1G DDR (Duel Channel),
Window XP (SP2) and JDK 1.4.2_03. Details of
Test1—Test3 can be found in (Sun, 2004).

150
160
170
180
190
200
210
220
230
240

1 2 3 4 5 6 7

WoodSToX once WoodSToX(NS) once(NS)

(a)

80
85
90
95
100
105
110
115
120

1 2 3 4 5 6 7

WoodSToX once WoodSToX(NS) once(NS)

(b)

40
42
44
46
48
50
52
54
56
58

1 2 3 4 5 6 7

WoodSToX once WoodSToX(NS) once(NS)

I

(c)

110
115
120
125
130
135
140
145
150

1 2 3 4 5 6 7

WoodSToX once WoodSToX(NS) once(NS)
(d)

55

60

65

70

75

80

1 2 3 4 5 6 7

WoodSToX once WoodSToX(NS) once(NS)
(e)

29
30
31
32
33
34
35
36
37
38
39

1 2 3 4 5 6 7

WoodSToX once WoodSToX(NS) once(NS)
(f)

Figure 2: Results of XMLMark.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

214

There are 24 groups of results, including 6
groups for SAX, 6 for StAX and 12 for DOM. Due
to the limitation of page number; we only list 6 of
them concerned with StAX here.

Testing results are shown in Figure 2. The
horizon axis means the number of tests and the
vertical axis means the number of finished
transactions per second defined by (Sun, 2004).

In Figure 2, (a)—(c) mean the results without
VC checking, while (d)—(f) mean the results with
VC checking. In the figure, (NS) denotes the parsers
support namespace.

For StAX, results show that OnceXMLParser
with VC checking performs 13.32% and 14.10%
better than Woodstox without and with namespace
supporting respectively. And OnceXMLParser
without VC checking performs 11.44% and 16.30%
better than Woodstox without and with namespace
supporting respectively. For SAX, results show that
OnceXMLParser with VC checking performs
19.08% and 34.56% better than Xerces without and
with namespace supporting respectively. And
OnceXMLParser without VC checking performs
18.62% and 31.47% better than Xerces without and
with namespace supporting respectively. For DOM,
results show that OnceXMLParser with VC
checking performs 38.04% and 31.41% better than
Xerces without and with namespace supporting
respectively. And OnceXMLParser without VC
checking performs 77.44% and 57.08% better than
Xerces without and with namespace supporting
respectively.

6 CONCLUSION

XML parser is an infrastructure for XML
processing. This paper studies some kinds of XML
parser implements DOM, SAX and StAX, and
provides a lightweight implementation—
OnceXMLParser. Through implementing some key
algorithms and some efficient optimizing

techniques, OnceXMLParser gains better
performance as we expected.

The future work includes supporting the XML
Schema.

REFERENCES
W3C, 1998. Extensible Markup Language (XML) 1.0.

http://www.w3.org/TR/1998/REC-xml-19980210
W3C, 2004. DOM Conformance Test Suites,

http://www.w3.org/DOM/Test/
W3C, 1999. Namespaces in XML.

http://www.w3.org/TR/1999/REC-xml-names-
19990114

W3C, 2003. Extensible Markup Language (XML)
Conformance Test Suites 20031210.
http://www.w3.org/XML/Test/

Tatu, S., 2004. StaxTest.
http://www.cowtowncoder.com/proj/staxtest

Sun Microsystems, 2004. XML Test v1.1.
http://java.sun.com/performance/reference/codesampl
es

David, B., 2001. SAX2Unit.
http://sourceforge.net/project/showfiles.php?group_id
=8114&package_id=32032

BEA, 2003. BEA RI.
http://ftpna2.bea.com/pub/downloads/jsr173.jar

Sun Microsystems, 2005. Sun Java streaming XML parser.
https://sjsxp.dev.java.net/files/documents/3071/12956/
sjsxp_20050505.class

Codehaus, 2006. Woodstox.http://woodstox.codehaus.org/
Oracle, 2003. Oracle StAX Pull Parser,

http://www.oracle.com/technology/tech/xml/xdk/staxpr
eview.html

Apache, 2004. Xerces2. http://xml.apache.org/xerces2-j/
Apache, 2001. Crimson. http://xml.apache.org/crimson/
Oren, Y., 2002. Piccolo. http://piccolo.sourceforge.net/
Kostoulas, G. M., Matsa, M., Mendelsohn, N., Perkins, E.,

Heifets, A., Mercaldi, M., 2006. XML screamer: an
integrated approach to high performance XML parsing,
validation and deserialization. In Proceedings of the
15th international conference on World Wide Web
WWW '06. ACM Press.

Table 3: Parts of the statistical values of Cfailure(i,j).

 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 j=12 j=13 j=14
i=4 3.147 3.120 3.144 3.191 3.232 3.556 3.186 3.090 3.110 3.072 3.073
i=6 3.387 3.272 3.301 3.354 3.339 3.554 3.341 3.274 3.268 3.232 3.195
i=8 3.522 3.368 3.586 3.600 3.620 3.707 3.599 3.469 3.374 3.533 3.527
i=12 4.079 4.011 4.094 4.187 4.158 4.131 4.146 4.050 4.012 3.991 3.948

 ENSURING HIGH PERFORMANCE IN VALIDATING XML PARSER

215

