
THE APPLICABILITY OF BALANCED ESI FOR WEB CACHING
A Proposed Algorithm and a Case of Study

Carlos Guerrero, Carlos Juiz and Ramon Puigjaner
Departamento de Ciencias Matemáticas e Informática, Universitat de les Illes Balears, Ctra Valldemossa km 7.5, 07122

Palma de Mallorca, Illes Balears, Spain

Keywords: Web performance, web cache, ESI (Edge Side Includes).

Abstract: In this paper, we present an algorithm to improve the cases in which the caching of fragments pages (ESI
standard) has a worse performance than expected. A layer between the web cache and the clients has been
developed and has tested over a web application using a fragment and non fragment version of web pages.
Through the results of this case study we demonstrate that the proposed algorithm improve the general
performance of the web application.

1 INTRODUCTION

The way that web servers deliver their contents has
completely changed since the beginning of Internet.
One of the major changes has been the inclusion of
traditional information system applications on the
www as the database ones. Nowadays, dynamic web
applications are used to deliver contents to users.
However, dynamic content creation places
significant strain on traditional Web site
architectures. This is because the same infrastructure
used to generate the content it is also used for
delivering the content. Generating dynamic content
typically incurs: 1) user requests are dispatched to
appropriate software modules that service these
requests, thereby producing network overhead; 2)
these software modules determine which data to
fetch and present, thereby producing process
overhead; 3) the disk I/O management querying the
back-end database produces data overhead, and
finally; 4) the assembled data needs to be formatted
and delivered to the browser, thereby producing
cache overhead. In short, building Web pages on-
the-fly is always computationally very expensive.
Therefore, the dynamic workload is higher than the
workload generated by a static web server, which
usually reads a file from the hard disk and sends it
by the network. This is the reason why content
caching has become an interesting research topic in
web engineering (Cao, 1998).

Unfortunately, there are other more complex
problems appearing in dynamic web caching
(Veliskakis, 2005). For instance, the ratio in which
web pages are changing is normally higher than the
static ones and moreover, these changes are usually
small. These small changes produce the page
invalidation in the cache (miss) and the
corresponding request to the server is sent,
generating the additional respective workload.
Another common case in dynamic server is the huge
amount of information that the web pages are
sharing. This shared information has to be generated
for each page even though it is identical.

Since the minimum caching unit in web servers
is a full document, the problem of regenerating web
pages, in every content change, turns reusing shared
information out almost an impossible task. However,
we may improve the way of the web pages are
cached by reducing the caching units to fragments of
pages. This technique avoids the regeneration of the
whole page. One way to brake down pages into
fragments is given by ESI (Edge Side Includes).
Unfortunately, not always the use of ESI guarantees
the best response times for web pages. In this paper
we present a case study of using ESI to improve web
caching by using a heuristic balancing algorithm.

Thus, in section 2 a brief introduction to ESI
benefits is provided. In section 3 we relate ESI use
for web caching and some of the drawbacks of using
ESI standard are provided. Section 4 is devoted to
present our proposed balancing algorithm and in

197
Guerrero C., Juiz C. and Puigjaner R. (2007).
THE APPLICABILITY OF BALANCED ESI FOR WEB CACHING - A Proposed Algorithm and a Case of Study.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 197-203
DOI: 10.5220/0001273501970203
Copyright c© SciTePress

section 5 we present our case study. Conclusions and
future work are presented at the end of the paper.

2 EDGE SIDE INCLUDES (ESI)

ESI is a simple markup language that web
application developers may use to identify content
fragments for web dynamic assembly (ESI, 2006).
ESI also specifies a content invalidation protocol for
transparent content management across ESI-
compliant solutions, such as application servers and
content delivery networks. The ability to assemble
dynamic pages from individual page fragments
means that only non-cacheable or expired fragments
need to be fetched from the origin Web site, thereby
lowering the need to retrieve complete pages and
decreasing the load on the Web site’s content
generation infrastructure.

The use of ESI maximizes its profit in scenarios
where the response times are high in the server, in
the network or in both cases. ESI can be use in the
most layers of the web architecture: in a web cache
proxy in the client side, in an inverse cache proxy in
the server side, or in the edge of the network.

A study about the benefits of ESI is presented in
this paper. The results of a workload over an web
application using ESI cache and standard cache are
explained and analyzed. This analysis reaches to the
conclusion that there are cases in which the use of
ESI does not provide lower response times.
Therefore, we have developed a web balancing
algorithm in order to address web requests either to
an ESI or to a standard cache version of the
requested page. This heuristic selection tries to
minimize the response times from the user point of
view.

3 ESI AND WEB CACHING

Edge Side Includes (ESI) accelerates dynamic Web-
based applications by defining a simple markup
language to describe cacheable and non-cacheable
Web page components that can be aggregated,
assembled and delivered. ESI enables Web pages to
be broken down into fragments of different
cacheability profiles. These fragments are
maintained as separate elements in the application
server’s local cache and/or on the content delivery
network. ESI page fragments are assembled into
HTML pages when requested by end users. This
means that much more dynamically generated

content can be cached, then assembled and delivered
from the edge when requested. Furthermore, page
assembly can be conditional, based on information
provided in HTTP request headers or end-user
cookies.

The basic structure a content provider uses to
create dynamic content in ESI is a template page
containing HTML fragments. The template consists
of common elements such as a logo, navigation bars,
and other "look and feel" elements of the page. The
HTML fragments represent dynamic subsections of
the page. The template is the file associated with the
URL the end user requests. It is marked-up with ESI
language (Figure 2) that tells the cache server or
delivery network to fetch and include the HTML
fragments. The fragments themselves are
HTML/ESI marked-up files containing discrete text
or other objects. Example of an ESI template:

<table><tr><td>
<esi:try>

<esi include
src=”http://www.myserver.com/main.php”>

</esi:try>
</td></td></table>

Figure 1: Example of ESI template code with the source of
a fragment.

3.1 ESI Problems

The technique of breaking down pages into
fragments does not always benefit the web
performance. When a page does not share
information with other pages there is no advantage
of having cached fragments of the document. Thus,
it is necessary to generate all the fragments and to
assemble all them. In these cases the use of ESI
produces an additional overload in comparison with
the traditional way of generating web pages
(Guerrero, 2006).

Moreover, breaking the web page down in a high
number of parts could cause a worse response time
because the main part of the fragments are not
shared with other pages. Then, the changes in that
page only affect to the template or to one fragment.
On the contrary, by breaking the page down in a
small number of parts also could cause a worse
response time that the traditional way to cache
pages. If fragments are too big, it is less probable to
find the same fragment in other pages, and little
changes could invalidate the main part of
documents.

The way in which the document is fragmented
takes a crucial importance from the performance
point of view. But it is not as easy as make the

WEBIST 2007 - International Conference on Web Information Systems and Technologies

198

higher possible number of fragments; it depends in
the grade fragments are sharing information, the
frequency of fragment updates and the workload
needed to generate the fragment. Therefore, a
fragment construction is more convenient as these
three parameters are higher. However, this
knowledge could not be known by the web
developer or web analyst during the software
engineering process. Additionally, these three
parameters are not constant along time. Thus,
fragments have to be dynamically built using the
information gathered in previous web requests.

The work presented in this paper is part of a
research project to build a tool for analyzing these
parameters and fragments of the different pages in
order to obtain the optimal performance in any time.
These fragments would be made using the
information gathered along requests, and would
change dynamically so long as those three
parameters are changing.

4 BALANCED CACHING

4.1 Balanced Caching Algorithm

The first step to achieve the global objective of the
research project is to build a tool that selects
between a fragmented page and the same content of
this page without fragments. This tool uses the
information gathered along different requests to
decide which version of the requested page is going
to be delivered to the user (Alcaraz, 2006).

The proposed algorithm for managing the tool
answers to each request either with a fragmented
version of the page or a non-fragmented one and
gathers their corresponding response times. Both
versions are identified in order to compare their
response times and to select the fastest (Arasu,
2003).

 The behaviour of the balanced cache can be
defined by and three states machine diagram (Figure
3). This state machine defines the version of the
page returned for each request. For each page or
identification of the page a different state machine is
associated. The three states of the diagram are: (a)
“Non Fragments State”, the returned page is the non
fragment version of the page; (b) “Fragments State”,
the returned page is the fragment version of the
page; (c) “Transient State”, the returned page is the
version with less number of requests (Gilly, 2007).

Transient
State

Fragments
State

Non
Fragments

State

nRequest > requestLimit
and

averageRT-NF < averageRT-F

now >
timeWindow +
changeTime

nRequest > requestLimit
and

averageRT-NF > averageRT-F

Figure 2: Balanced Caching Algorithm State Machine
Diagram.

The state machine starts at “Transient State” and
request requestLimit pages from both versions
of the page, after the last request analyzes the
average response time and changes the state to the
state of the shorter response time version. After a
period of time (timeWindow) either in the
“Fragments State” or “Non Fragments State”, the
state machine returns to the “Transient State” and
requests requestLimit pages from the version
with less access (nRequest), e.g. if the state before
to the “Transient State” was the “Fragment State”
non fragment versions of the pages would be
requested, and vice versa.

Therefore the tool stores the following data for
every page: the current state, the time of the last
state change (changeTime), the accumulate
response time and the number of requests
(nRequest). These values are used to compute the
average response time for both page versions
(averageRT-NF and averageRT-F). When the
state machine leaves the “Transient state” the tool
initializes all the information gathered for both page
versions.

4.2 Balanced Caching Architecture

Obviously the tool needs the fragment and non
fragment version of the page in the web server. At
this point of the research development, the tool is
not capable break down web pages into fragments
and/or to aggregate fragments. Therefore, the
developer needs to develop both versions of each
page. Our current task is to provide the
aggregation/disaggregation technique and thereby it
will not be necessary to manage fragments by web
developers (Candan, 2001)).

THE APPLICABILITY OF BALANCED ESI FOR WEB CACHING - A Proposed Algorithm and a Case of Study

199

Figure 3: Web architecture diagram with balanced cache
layer.

In order to minimize the development process,
the tool has been built as a separate layer and not
being part of a complete cache tool. Thus, it can be
used with any cache software, providing tool
portability. The balancing tool may be integrated by
placing it between the web cache and the clients that
make requests to the web server (see Figure 4).

5 CASE OF STUDY

A case of study is presented to show the
improvement on average response time achieved
with the balanced caching. The application example
consists on a dynamic web with two versions of each
page (fragmented and non fragmented). The
database, application server, web cache and
balanced cache layers are connected through the
same local area network. The clients are connected
by a wide area network to the server side of the
application.

5.1 Hardware Architecture

The database and the application server share the
same server, “Debian Linux” over a “Pentium II”
400 MHz, 192 MB RAM, 6 GB hard disk connected
by a 100 Mbps Local area network to the web cache
and the balanced cache. “MySQL” 3.23.56 and PHP
4.3.11 are also used. The web cache is “Oracle
Application Server Web Cache 10g” (Oracle, 2006)
running on a “Windows XP Service Pack 2” system
over a “Pentium 4” 1,6 GHz, 1 GB RAM. In order to
simplify the experiments the Balanced Cache and
the Web Cache reside on the same machine. The
client workload is generated by JMeter 2.1.1

benchmark running in similar computer to the cache
server.

The Balanced Cache Algorithm, that uses
sockets libraries to accept requests from the client
side and make the connections to the server site, was
developed in Java 1.4.

Apache JMeter is a Java desktop application
designed to load test functional behaviour and
measure performance (JMeter, 2006). It may be used
to test performance both on static and dynamic
resources. It can be used to simulate a heavy load on
a server, network or object to test its strength or to
analyze overall performance under different load
types. It can be used to make a graphical analysis of
performance or to test your server/script/object
behaviour under heavy concurrent load.

5.2 Web Application

The web application for benchmarking is the official
site of the “Fundació Universitat Empresa de les
Illes Balears FUEIB”. The web application is a
content management system (CMS) developed for
this specific case. The application gives the
possibility to manage pages and put them on the
navigation tree.

Figure 4: Web application fragments.

For every web page, a non fragmented version
and a fragmented version have been built
(Ramaswamy, 2004). In the fragmented version, a
template and six fragments have been defined (see
Figure 5). Three fragments are shared by all the
pages in the site (A, E, C), two fragments are shared
by the pages of the same department (B, D) and only
the template and one fragment (F) are exclusive of
each page.

5.3 Non Fragment and Fragment
Caching Test

Even it is expected that using a fragment caching
(ESI) would have better performance than a non
fragmented caching, the real situation is completely
different (see section 3.1). There are mean response

WEBIST 2007 - International Conference on Web Information Systems and Technologies

200

times for some non-fragmented pages that are
shorter than the corresponding fragmented ones.
Therefore, two workload tests have been done to
check these cases. One of these tests only requests
the non fragmented version of the pages, and the
other test only requests the fragmented version of
the same pages. For both tests the response times
have been gathered using JMeter benchmark to
emulate the user’s requests. The number of different
pages requested in the experiment has been 60
pages, 10 for each different department of the web.
The number of concurrent emulated users has been
100, requesting 100 pages each one, without
thinking time, taking approximately 60 minutes to
execute each workload test.

The results of both workloading tests show that
some pages have best behaviour if the fragmented
version of the page is request (for instance Page I in
Table 1). On the other hand (surprisingly), there are
a considerable number of pages that have a better
response time when the non fragmented version is
requested (for instance Page II in Table 1). Lastly,
there are a no very significant number of pages (less
than 16%) that the response times for each workload
test are practically equal (for instance Page III in
table 1). In Table 1 tree response times examples of
pages of each type are presented.

Table 1: Average response times for fragmented version
and non fragment version of the web application of tree
pages (ms).

Pages
Group

Fragment version
test average

response time (ms)

Non fragment
version test

average response
time (ms)

Page I 2576 4673
Page II 3850 2281
Page III 2740 2734

5.4 Balanced Caching Algorithm Test

The algorithm presented in this paper is based on the
differences shown in the last section. As it was
explained in Section 4.1, the algorithm tries to find
out the version that responds with the best behaviour
(“Transient State”) and when a considerable number
of requests have been compared (requestLimit),
it decides to request only one version of the page
(“Fragments State” or “Non Fragment States”). As
the conditions of the servers, networks and clients
change along the time, this decision has to be
evaluated after some period of time
(timeWindow).

The goal of the Balanced Caching Algorithm is
to achieve the minimum response time between the
request of the non fragmented version and the
fragmented version of the pages. However, the price
to be paid is overhead time to these expected mean
response times. In order to evaluate the overhead of
the algorithm and the benefits of using this
algorithm respect the other two alternatives, a third
workload test has been executed.

The workload test using the Balanced Caching
Algorithm (B.C.A. test) needs to set some
parameters up during the experiment, the number of
request in the “Transient State” (requestLimit)
and the time window to return to the “Transient
State” (timeWindow), respectively. In this case of
study requestLimit=3 and timeWindow=240
seconds are used.

5.4.1 Overhead Analysis

To evaluate the overhead added by the algorithm, we
compare the average response times in this last test
execution with the minimum values of the mean
response times obtained in the two previous tests.
These minimum values are the expected response
time of the algorithm. The subtraction of these
values and the mean response times of the B.C.A.
test correspond to the overhead that the algorithm
adds. In Table 2 we have shown the expected mean
response times and the real ones of three different
pages (the same pages shown in Table 1).

Table 2: Overhead time calculated with the expected
average response time and the measured Balanced
Caching Algorithm test.

Pages
Group

Expected
average
response
time (ms)

B.C.A. test
average
response
time (ms)

Overhead
(ms)

Page I 2576 2936 360
Page II 2281 3069 788
Page III 2734 3229 495

By performing this calculation for each page of

the group of 60, the overhead for each page is
obtained. Thus, the average overhead time
calculated from the test is 662 ms.

The mean responses times of the 60 pages are
between 2000 ms and 4000 ms. Therefore, if the
mean overhead time is 662 ms, it adds a
supplementary latency of 25% on the mean response
times in worst cases. However, the benefits of the
algorithm are considerable. For instance, if we
observe Page I and Page II in Table 1 and Table 2

THE APPLICABILITY OF BALANCED ESI FOR WEB CACHING - A Proposed Algorithm and a Case of Study

201

the mean response times of these two pages for the
Balanced Caching Algorithm Test are quite better
than the worst cases but the expected mean response
time is not much better. In the next section the
general analysis of the 60 pages are made.

5.4.2 Balanced Caching Response Time
Analysis

The main goal of the case of study is to show that
the average response times using the Balanced
Cache are generally better than using fragment/non
fragment cache even though the overhead produced
by the tool.

Table 3: Mean values of the average response times for
pages in “Group A” (ms).

Test Average response time
(ms)

Fragment version test 2866
Non fragment version test 4347

B.C.A. test 3528

Table 4: “Group A” Pages Speedup.

Case Speedup
Worst case (Fragment) 0.81

Best case (Non Fragment) 1.23

In order to simplify the presentation of the
experiments, results from 60 different pages are
grouped in three different cases. As it was explained
in Section 5.3, we distinguish three different cases:
pages that obtain best response times when the
fragmented version is requested (e.g. Page I in Table
1); pages that obtain best response times when the
non fragmented version is request (e.g. Page II in
Table 1); pages that do not present significant
differences between both cases (e.g. Page III in
Table 1). All the pages in the same situation that
Page I are grouped as “Group A” (best response
times with fragmented version of the pages); all the
pages in the same situation that Page II are grouped
as “Group B” (best response times with non
fragmented version of the pages); finally, all the
pages in the same situation that Page III are grouped
as “Group C” (little differences between both
versions). It is necessary to establish a value range to
differences the pages that belongs to “Group C”. For
this analysis we have supposed this range is +/- the
mean overhead time. Therefore, web pages
(fragmented or not) that differ in mean response
times less than overhead, are grouped together in
“Group C”.

First the behaviour of the pages belonging to
“Group A” are analyzed. The three mean response
times of the pages of each group are presented. We
can observe that the Balanced Cache Algorithm
improves the worst case but it has worse response
times that the best case, as we had expected. In
Table 4 the speedup is also shown.

The same analysis is made for pages of “Group
B” in Table 5. In this group the benefits of the
Caching Balanced Algorithm are smaller. The
respective speedups are presented in Table 6.

Table 5: Mean values of the average response times for
pages in “Group B” (ms).

Test Average response time
(ms)

Fragment version test 3589
Non fragment version test 2629

B.C.A. test 3205

Table 6: “Group B” Pages Speedup.

Case Speedup
Worst case (Non Fragment) 0.82

Best case (Fragment) 1.12

Finally, the analysis performed for pages in

“Group C” are presented in Table 7. In this case the
proposed algorithm could not improve any of the
both cases because the differences between the
response times of the fragmented version and non
fragmented version are smaller than the mean
overhead as we can see in Table 8, where the
speedup is presented. Thus, the general speedup of
the algorithm would depend of the percentage of
pages belonging to this group. In this case study the
number of pages are quite small (8.3%, 5 pages of
60).

Table 7: Mean values of the average response times for
pages in “Group C” (ms).

Test Average response time
(ms)

Fragment version test 3131
Non fragment version test 3016

B.C.A. test 3644

Table 8: “Group C” Pages Speedup.

Case Speedup
Worst case (Non Fragment

and Fragment)
0.83

WEBIST 2007 - International Conference on Web Information Systems and Technologies

202

5.4.3 Balanced Caching Response General
Speedup

The global speedup of the Balanced Caching
Algorithm depends on the proportion of pages that
belongs to each group and could be calculated by the
formula 1. If we group the speedups of “Group A”
and “Group B” and consider the same number of
pages in each group we could calculate the
maximum proportion of pages that belong to “Group
C” to have shorter response times using the
Balanced Caching Algorithm. The maximum
percentage of pages that belong to “Group C” to
have a general Speedup above 1 is 42%. This value
is enough higher to suggest that, in most cases, the
use of Balanced Caching Algorithm improve the
scenarios where is used only either fragmented
versions of pages or only non fragmented ones.

enhanced

enhanced
enhanced Speedup

ff
Speedup

+−
=

)1(

1

(1)

GroupC

GroupC

GroupB

GroupB

GroupA

GroupA

Speedup
f

Speedup
f

Speedup
f

++
≤

11

6 CONCLUSIONS AND FUTURE
WORK

An algorithm to improve the cases in which the
caching of fragments pages (ESI standard) has a
worse behaviour than expected has been presented.
A layer between the web cache and the clients has
been developed and also it has been tested over a
web application with a fragmented and non
fragmented version. The results demonstrate that the
proposed algorithm improves the general
performance of the application.

This algorithm is the only a first step in order to
develop a future tool that brakes down and aggregate
fragments, dynamically. In this way, we shall try to
achieve the optimal division of the pages depending
on their mean response times. This division has to be
done dynamically because the networks, servers and
clients’ status change along the time. Therefore, the
algorithm shall manage the pages using the
performance information of the last requests.

Another future research subject appears with the
need to know what are the conditions that web pages
have to fulfil to be faster o slower using or not
cached fragments.

Next future work will be to improve the
algorithm by reducing the period of time that the

algorithm remains in “Transient State”. When the
algorithm is in this state both versions of the page
are requested, thereby the slower version of the page
is also requested. Thus, we should dynamically
adjust the timeWindow and requestLimit
parameters, along the time, by getting higher
timeWindow and shortening the requestLimit
as long as always resolve the “Transient State” state
change to the same stationary state.

ACKNOWLEDGEMENTS

The authors acknowledge the partial financial
support of this research through the project code
TIN2006-02265 included in the programme
Programas Nacionales del Plan Nacional de
Investigación Científica, Desarrollo e Innovación
Tecnológica from Comisión Interministerial de
Ciencia y Tecnología (Ministerio de Educación y
Ciencia).

REFERENCES

Alcaraz, S., Juiz, C., Gilly, K., Puigjaner, R., 2006. A New
Bucket DiffServ Policy for Web Traffic. Proccedings
of TEMU 2006.

Arasu, A., Garcia-Molina, H., 2003. Extracting structured
data from Web pages. In SIGMOD.

Candan, K., D. Agrawal, D., 2001. View Invalidation for
Dynamic Content Caching in Multi tiered
Architectures. Proceedings of ICDCS-2001.

Cao, P., Zhang, J., Beach, k., 1998. Active Cache:
Caching Dynamic Contents on the Web, Middleware,
England.

Edge Side Incluyes – Estándar Specification.
http://www.esi.org.

Gilly, K., Alcaraz, S., Juiz, C., Puigjaner, R., 2007.
Service differentiation and QoS in a scalable content-
aware load balancing algorithm. Proceedings of the
40th Annual Simulationn Symposium 2007.

Guerrero, C., Juiz, C., Puigjaner, R., 2006. Estudio de
viabilidad de ESI en aplicaciones Web dinámicas.
Proceedings of IADIS WWW/Internet 2006.

JMeter – User Manual. http://jakarta.apache.org/jmeter/
Oracle Application Server Web Cache 10g – Technical

White Paper Information. http://www.oracle.com/
technology/products/ias/web_cache/

Ramaswamy, L., Iyengar, A., Liu, L., 2004. Automatic
Detection of Fragments in Dynamically Generated
Web Pages. Proceedings of the Thirteenth
International World Wide Web Conference.

Veliskakis, M., Roussos, J., 2005. DOMProxy: Enabling
Dynamic-Content Front-end Web Caching.
Proceedings of the 10th WCW 2005.

THE APPLICABILITY OF BALANCED ESI FOR WEB CACHING - A Proposed Algorithm and a Case of Study

203

