
INSTANT COLLABORATION
Developing a Framework to Support New Patterns of Team-Cooperation

Alexander Schatten, David Pölz and Matthias Epheser
Institute of Software Technology and Interactive Systems , Vienna University of Technology, Favoritenstr. 9-11, Vienna, Austria

Keywords: Instant collaboration, instant messaging, resource exchange, team collaboration.

Abstract: Communication and collaboration is supported by a multitude of different (client) applications and backend
systems. At the same time, new patterns of collaboration between knowledge workers arise: people want
to communicate in-time, share resources, keep track of their issues and yet do not want to be unnecessarily
disturbed in their concentration. We analyse several systems and approaches to support team-collaboration
and finally introduce our understanding of “instant collaboration”. In our research we support first patterns
with a middleware and client-side prototype. The system is built upon proven systems for (instant) messaging,
communication and repositories, and suggest a system that allows support for new work-patterns, yet integrates
seamlessly into existing IT and workgroup infrastructure and company policies.

1 MOTIVATION AND
INTRODUCTION

Knowledge workers want to communicate, they want
to share files, and they want to keep track of their
work. There are various tools and platforms avail-
able today that support many aspects of cooperation.
Yet we believe that most systems currently available
(commercial or open source) show significant weak-
nesses in terms of instant collaboration, meaning the
rather ad-hoc forming of workgroups and supporting
their resource-sharing patterns. We will analyse these
issues in more depth in the next section.

We started developing a new framework for in-
stant collaboration, named JMellow which is part of
the larger Peer Group research effort. JMellow was
created as a research project, because there we see
the need for an easy-to-set-up platform that allows
instant communication and particularly resource ex-
change, annotation, discussion and versioning. JMel-
low is based on available and proven open-protocols
and open source systems (like instant messaging solu-
tions and repositories/content management systems).

Yet we notice a resistance against installing new
tools or introducing new protocols and proprietary
systems: resistance to new tools typically comes ei-

ther from management (in a corporate environment),
from system administration (who has to install, main-
tain and integrate these new tools) or from the poten-
tial users themselves. Already Grudin pointed out,
there should not be “a disparity between who does
the work and who gets the benefit” (Grudin, 1988).
Thus, it should integrate in existing user databases
and content management systems (to please system
administration), be easy to use and easy to adminis-
trate. Moreover it should use (if possible) the client
applications people already use and only extend them
where required.

Eventually, traceability of work should be possi-
ble. Also, security issues and other policies (in the
corporate environment)—typically associated with
instant messaging (peer to peer) systems (Bhagyavati,
2005)—have to be addressed with our approach. This
is hopefully the foundation to encourage management
to consider instant collaboration tools as a next step in
enhancing the efficiency of their knowledge workers.

JMellow can be seen more as an instant collabora-
tion middleware than a specific client-based system.
Of course, we also developed client(s) in this project,
but the system can be easily embedded in existing in-
frastructure. As knowledge workers should have ac-
cess to the files of their workgroup everywhere and

21Schatten A., Pölz D. and Epheser M. (2007).
INSTANT COLLABORATION - Developing a Framework to Support New Patterns of Team-Cooperation.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Society, e-Business and e-Government /
e-Learning, pages 21-28
DOI: 10.5220/0001268300210028
Copyright c© SciTePress



should be able to communicate with their workgroup
members, we have chosen to make the web client the
first client implementation. Others are following. Of
course, JMellow can then be a simple file-sharing and
instant messaging application. Workgroup-related
performance metrics can be gained from the data that
is exchanged over the JMellow platform. Hidden
work flows can be found, communication structures
be made obvious and project activities be measured.

This paper is structured as follows: section 2 will
outline some instant collaboration scenarios in detail,
whereas section 3 explains our JMellow infrastructure
in more detail. In section 4 we describe related work
in this field. Section 5 gives a more in-depth descrip-
tion of the system architecture. Finally in section 6
we give conclusions and outlook for future research
work.

2 INSTANT COLLABORATION

A broad variety of applications are available on the
market, or as open source software projects that ad-
dress cooperation and communication. Mandviwalla
et al. (Mandviwalla and Olfman, 1994) describe vari-
ous needs and requirements of groups, and emphasise
in detail, that different groups and collaboration sce-
narios have different requirements and it is impossible
to deliver a generic groupware application that works
out for everybody. Open design and customisation
is necessary to support a broad range of applications.
Thus, we see openness as a foundation of our project
architecture, as will be described later on.

Moreover, in our research work, we focus on what
we call instant collaboration, which imposes new
collaboration patterns that are not well supported by
available software (see section 4). Daily work in dis-
tributed teams, show that beside communication, the
most important feature is a solid way to exchange re-
sources. Typical scenarios are sending files via email
or instant messaging clients. These approaches have
the disadvantage to be rather intrusive, as the work-
flow of the colleague is most likely being interrupted
by this procedure. Moreover, resources are exchanged
on a person-to-person level; meaning that significant
bandwidth is wasted, if (as it is often done) many
files are “broadcasted” to a larger community of co-
workers, while many are probably not interested in
this information, or not at this very moment interested
in the information.

Additional issues come up when documents are
changed and sent back to the originator or to other
persons. In a short time, documents run out of syn-
cronisation. Other ways to share such resources typ-

ically are shared-file systems, or even better CVS or
SVN repositories or other web-based file repositories
like BSCW (BSCW, 2003). These systems allow a
controlled storage of shared information, some also
versioning. Hence such system can provide valuable
help for group cooperation. However, some other dis-
advantages persist: to access these repositories, typi-
cally specific client software is needed or browser up-
loads have to be done. But more important, the repos-
itory interaction is not connected to communication
and collaboration activities.

We believe, that instant collaboration means com-
munication and closely-connected other activities like
file-sharing, annotation, access to other information
systems, probably project management functionality
and the like. Closely-connected means: ideally in the
same client software, and with a usability that does
encourage also less skilled users. Hence we focus
at the first step on integration of communication (in-
stant messaging) with file/resource-sharing, version-
ing and annotation. Further steps are outlined in
section 6. But our concept is rather a communica-
tion/collaboration integration project, as we explic-
itly do not reinvent the wheel. So systems like SVN,
JSR 170 repositories, content management systems
or instant messaging middleware (Jabber, XMPP) are
used as a basis and are integrated to support users in
working with those valuable tools in a more produc-
tive way.

3 INSTANT COLLABORATION
WITH JMELLOW AND
INTEGRATION OF AVAILABLE
SERVICES

With JMellow, we want to demonstrate the feasibility
of our instant collaboration concepts (fig. 1 shows a
screenshot of the Open Laszlo/Flash client prototype).
JMellow is platform-indepentent and will be provided
under Apache open source licence (Apache Licence,
2006). Instant collaboration with JMellow is very
straightforward. The user sees his or her colleagues
ordered in groups in the JMellow client. As JMel-
low is primarily designed for usage within a closed
infrastructure (Intranet), typically the user and group
information is provided by the middleware (database).
For our prototypical implementation, we use the Java-
based Wildfire server (Wildfire Server, 2006). User
and group information can be provided either from the
Jabber-Server directly, or via an LDAP server. This is
particularly handy in a corporate environment.

The closed-group (intranet) infrastructure ap-

WEBIST 2007 - International Conference on Web Information Systems and Technologies

22



Figure 1: Screenshot of the Flash (Open Laszlo) JMellow client. Contact list and documents are shared. In two chat windows
personal and group chats are held. The Flash client even can preview certain types of documents (like the graphics in that
case).

proach is also beneficial in addressing issues with IMs
on the corporate desktop (Bhagyavati, 2005) (secu-
rity, policies. . . ). Usage as “open internet collabora-
tion platform” is not the target audience.

The consequence is that new colleagues immedi-
ately have a filled group/user list including contact in-
formation. This list of users can be used to chat via
XMPP protocol (Jabber). It is noteworthy here, that
the group/user structure also implicitly controls ac-
cess control and visibility: i.e., if a user wants to chat
with a person, she selects this person; if she wants to
chat with a group she selects the group and automati-
cally a group, chat is initiated. If a resource is shared
with a group, implicitly all group members have ac-
cess to this resource as long as they are assigned to
this group.

Using JMellow for resource management, it is
avoided that large chunks of information are dis-
tributed via email, and the like. If a user wants
to share—say, an Office document—he “drag-and-
drops” it on the person or group. This document is
then sent to the JMellow server (which is from a tech-
nical point of view a Jabber client) and stored in a
proven repository. We experimented with a JCR-170

repository (Jackrabbit) (Nuescheler, 2006; Jackrab-
bit Content Repository, 2006), but currently use the
Daisy (Daisy CMS, 2006) content management sys-
tem.

This is an important strategy, as we do not want to
implement new systems where proven solutions are
available. The strategy is rather to connect proven
systems and enable their usage in instant collabora-
tion setups.

To conclude the advantages in terms of collabora-
tion on resources:

• The target audience of the resource is not dis-
turbed by incoming mails or messages (unless
notification is desired), yet it is shared and seen
presently

• Document is listed in the provided resources of
the clients of the target audience

• Document is not downloaded automatically, but
upon request

• The resources are not only kept on clients, but on
reliable (versioned) repository servers

• Document exchange can be monitored and traced

INSTANT COLLABORATION - Developing a Framework to Support New Patterns of Team-Cooperation

23



• As the document is stored in a document repos-
itory/CMS, it can be used by other applications
like the web-publishing infrastructure, the full text
indexing and so on

If a user is interested in this provided information,
she can download it, annotate it (in a “BLOG-like”
style) or put new versions on the server.

Also traceability is guaranteed: first of all via the
repository/CMS, and secondly also within the system;
e.g., for new users: consider a new user joining a
workgroup: as soon as the administrator gives him
an account and assigns him to one or more groups, he
sees all his colleagues including contact information,
plus all resources that are “published”, plus all anno-
tations that were made to a specific document, etc.

The root node has a specific notion in the group
list. This node actually means world (whatever world
means in the very context of the system). The idea
here is (depending on the configuration of the sys-
tem) that every user can easily publish information
in a “BLOG”-like style. To give an example: a secre-
tary could drag a picture of the last event to the world
node, then add some meta-information (like title and
description); then JMellow publishes this picture with
the according meta-information via the CMS on the
corporate News page.

Features for the next versions of our research pro-
totype go some steps beyond: in our notion, instant
collaboration should also allow to let different sys-
tems interact with each other; i.e., it should be possi-
ble to associate resources to chats and vice versa. The
idea is to provide users a history of their chat sessions
with connected documents; even the other way round:
it should be possible to annotate documents (like in
the current version), but also chat about documents
and see this chat associated with the document.

We are also working in integration of the JMel-
low client in other (communication) applications. The
first (obvious) step is to write a plugin for a popular
Jabber Client (Spark (Spark IM Client, 2006)). Other
steps should include a plugin for the Mozilla Thun-
derbird mail client using XUL (Thunderbird, 2006).
This allows integration (as described before), but this
time between emails, chat and resources.

4 RELATED WORK AND
APPLICATION CONTEXT

In the previous section we gave an introduction of
the term instant collaboration and provided our con-
cept as well as a brief description of the JMellow
implementation. Currently, several other projects

provide comparable functionality, at least for some
domains: Cryptoheaven (Cryptoheaven, 2003) is a
commercial application, focussing on security, hence,
providing secure email, file-sharing and IM inte-
grated in a stand-alone application. It also demon-
strated, that there is need for an integrated applica-
tion. Groove (Groove Virtual Office, 2006) is also a
commercial application. Various business plans are
considered, reaching from just file-sharing to screen-
sharing. In 2005 it was acquired by Microsoft and will
apparently not be a platform independent solution.

MyWebdesktop (MyWebdesktop, 2006) is also a
commercial product in beta phase having a web inter-
face for weblink and file-sharing, which also supports
IM and forums. It demonstrates the feasibility of the
concept working over the internet.

Jogger (Mecham, 2002) shows blogging via a Jab-
ber client, hence, providing easy weblogging func-
tionality that uses instant messaging protocols.

Geyer et al. (Geyer et al., 2003; Millen et al.,
2005) showed an activity-centric desktop using peer-
to-peer technology and shared objects and also pro-
vided a study of the usage of their system (Muller
et al., 2004). However, in our opinion, this work also
demonstrated that it is not necessarily a good idea to
build everything from scratch. We feel, that there is
no need for reinventing the wheel(s) like implement-
ing IM or repository/CMS infrastructure when estab-
lished open source projects are available. Particularly
as there is established open source technology avail-
able to provide this functionality.

A very interesting project was introduced by IBM
research (Jr. et al., 2002): “YouServe” (sometimes
called UServe); The general idea was file-sharing and
mirroring by using small private webservers. Still, it
appears that this project did not find a place in a com-
mercial IBM product, and currently there is hardly in-
formation available about this project any longer.

Besides these more “general purpose” approaches,
there are also very few concrete instant collaboration
projects in specific domains like designing software
with UML (Hansen and Damm, 2002) or collabora-
tive text-editing (SubEthaEdit, 2006).

From our point of view, the promising paradigm
of instant collaboration—that has to include non-
invasive resource-sharing, versioning, annotation and
eventually the integration of different collaboration
systems—is not yet fulfilled by any of the approaches
we found (neither commercially nor as open source
project).

WEBIST 2007 - International Conference on Web Information Systems and Technologies

24



JMellow 
Communication API

Laszlo ServerLaszlo Server

JMellow 
Communication API

Laszlo ServerLaszlo Server

Wildfire

JMellow 
Communication API

Laszlo ServerLaszlo ServerLaszlo ServerRepository Server

JMellow Document
 Repository API

Daisy

User Client Communication Interface 
& User Administartiom

Document Repository

Laszlo Client

XMPP
XMPP

HTTP

Laszlo Java RPC

Smack API
Smack API

se
rv

ic
e

 c
a

lls
 &

 p
o

lli
n

g

Figure 2: Archtecture of JMellow.

5 JMELLOW ARCHITECTURE

5.1 Components and Design Goals

A JMellow system currently consists of four indepen-
dent software components:

• Communication Layer (JMellow Communication
API)

• User Administration

• Document Repository Server Interface

• User Clients

The communication interface is the link between
the other three components. It allows them to send
events and retrieve callbacks. Every message/event
transport technology like Jabber or JMS could be
used. User Administration manages users and groups.
It creates the ContactList for a user. The generic in-
terface offers the possibility to implement ports to ex-
isting systems like LDAP or Jabber Servers.

The Document Repository Server stores docu-
ments (content and meta data). It generates the user’s
document list and provides methods to fetch docu-
ment content. The JMellow Data Access API can be
a bridge to CMS system or other repository solutions.
(e.g. Jackrabbit)

A User Client is a frontend that offers the chat and
document browsing functionality. It could be a stand-
alone application, a web application or a plugin to an
existing software product.

The JMellow architecture is very flexible. Every
component is independent from the others. We try

not to reinvent the wheel, by implementing very com-
plex functionalities like message transport or a docu-
ment repository with versioning by ourselves, but cre-
ate a framework that makes it possible to plug in ev-
ery suitable existing software. Developers can choose
the right combination of implementations for their cir-
cumstances.

5.2 User Administration

A user is a single person identified by a unique ID.
Every user can have a human readable alias. Users
are organised into groups. Every user can be part of
one or more groups (this is essentially following the
XMPP specification (XMPP Specifications, 2006)).

Only the administrator can create users and
groups. The user’s contactlist is created on the server
side and sent to the user clients. A user knows only
the groups he’s part of and all the members of these
groups.

5.3 Event Data

Events are sent between the components. Some
events are just method calls (e.g. askForContactList),
some events contain data (e.g. sendMessageToUser)
though. The following types of data could be sent:

ContactList After logging in, the UserClient re-
ceives the contact list containing the structured
groups and users.

UserMessage Represents a chat message to a user in
the contactlist. A one-to-one conversation can be

INSTANT COLLABORATION - Developing a Framework to Support New Patterns of Team-Cooperation

25



started, similar to ICQ or MSN.

GroupMessage Represents a message to a group.
Everyone in this group receives the message. An
IRC-like chatroom is opened for the group.

DocumentList The user receives a list of all docu-
ments he has access to. The list only contains the
meta data like name, id, date and type.

DocumentContent Represents the content of a doc-
ument. This could be a text-file, an image-file or
other binary data. It is possible to send the data
as a binary stream within the the event or to just
provide a URL where the content can be fetched
by the client. Every implementation can choose
what is best concerning the network architecture.

DocumentCommentList A list of all comments at-
tached to the specific document.

5.4 Communication Layer

The communication layer offers an interface for user
administration, repository server and user clients to
communicate with each other. Various sets of service
methods are provided for different components:

User Client ask for contact list, ask for document
list, send message to user, add/change document

User Administration send contact list to user client,
synchronise user data with document repository

Repository Server send documen tlist, document
content and comments to user client

Some actions require a callback mechanism to tell
the clients that a particular event has arrived. Some
clients may not be able to be called back (e.g. an
Ajax web-application). Therefore we implemented
two different ways of retrieving data. A client can im-
plement a listener interface for callback or the client
may choose a polling mode.

Figure 3 illustrates the login procedure (from
client side) and initialisation step.

As mentioned above, the JMellow concept is
generic, hence, different concrete implementations
and integration of different technologies are feasible,
as seen below:

• Jabber Protocol (e.g. Smack API)

• Java Message Service

• Web Service Calls

• Java RMI

5.5 Document Repository Server
Interface

A JMellow document belongs to one user, called
the document owner. The owner defines the access
rules for his documents. A document can be read-
able/writeable for just the owner, members of one or
more groups, or everyone. One or more comments
can be added to a document.

The JMellow Document Server Interface is a
transparent layer that exposes the following meth-
ods:add a document, change a document (con-
tent/access rules), get document content, get docu-
ment list. As a storage component, repositories like
JackRabbit or a content managemenet system like
Daisy are conceivable (or an own implementation, of
course).

5.6 User Clients

User Clients are very customisable, including stand-
alone desktop solutions, plugins to existing projects
or web-based applications. Currently we have devel-
oped a Flash prototype using Open Laszlo (Open Las-
zlo, 2006). Other client prototypes are planned (Spark
plugin, mail-client plugin).

5.7 Reference Implementation

Figure 2 illustrates the architecture of the reference
implementation: Wildfire provides the Jabber chat
server as well as the user administration. The repos-
itory server synchronises the groups and users with
the wildfire database. The repository server is a
servlet running in a Jetty servlet container. It retrieves
calls for documentlist/contents/comments via Jabber
messages within the JMellow communication layer.
This layer uses the Smack Java implementation of the
XMPT protocol (Smack XMPP API, 2006). The calls
are passed to the JMellow document repository in-
terface. This implementation acts as a bridge to the
Cocoon-based CMS Daisy. Daisy provides a straight
forward Java API to manage document actions.

The User Client component contains the Laszlo
presentation server as well as interactive Laszlo Flash
clients that run in every browser with a Flash plugin.
The server—again a servlet in a Jetty—retrieves and
sends messages over the communication layer, sim-
ilar to the repository server. We use Laszlo’s built-
in JavaRPC technology to connect the Flash client
to the business logic on the server. This technology
offers the possibilty to call service methods on the
server easily. These methods include e.g. sendMes-
sageTo. . . -methods as well as the call to the polling

WEBIST 2007 - International Conference on Web Information Systems and Technologies

26



: UserClient : CommunicationInterface : RepositoryServer : UserAdministration

: logIn

: login

: login

: sendContactList
: contactListReceived

: sendDocumentList

: documentListReceived

Figure 3: Initialisation Process at User login.

method getQueue(). The DocumentContent event
doesn’t contain the actual binary data but an HTTP
URL, so that we can use Laszlo’s implementation of
displaying media over the HTTP protocol. This op-
tion is configurable for every user client. Some clients
may need to get the binary content straight out of the
event.

6 CONCLUSION AND FURTHER
WORK

Instant Collaboration moves a step ahead from asyn-
chronous resource-sharing and usage of multiple-
client applications for communication and collabo-
ration, towards a role-based synchronous sharing of
resources using integrated client tools, but accessing
proven back-end technologies. In this paper we intro-
duced the concept of instant collaboration and pre-
sented a first research prototype to support initial in-
stant collaboration patterns. This prototype is partly a
flexible middleware to integrate established back-end
services with an API to support different client im-
plementations. At the first step, we developed a Flash
(Open Laszlo) rich internet client. Further client im-
plementations are planned (Ajax, IM plugin, email in-
tegration) as well as enriching the client functionality,
e.g., with threaded Chat (Smith et al., 2000) and the
option to assign documents/resources to chats.

The next conceptual steps are enriching the mid-
dleware side with the integration of more protocols
(like WebDAV, LDAP, IMAP), which has been done
in the web-application domain in our group, but
not for instant collaboration (Kastner, 2005). Addi-
tionally, support for ad-hoc workflows, particularly
in combination with email and document-flows is
planned.

REFERENCES

Apache Licence (2006). Apache open source licence.
http://www.apache.org/licenses/LICENSE-2.0.html.

Bhagyavati, B. (2005). Instant messaging usage policies en-
able ubiquitous communication. In Wireless Telecom-
munications Symposium, 2005, pages 45–48, GA,
USA. Columbus State Univ.

BSCW (2003). BSCW basic support for collaborative work.
http://www.bscw.de/.

Cryptoheaven (2003). Cryptoheaven: secure collaboration.
http://www.cryptoheaven.com/.

Daisy CMS (2006). Daisy content management system.
http://cocoondev.org/daisy/index.html.

Geyer, W., Vogel, J., Cheng, L.-T., and Muller, M.
(2003). Supporting activity-centric collaboration
through peer-to-peer shared objects. In GROUP ’03:
Proceedings of the 2003 international ACM SIG-
GROUP conference on Supporting group work, pages
115–124, New York, NY, USA. ACM Press.

Groove Virtual Office (2006). Microsoft: Groove virtual
office. http://groove.net.

Grudin, J. (1988). Why cscw applications fail: problems in
the design and evaluation of organization of organiza-
tional interfaces. In Proceedings of the Conference on
Computer-Supported Cooperative Work, pages 85–93.
ACM Press.

Hansen, K. M. and Damm, C. H. (2002). Instant collabo-
ration: using context-aware instant messaging for ses-
sion management in distributed collaboration tools. In
NordiCHI ’02: Proceedings of the second Nordic con-
ference on Human-computer interaction, pages 279–
282, New York, NY, USA. ACM Press.

Jackrabbit Content Repository (2006). Jackrabbit jsr-170
content repository. http://jackrabbit.apache.org/.

Jr., R. J. B., Agrawal, R., Gruhl, D., and Somani, A. (2002).
Youserv: a web-hosting and content sharing tool for
the masses. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, pages
345–354, New York, NY, USA. ACM Press.

INSTANT COLLABORATION - Developing a Framework to Support New Patterns of Team-Cooperation

27



Kastner, T. (2005). Document management in distributed
project management environments-a new interface ap-
proach. Master’s thesis, Vienna University of Tech-
nology.

Mandviwalla, M. and Olfman, L. (1994). What do groups
need? a proposed set of generic groupware re-
quirements. ACM Trans. Comput.-Hum. Interact.,
1(3):245–268.

Mecham, J. (2002). Jogger. http://jabber.linux.it/jogger/.

Millen, D. R., Muller, M. J., Geyer, W., Wilcox, E., and
Brownholtz, B. (2005). Patterns of media use in an
activity-centric collaborative environment. In CHI
’05: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 879–888,
New York, NY, USA. ACM Press.

Muller, M. J., Geyer, W., Brownholtz, B., Wilcox, E., and
Millen, D. R. (2004). One-hundred days in an activity-
centric collaboration environment based on shared ob-
jects. In CHI ’04: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages
375–382, New York, NY, USA. ACM Press.

MyWebdesktop (2006). Mywebdesktop.
http://www.mywebdesktop.net/. still in beta.

Nuescheler, D. (2006). Java specification request: JSR-170
content repository. Technical report, Sun Microsys-
tems.

Open Laszlo (2006). Open laszlo; framework to create rich
internet applications. http://www.openlaszlo.org/.

Smack XMPP API (2006). Smack xmpp api for java (jive
software). http://jivesoftware.org/smack/.

Smith, M., Cadiz, J. J., and Burkhalter, B. (2000). Con-
versation trees and threaded chats. In CSCW ’00:
Proceedings of the 2000 ACM conference on Com-
puter supported cooperative work, pages 97–105,
New York, NY, USA. ACM Press.

Spark IM Client (2006). Spark jabber instant messaging
client (jive software). http://jivesoftware.org/spark/.

SubEthaEdit (2006). Subethaedit: Collaborative editing ap-
plication. http://codingmonkeys.de/subethaedit/.

Thunderbird (2006). Mozilla thunderbird email client.
http://www.mozilla.com/thunderbird/.

Wildfire Server (2006). Wildfire xmpp (jabber) server, jive
software. http://jivesoftware.org/wildfire/.

XMPP Specifications (2006). Xmpp specifications.
http://www.xmpp.org/.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

28


