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Abstract: The twig join, which is used to find all occurrences of a twig pattern in an XML database, is a core 
operation for XML query processing. A great many strategies for handling this problem have been proposed 
and can be roughly classified into two groups. The first group decomposes a twig pattern (a small tree) into 
a set of binary relationships between pairs of nodes, such as parent-child and ancestor-descendant relations; 
and transforms a tree matching problem into a series of simple relation look-ups. The second group 
decomposes a twig pattern into a set of paths. Among all this kind of methods, the approach based on the 
so-called stack encoding [N. Bruno, N. Koudas, and D. Srivastava, Holistic Twig Hoins: Optimal XML 
Pattern Matching, in Proc. SIGMOD Int. Conf. on Management of Data, Madison, Wisconsin, June 2002, 
pp. 310-321] is very interesting, which can represent in linear space a potentially exponential (in the number 
of query nodes) number of matching paths. However, the available processes for generating such 
compressed paths suffer some redundancy and can be significantly improved. In this paper, we analyze this 
method and show that the time complexities of path generation in its two main procedures: TwigStack and 
TwigStackXB can be reduced from O(m2⋅n) to O(m⋅n), where m and n are the sizes of the query tree and 
document tree, respectively. Experiments have been done to compare TwigStackXB and ours, which shows 
that using our method much less time is needed to generate matching paths. 

1 INTRODUCTION 

In XML (World Wide Web Consortium, 1991, 
2001), data is represented as a tree; associated with 
each node of the tree is an element type from a finite 
alphabet ∑. The children of a node are ordered from 
left to right, and represent the content (i.e., list of 
subelements) of that element.  

To abstract from existing query languages for 
XML, e.g. XPath (World Wide Web Consortium, 
1991), XQuery (World Wide Web Consortium, 
2001), XML-QL (Deutch and et al, 1999), and Quilt 
(Chamberlin and et al, 1999; Chamberlin and et al, 
2000), we express queries as tree patterns where 
nodes are types from ∑ ∪ {*} (* is a wildcard, 
matching any node type) and string values, and 
edges are parent-child or ancestor-descendant 
relationships. As an example, consider the query tree 
shown in Figure 1, which asks for any node of type 
b (node 2) that is a child of some node of type a 
(node 1). In addition, the b type (node 2) is the 
parent of some c type (node 4) and an ancestor of 
some d type (node 5). Type b (node 3) can also be 
the parent of some e type (node 7). The query 
corresponds to the following XPath expression: 

a[b[c and //d]]/b[c and e//d]. 
 
 
 
 
 
 
 
 
 

In Figure 1, there are two kinds of edges: child 
edges (c-edges) for parent-child relationships, and 
descendant edges (d-edges) for ancestor-descendant 
relationships. A c-edge from node v to node u is 
denoted by v →  u in the text, and represented by a 
single arc; u is called a c-child of v. A d-edge is 
denoted v ⇒ u in the text, and represented by a 
double arc; u is called a d-child of v. 

Finding all occurrences of a twig pattern in a 
database has been considered as a core operation in 
querying tree structured XML data, both in 
relational implementation of XML databases, and in 
native XML databases. 

Recently this problem has received much 
attention in database research community and 
different strategies have been proposed. Most of 
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5
Chen Y. (2007).
STACK ENCODING REVISITED.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 5-14
DOI: 10.5220/0001260800050014
Copyright c© SciTePress



 

them, for example, all the strategies proposed in (Al-
Khalifa and et al, 2002; Florescu, Kossman, 1999; 
McHugh, Widom, 1999; Shanmugasundaram and et 
al, 1999; Tukwila System, 2000; Niagara System, 
2000; Zhang and et al, 2001), typically decompose a 
twig pattern into a set of binary relationships 
between pairs of nodes, such as parent-child and 
ancestor-descendant relations; and the sizes of 
intermediate relations tend to be very large, even 
when the input and final result sizes are much more 
manageable. Another kind of strategies bases on 
path decomposition, such as those discussed in 
(Bruno and et al, 2002; Wang and et al, 2003; Wang 
and Meng, 2005). In (Wang and et al, 2003; Wang 
and Meng, 2005), all the possible paths of an XML 
document are explicitly stored and indexed using 
B+-trees as well as trie structures. In (Bruno and et 
al, 2002), a document is also decomposed, but 
dynamically depending on the given queries. This 
method is of special interest since the decomposed 
paths are not simply stored but compressed by using 
the so-called stack encoding. It reduces the number 
of intermediate matching paths dramatically. 
Although the idea of compressing intermediate 
results is very attractive, the process suggested in 
(Bruno and et al, 2002) for producing compact paths 
is not so efficient and can be substantially improved. 

In this paper, we analyze the method described in 
(Bruno and et al, 2002) and show that the matching 
paths can be produced in a more efficient way. 
Particularly, two new algorithms are presented, 
which improve the two main procedures of this 
method: TwigStack and TwigStackXB, by one order 
of magnitude. In (Bruno and et al, 2002), TwigStack 
is utilized to generate matching paths for queries 
containing only d-edges while TwigStackXB is for 
queries containing both c- and d-edges. 

The remainder of the paper is organized as 
follows. In Section 2, we review the concept of stack 
encoding and the algorithm TwigStack presented in 
(Bruno and et al, 2002), which is necessary for the 
subsequent discussion. In Section 3, we propose a 
new algorithm RefinedTwigStack to do the same task 
as TwigStack, but using much less time. In Section 
4, we extend RefinedTwigStack to general cases. 
Finally, a short conclusion is set forth in Section 5. 

2 ON THE TWIGSTACK 
ALGORITHM 

In this section, we review the main procedure 
TwigStack given in (Bruno and et al, 2002), which is 
used to evaluate a special kind of queries that 

contain only d-edges. However, by using a variant 
structure of B-tree, called XB-tree, TwigStack can be 
easily extended to general cases with both c-edges 
and d-edges involved. 

In the following, we first review what is a stack 
encoding in 2.1. Then, we describe the TwigStack 
algorithm (Bruno and et al, 2002) and analyze its 
time complexity in 2.2. In (Bruno and et al, 2002), a 
theoretical time analysis is not delivered. 

2.1 On the Stack Encoding 

Let T be a document tree. Let q = q1 ⇒  q2 ... ⇒  qm-1 
⇒  qm be a query path containing only d-edges. We 
associate each qi (i = 1, ..., m) with a stack, denoted 
S(qi), in which each entry is a pair (v, p) with v being 
a node in T and p is a pointer to an entry in 
S(parent(qi)), where parent(qi) represents the parent 
of qi. 

At every point during the computation, all S(qi)’s 
have the following properties 
(i) The entries in S(qi) (from bottom to top) are 

guaranteed to lie on a root-to-leaf path in T. 
(ii) The set of stacks contains a compact encoding of 

matching paths. 
As an example, consider T and q shown in 

Figure 2(a). 
Obviously, T has four subpaths that match q, as 

shown in Figure 2(b). By using the stack encoding, 
they can be stored in a way as shown in Figure 2(c), 
using much less space. 

First, we notice that the matching path v3 →  v4 
→  v5 →  v6 is encoded since v6 points to v5, v5 to v4, 
and v4 to v3. Also, the matching path v1 →  v4 →  v5 
→  v6 is encoded since v1 is below v3 on the stack 
S(q1). For the same reason, v1 →  v2 →  v5 →  v6 is a 
matching path since v2 is below v4 on the stack S(q2) 
and has a pointer to v1. Finally, since v3 is below v5 
on the stack S(q3) and has a pointer to v2, v1 →  v2 →  
v3 →  v6 is also an answer. However, the nodes v3, 
v2, v5, v6 do not make up a matching path since v3 is 
above v1 on S(q1), to which v2 points. 

2.2 Description of TwigStack 

Now we describe the algorithm TwigStack, which 
stores the intermediate results in a way of stack 
encoding, and analyze its time complexity. For this 
purpose, we first show a tree encoding method 
(Zhang and et al, 2001) and define some notations 
that are used in the description of TwigStack. 

Let T be a document tree. We associate each 
node v in T with a quadruple (DocId, LeftPos, 
RightPos, LevelNum), denoted as α(v), where DocId 
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is the document identifier; LeftPos and RightPos are 
generated by counting word numbers from the 
beginning of the document until the start and end of 
the element, respectively; and LevelNum is the 
nesting depth of the element in the document. (See 
Figure 3 for illustration.) By using such a data 
structure, the structural relationship between the 
nodes in an XML database can be simply 
determined (Zhang and et al, 2001): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(i) ancestor-descendant: a node v1 associated with 

(d1, l1, r1, ln1) is an ancestor of another node v2 
with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, and r1 > r2. 

(ii) parent-child: a node v1 associated with (d1, l1, 
r1, ln1) is the parent of another node v2 with (d2, 
l2, r2, ln2) iff d1 = d2, l1 < l2, r1 > r2, and ln1 = ln2 
+ 1. 

(iii) from left to right: a node v1 associated with (d1, 
l1, r1, ln1) is to the left of another node v2 with 
(d2, l2, r2, ln2) iff d1 = d2, r1 < l2. 

 
 
 
 
 
 
 
 

Let q be a query tree containing only d-edges. 
We associate each qi in q with a data stream L(qi), 
which contains the quadruples of the database nodes 
that match qi as illustrated in Figure 4. Such a list 
can be established by using an efficient access 
mechanism, such as an index structure. In addition, 
the quadruples in a list are sorted by their (DocId, 
LeftPos) values. 

Finally, we notice that in both S(qi) and L(qi), a 
node v is referenced by α(v). But we will refer to v 
and α(v) interchangeably in the subsequent 
discussion if no confusion will be caused. 

In terms of the data structure described above, 
we can now specify some operations that are used in 
TwigStack. 
- next(L(qi)): return the next element in L(qi). 

Initially, the pointer is to the position before the 
first element in L(qi). 

- advance(L(qi)): move to the next element in L(qi); 
- LeftPos(α): return the LeftPost value of α; 

- RightPos(α): return the RightPost value of α. 
 
 
 
 
 
 

Algorithm TwigStack operates in two phases. In 
the first phase, all paths matching individual query 
root-to-leaf paths are produced (lines 1 - 14). In the 
second phase, these matching paths are merge-joined 
to create the answers to the query twig pattern (line 
15). 

In order to generate all the matching paths, the 
query tree q is accessed repeatedly and each time a 
node qi, which has in its L(

jiq ) a node v with the 

least LeftPos value among all the nodes in all 
L(qj)’s, is chosen, satisfying the following 
conditions: 
(i) Let

1iq , ..., 
kiq be the children of qi. Let v be the 

next node in L(qi) to be handled. Then, for each 
jiq  (1 ≤ j ≤ k), v has a descendant u such that 

α(u) is in L(
jiq ). 

(ii) Each 
jiq  recursively satisfies the first property. 

Such a node is selected by executing a function, 
called getNext(q), which is repeatedly invoked. In 
this way, each solution to each individual query 
root-to-leaf path is guaranteed to be merge-joinable 
with at least one solution to each of other root-to-
leaf paths. 
Once such a node, denoted qact, is found, the 
quadruple α = next(L(qact)) (which represents a node 
v in T) will be pushed onto S(qact) as follows: 
1. If qact is the root of q, remove any α(u) in S(qact) 

with RightPos(α(u)) < LeftPos(α(qact)). Then, put 
next(L(qact)) on the top of S(qact). 

2. If qact is not the root of q, remove any α(u) in 
S(parent(qact)) with RightPos(α(u)) < 
LeftPos(next(L(qact))). If S(parent(qact)) remains 
unempty, put next(L(qact)) on the top of S(qact) 
after all the v in S(qact) with RightPos(α(v)) < 
LeftPos(α(qact)) are removed. 

Figure 3: Illustration for tree encoding. 

A v1 

B v2 v6 B 

C v3 v4 B 

v5 C 

(1, 1, 9, 1) 

(1, 2, 7, 2) 

(1, 3, 3, 3) (1, 4, 6, 3) 

(1, 5, 5, 4) 

(1, 8, 8, 2) 

Figure 4: Illustration for for L(qi)’s. 
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If qact is a leaf node, store the corresponding 
matching paths. 

For the purpose of self-contentment, we show 
here the algorithm TwigStack in a format slightly 
different from (Bruno and et al, 2002). Then, we 
conduct a sample trace and analyze its time 
complexity. (In the original paper (Bruno and et al, 
2002), the time complexity analysis was not 
available.) 
Algorithm TwigStack(q) 

(*phase 1*) 
1. while ¬ end(q) do  
2. { qact ← getNext(q); 
3. if (qact is not the root) then 
4. cleanStack(S(parent(qact)), LeftPos(next(L(qact))); 
5. if (qact is the root of q) ∨ ¬ empty(S(parent(qact))) 
6. then  
7. { cleanStack(S(qact), LeftPos(next(L(qact))); 
8.    moveStreamToStack(L(qact), S(qact), 
           pointer to top(S(qact))); 
9.  if (qact is a leaf node) then 
10. {output all the matching paths (stored in 

stacks) in the compact form; 
11.  pop(S(qact));} 
12. } 
13. else advance(L(qact)); 
14.} 
(*phase 2*) 
15.mergeAllPathSolutions(); 

Function getNext(q) 
1. if (q is a leaf node) then return q; 
2. let q1, ..., qk be the children of q; 
3. for i = 1 to k do 
4. {ni ← getNext(qi); 
5.   if (ni ≠ qi) then return ni;} 
6. nmin ← min{LeftPos(n1), ..., LeftPos(nk)}; 
7.  nmax ← max{LeftPos(n1), ..., LeftPos(nk)}; 
8.  while (RightPost(next(L(q)) < LeftPost(next(L(nmax)) do 
9.  advance(L(q)); 
10. if (LeftPost(next(L(q)) < LeftPost(next(L(nmin)) 
11. then return q; 
12. else return nmin; 

Function end(q) 
1.  if for any leaf node qleaf, L(qleaf) is empty 
2.  then return true 
3.  else return false; 

Procedure cleanStack(S, actL) 
1. while (¬ empty(S) ∧ (RightPos(top(S) < actL) do 
2.  pop(S); 

Procedure moveStreamToStack(L, S, p) 

1.  push(S, next(L), p); 
2.  advance(L); 

By each iteration of the main while-loop of 
TwigStack(q), getNext(q) is called to find a node qact 
to handle (see line 2). Then, by executing lines 3 - 8, 
next(L(qact)) is pushed onto S(qact) in the way as 
described by (1) and (2) above. If qact is a leaf node, 
all the matching paths (in their stack encoding) will 
be stored in the compact form (see line 9 - 11). In 
addition, no matter whether next(L(qact)) can be put 
onto S(qact), the pointer for L(qact) will be shifted to 
the next element (see line 2 in moveStreamToStack 
and line 13 TwigStack). 

getNext(q) is a recursive algorithm, by which the 
whole q is searched top-down. In this way, any node 
returned has always the least preorder number with 
the conditions (i) and (ii) above satisfied. This can 
be seen from lines 8 - 9, as well as lines 10 - 12. 

Finally, we notice that the algorithm terminates 
when all L(qleaf)’s become empty (see Function 
end(q)). 

The following example helps for illustration. It is 
a detailed sample trace, which not only facilitates the 
analysis of the algorithm’s time complexity, but also 
reveals a possibility of improvements.   
Example 1. Consider the document tree T shown in 
Figure 3 and the query tree q shown in Figure 4. 
Corresponding to the three leaf nodes in q, we have 
three paths: P1: q3 → q2 → q1; P2: q4 → q2 → q1; and 
P3: q5 → q1. When we apply TwigStack to T and q, 
the stacks associated with the nodes in q will be 
changed as follows. 
Step 1 - 3: By the first iteration of the main while-

loop, q1 is selected and then v1 is pushed onto 
S(q1). By the second iteration, q2 will be 
chosen since after the first iteration L(q1) 
becomes empty and so we cannot find a v in 
L(q1), which is an ancestor of next(L(q2)) = 
v2. (See line 12 in getNext.) Therefore, v2 
goes into S(q2). For the same reason, q3 will 
be chosen by the third iteration and 
next(L(q3)) = v3 goes into S(q3). Since q3 is a 
leaf node, we get the first matching path (for 
P1): v3 → v2 → v1. See Figure 5(a) for 
illustration. 

Step 4: By the fourth iteration, q4 is selected and 
next(L(q4)) = v3 is pushed onto S(q4)) as 
shown in Figure 5(b). We get the second 
matching path (for P2): v3 → v2 → v1. 

Step 5: By the fifth iteration, q2 is chosen again. 
Then, next(L(q2)) = v4 is put on the top of 
S(q2) as shown in Figure 5(c). Remember 
that after each iteration, the pointer for the 
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corresponding L(qact) is shifted to the next 
element. 

Step 6: By the sixth iteration, q3 is selected once 
again and next(L(q3)) = v5 will be put onto 
S(q3). But before that, v3 is popped out since 
RightPos(v3) < LeftPos(v3) (see line 7 in 
TwigStack.) The stacks are changed as shown 
in Figure 5(d), which shows another two 
paths matching P1: v5 → v4→ v1 and v5 → v2 

→ v1. They are represented in the compact 
form. 

Step 7: By the seventh iteration, q4 is selected for the 
second time and next(L(q4)) = v5 is pushed 
onto S(q4). Before this operation, v3 is first 
popped out. The new stacks are shown in 
Figure 5(e), from which we will get two new 
matching paths (for P2): v5 → v4→ v1 and v5 
→ v2 → v1. 

Step 8: By the eighth iteration, q5 is chosen and 
next(L(q5)) = v2 is put on the top of S(q5) as 
shown in Figure 9(f). It shows the first 
matching path for P3: v2 → v1.  

Step 9: By the ninth iteration, q5 is chosen once 
again and next(L(q5)) = v4 is put on the top of 
S(q5) as shown in Figure 5(g). It shows the 
second matching path for P3: v4 → v1.  

Step 10:By the ninth iteration, q5 is chosen for the 
third time and next(L(q5)) = v6 is put on the 
top of S(q5) as shown in Figure 5(h). It shows 
the second matching path for P3: v6 → v1. We 
notice that in this step, q2 will not be selected 
although L(q5) = {v6} is not empty. It is 
because both L(q3) and L(q4) are empty and 
the condition (i) in the previous section 
cannot be satisfied. 

The time complexity of the algorithm can be 
analyzed as follows. 

Let ni be the size of L(qi). Then, the main while-

loop in TwigStack will be iterated ∑
=

m

i
in

1
times since 

the termination condition of this while-loop is when 
all the elements in all L(qleaf)’s are exhausted. In 
each iteration, the procedure getNext will be invoked 
and all the nodes in the query tree will be accessed. 
Let λijk be the number of elements in L(qk) checked 
when node qk is visited during the (i, j)-th execution 
of getNext. Then, the worst-case cost is bounded by 

  O( ( )∑ ∑ ∑
= = =

+
m

i

n

j

m

k
ijk

i

1 1 1
1 λ ) 

  = O( ∑ ∑ ∑
= = =

m

i

n

j

m

k

i

1 1 1
1 ) + O( ∑ ∑ ∑

= = =

m

i

n

j

m

k
ijk

i

1 1 1
λ ) 

  = O(m2⋅n) + O(m⋅n) = O(m2⋅n). 

Here we should remark that O( ∑ ∑ ∑
= = =

m

i

n

j

m

k
ijk

i

1 1 1
λ ) 

cannot be larger than m⋅n since at most m⋅n elements 
may be pushed on to the stacks. 

Applying the above method to another algorithm 
TwigStackXB in (Bruno and et al, 2002), which is an 
extension of TwigStack for general cases, we get the 
same time complexity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 REMOVING REDUNDANCY 
FORM TWIGSTACK 

Now we begin to discuss how TwigStack can be 
improved. As with TwigStack, we will associate 
each node qi in q with a data stream L(qi), but with 
the following conditions satisfied: 
(i) For each v ∈ L(qi), v matches the predicate at qi. 
(ii) Let

1iq , ..., 
kiq be the children of qi. v has a 

descendant v’ matching
jiq for j ∈ {1, ..., k}. 

(iii)Each
jiq recursively satisfies (ii). 

Obviously, these three conditions correspond to 
the two properties (i) and (ii) given in the previous 
section, for any node going onto a stack. Nothing is 
new. However, not like getNext in TwigStack, which 
chooses nodes from q to handle and each time finds 
a next v in T to be put in some stack (by multiple 
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executions), we generate all L(qi)’s in one scan, 
which enables us to avoid a great number of 
repeated accesses to query nodes. 

In the following, we will use T’ to represent a 
subtree of T, which contains only those nodes 
matching some node in q. 

We will maintain two m × n (m = |q|, n = |T’|) 
matrices, defined as below. 
1. The nodes in both q and T’ are numbered in 

postorder, and the nodes v are then referred to 
by their postorder numbers, denoted as post(v). 

2. In the first matrix, each entry cij (i ∈ {1, ..., m}, 
j ∈ {1, ..., n}) has value 0 or 1. If cij = 1, it 
indicates that i ∈ L(j) and for each child of i, j 
has a descendant satisfying the predicate at it. 
Otherwise, cij = 0. This matrix is denoted by 
c(q, T’). 

3. In the second matrix, each entry dij (i ∈ {1, ..., 
m}, j ∈ {1, ..., n}) is defined as follows. If j has 
a descendant j’ such that cij’ = 1, then dij = 1; 
otherwise dij = 0. This matrix is denoted by d(q, 
T’). In addition, a node itself is considered to be 
one of its ancestors. 

These two matrices can be established by using 
an algorithm called matrixGeneration(T’, q), 
presented below. 

Initially, cij = 0 and dij = 0 for all i and j. During 
the execution of the algorithm, the values of cij’s will 
be changed according to (2) and (3) described 
above; and dij’s will be changed to record whether a 
node j in T’ has a descendant j’ that matches a 
certain node i in q. 
Algorithm matrixGeneration(T’, q) 
Input: tree T’ (with nodes 1, ..., n) and tree q (with 
nodes 1, ..., m) 
Output: c(q, T’) with values created. 
begin 
1. for u := 1, ..., m do { 
2.  for v := 1, ..., n do 
3.   {if v satisfies the predicate at u then 
4. let u1, ..., uk be the children of u; 
5. if vud

1
∧ ... vuk

d ∧  = 1 then cuv ← 1; 
6. } 
7. let v1, v2, ..., vh be the nodes such that puv

c = 1 (1 

≤ p ≤ h); 
8. let {w1, ..., wr} be a set such that each node in it 

is an ancestor of some vp (1 ≤ p ≤ h). Set
luwd = 1 

for each wl (1 ≤ l ≤ r). 
9. } 
end 

To see how the above algorithm works, we 
should first notice that both T’ and q are both 
postorder-numbered. Therefore, the algorithm 
proceeds in a bottom-up way (see line 1 and 2). For 
any node u in q and any node v in T’, if v satisfies 
the predicate at u, we will check each child ui of u to 
see whether there exists a descendant of v that 
matches ui (see line 5). If it is the case, cuv will be set 
to 1. 

In line 7 and 8, we change dij’s according to the 
newly changed cij’s.  
Example 2. As an example, consider the trees T and 
q shown in Figure 3 and 4 once again. Since each 
node in T matches a node in q, we have T’ = T. In 
addition, the nodes of T and q are postorder 
numbered as shown in Figure 6(a) and (b), 
respectively. 

When we apply the above algorithm to these two 
trees, c(q, T) and d(q, T) will be created and changed 
in the way as illustrated in Figure 7, in which each 
step corresponds to an execution of the outmost for-
loop. 
 
 
 
 
 
 
 

In step 1, we show the values in c(q, T) and d(q, 
T) after node 1 in q is checked against every node in 
T. Since node 1 in q matches node 1 and 2 in T, c11 
and c12 are all set to 1. Meanwhile, for all those 
nodes that are an ancestor of 1 or 2 in T, the 
corresponding entries in d(q, T) will be changed. So 
we have all d11, d12, d13, d14, and d16 set to 1 (see line 
7 and 8).  

In step 2, the algorithm generates the matrix 
entries for node 2 in q, which is done in the same 
way as for node 1 in q. 

In step 3, node 3 in q will be checked against 
every node in T, but matches only node 4 in T. Since 
it is an internal node, its children will be further 
checked. For this purpose, we will check both d14 
and d24 since node 3 in q has two child nodes 
postorder-numbered with 1 and 2, respectively. 
Since d14 = d24 = 1, we set c34 to 1. Accordingly, d34 
and d36 are also set to 1. 

In step 4, we will set c43, c44 and c45 to 1 since 
node 4 in q is just a leaf node and matches node 3, 4, 
and 5 in T. So d43, d44, d45, and d46 will be 
accordingly set to 1. 

In step 5, since node 5 in q matches node 6 in T, 
and both d36 and d46 are equal to 1 (we remark that 

A v1

B v2 v6 B

C v3 v4 B

v5 C

Figure 6: Postorder numbering. 

1 

2 

3 

4 5 6 4 5 A q1 

B q2 q5 B

C q3 q4 C 

1 2 

3 
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node 3 and 4 in q are the child nodes of node 5), we 
set c56 and then d56 to 1. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In the following discussion, we use T instead of 

T’ to simplify the notation. The reader should notice 
that it refers to the subtree of T containing only those 
nodes that match some node in q. 
Proposition 1. Algorithm matrixGeneration(T, q) 
computes the values in c(q, T) and d(q, T) correctly. 
Proof. We prove the proposition by induction on the 
sum of the heights of T and q, h. Without loss of 
generality, assume that height(T) ≥ 1 and height(q) 
≥ 1.  
Basic step. When h = 2, the proposition trivially 
holds. 
Induction hypothesis. Assume that when h = l, the 
proposition holds. 

Consider T = <t; T1, ..., Tk> and q = <p; P1, ..., 
Pg> with height(T) + height(q) = l + 1, where t (p) is 
the root of T (q, resp.) and T1, ..., Tk (P1, ..., Pg) are 
the subtrees of t (p, resp.). Obviously, we have 
height(Ti) + height(q) ≤ l and height(T) + height(Pj) 
≤ l. Therefore, in terms of the induction hypothesis, 
the algorithm correctly computes the values in c(q, 
Ti) and d(q, Ti), as well as the values in c(Pj, T) and 
d(Pj, T) (i = 1, ..., k; j = 1, ..., g). Assume that 1, ..., 
m are the postorder numbers of the nodes in q, and 1, 
..., n are the postorder numbers of the nodes in T. 
Then, the values for cij (i = 1, ..., m - 1; j = 1, ..., n - 
1) and dij (i = 1, ..., m - 1; j = 0, ..., n - 2) are all 
correctly generated. Now we will check cin and di(n-1) 
(i = 1, ..., m), as well as cmj (j = 1, ..., n) and dmj (j = 
0, ..., n - 1) to see whether they can be correctly 
produced. Let i1, ..., is be the children of i. If i 
matches n, for each if (1 ≤ f ≤ s), ni f

d ’s will be 

checked. If we have nid
1

∧ ... ∧ nis
d = 1, we set cin to 

1; otherwise 0 (see line 5). According to the 
induction hypothesis, all such ni f

d ’s are correctly 

generated. Therefore, cin (i = 1, ..., m) is correctly 
created, so is di(n-1) (i = 1, ..., m). A similar analysis 
applies to cmj (j = 1, ..., n) and dmj (j = 0, ..., n - 1).  
Proposition 2. Algorithm matrixGeneration(T, q) 
requires O(n⋅m) time and space, where n = |T| and m 
= |q|. 
Proof. During the whole process, against each node 
u in q, all the nodes v in T is checked and for each v 
all its children will be examined. Therefore, this part 
of time is bounded by 

 O( ∑ ∑
= =

m

u

n

v
vd

1 1
) = O( ∑

=

m

u
n

1
) = O(n⋅m),  

where dv represents the outdegree of node v in T. 
In addition, after each u in q is checked, for all 

those nodes in T, which are an ancestor of some 
node that matches u, the corresponding matrix 
entries in d(q, T) will be established. But this 
operation needs only O(n) time if we proceeds as 
follows. Each time we search T bottom-up from a 
node v that matches u to find all its ancestors, we 
mark each node encountered and stop whenever we 
meet such a mark (made by a previous searching). 
So at most O(n) nodes will be checked and the total 
time of this part of operations is bounded by O(n⋅m). 

Obviously, to maintain c(q, T) and d(q, T), we 
need O(n⋅m) space. 

In terms of the matrix c(q, T), it is an easy task to 
create L(qi) for each qi in q as illustrated in Figure 
8(a). 

Figure 8(b) is the same as Figure 8(a). But in this 
figure we use node names in L(qi) instead of their 

step 1: 
1  2  3  4  5  6 

1 
2 
3 
4 
5 

1  1  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 

c(q, T): 
1  2  3  4  5  6

1 
2 
3 
4 
5 

1  1  1  1  0  1 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0

d(q, T): 

step 2: 
1  2  3  4  5  6 

1 
2 
3 
4 
5 

1  1  0  0  0  0 
1  1  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 

c(q, T): 
1  2  3  4  5  6

1 
2 
3 
4 
5 

1  1  1  1  0  1 
1  1  1  1  0  1 
0  0  0  0  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0

d(q, T): 

step 3: 
1  2  3  4  5  6 

1 
2 
3 
4 
5 

1  1  0  0  0  0 
1  1  0  0  0  0 
0  0  1  1  0  0 
0  0  0  0  0  0 
0  0  0  0  0  0 

c(q, T): 
1  2  3  4  5  6

1 
2 
3 
4 
5 

1  1  1  1  0  1 
1  1  1  1  0  1 
0  0  1  1  0  1 
0  0  0  0  0  0 
0  0  0  0  0  0

d(q, T): 

step 4: 
1  2  3  4  5  6 

1 
2 
3 
4 
5 

1  1  0  0  0  0 
1  1  0  0  0  0 
0  0  1  1  0  0 
0  0  1  1  1  0 
0  0  0  0  0  0 

c(q, T): 
1  2  3  4  5  6

1 
2 
3 
4 
5 

1  1  1  1  0  1 
1  1  1  1  0  1 
0  0  1  1  0  1 
0  0  1  1  1  1 
0  0  0  0  0  0

d(q, T): 

step 5: 
1  2  3  4  5  6 

1 
2 
3 
4 
5 

1  1  0  0  0  0 
1  1  0  0  0  0 
0  0  1  1  0  0 
0  0  1  1  1  0 
0  0  0  0  0  1 

c(q, T): 
1  2  3  4  5  6

1 
2 
3 
4 
5 

1  1  1  1  0  1 
1  1  1  1  0  1 
0  0  1  1  0  0 
0  0  1  1  1  1 
0  0  0  0  0  1

d(q, T): 

Figure 7: Sample trace. 
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postorder numbers. We will use the node names in 
the subsequent discussion to avoid any confusion. 
 
 
 
 
 
 
 
 
 

Concerning L(qi), we should pay attention to the 
following: 
(1) The nodes (represented by their quadruple) in 

L(qi) are sorted by their (DocId, LeftPos) values 
(not according to their postorder numbers). 

(2) Each node in L(qi) satisfies the condition (i) and 
(ii) given in 2.2. 

Using such a data structure, the algorithm 
TwigStack can be substantially improved. The main 
idea is a depth-first searching of q. To this end, we 
use a stack to control the process. Each entry in the 
stack is a pair (qi, vj), where qi ∈ q and vj ∈ T.  

Finally, we notice that getNext( ) will not be used 
since all the values to be produced by executing 
getNext( ) are pre-calculated and incorporated into 
L(qi)’s. In addition, each node qi in q is associated 
with its preorder number, denoted as pre(qi), which 
will be used in the following algorithm. In Figure 9, 
we show the preorder numbering of q. 
 
 
 
 
 
 
 
Algorithm RefinedTwigStack(q) 
(*phase 1*) 
1.Repeat the following until all L(qi) become empty; 
2. { let pre(qi) be the least such that L(qi) is not empty; 
3.  push(stack, (qi, next(L(qi))); 
4.  while ¬ empty(stack) do 
  {(u, v) ← pop(stack);  
6.  if (u is not the root) then 
7. cleanStack(S(parent(u)), LeftPos(v)); 
8.  if (u is the root of q) ∨ ¬ empty(S(parent(u))) 
9.  then  
10. {cleanStack(S(u), LeftPos(v)); 
11.  push(S(u), v, pointer to top(S(parent(u))); 
 advance(L(u)); 
12. if (u is a leaf node) then 

13. { output all the matching paths (stored in stacks) 
in the compact form; pop(S(u));} 

14. } 
15. else advance(L(u)); 
16. let q1, ..., ql be the children of u; 
17. for j = l to 1 do 
18. {while next(L(qj) is not a descendant of v do 
   adavance(L(qj); 
19. push(stack, (qj, next(L(qj)));} 
20.}} 
(*phase 2*) 
21. mergeAllPathSolutions(); 
Example 3. Continue with Example 2. 

By using our method, we will first generate L(qi) for 
each qi as shown in Figure 8(b). Then, we will search the 
twig pattern q as follows. 
Step 0: At the very beginning, the node q1 has the least 

LeftPos value and L(q1) is not empty. Push (q1, 
v1) into stack. 

Step 1 - 3: In the following while-loop, the whole query 
tree will be traversed in depth-first fashion. 

 When we meet q3, the stacks will be changed as 
shown in Figure 10(a). Since q3 is a leaf node, we 
get the first matching path (for P1): v3 → v2 → v1.  

Step 4: When we meet q4, another leaf node, the stacks 
will be changed as shown in Figure 10(b). We get 
the second matching path (for P2): v3 → v2 → v1. 

Step 5: q5 is visited. The stacks are changed as shown in 
Figure 10(c). Since q4 is a leaf node, we get the 
third matching path (for P3): v2 → v1. 

Step 6: Now stack (used to control the searching of q) is 
empty. We will try to find another node (in q) 
with the least LeftPos value and a non-empty list. 
It is q2. In L(q2), we have one element left: {v4}. 
Push (q2, v4) into stack. 

 q2 is visited once again. The stacks will be 
changed as shown in Figure 10(d). 

Step 7: q3 is visited once again. The stacks will be 
changed as shown in Figure 10(e). (We notice that 
before v5 is pushed onto S(q3), v3 is popped out.) 
From this, we get another two paths matching P1: 
v5 → v4→ v1 and v5 → v2 → v1. They are 
represented in the compact form. 

Step 8: q4 is visited once again. The stacks will be 
changed as shown in Figure 10(f). (We notice that 
before v5 is pushed onto S(q4), v3 is popped out.) 
From this, we get another two paths matching P2: 
v5 → v4→ v1 and v5 → v2 → v1. They are 
represented in the compact form. 

Step 9: Stack becomes empty once again. This time q5 is 
chosen and in L(q5) we still have two elements: 
{v4, v6}. Push (q5, v4) into stack. 

3 {3, 4} 

{6} 

{1, 2} 

4 5 A q1 

B q2 q5 B

C q3 q4 C 

1 2 

{1, 2} {3, 4, 5} 
{v2, v4, v6} 

{v2, v4} 

{v3, v5} {v3, v5} 

{v1} 
A q1

B q2 q5 B

C q3 q4 C 

Figure 8: Illustration for L(qi)’s. 

5 1 A q1 

B q2 q5 B 

C q3 q4 C

3 4 

2 

Figure 9: Preorder numbering. 
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 q5 is visited for the second time. The new status 
of the stacks is shown in Figure 10(g). From this, 
we get the second path matching P3: v4 → v1. 

Step 10: Stack becomes empty for the third time, and q5 is 
chosen once again since we still have an element 
in L(q5): {v6}. Push (q5, v6) into stack. 

 q5 is visited for the second time. The new status 
of the stacks is shown in Figure 10(h) (before v6 
is pushed onto S(q5), v2 and v4 are popped out.) 
From this, we get the third path matching P3: v6 

→ v1.  □ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the above example, we can see that our 
algorithm generates the same paths as TwigStack 
although the order of such paths’s generation is 
different. More importantly, in our algorithm 
getNext is not used, which is replaced with 
matrixGeneration that is performed only once. 

In the following, we prove the algorithm’s 
correctness and analyze its time complexity. 
Proposition 3. Let T and q be the document and 
query tree, respectively. RefindTwigStack generates 
all the matching paths (in T) for every root-to-leaf 
path in q. 
Proof. In order to prove the proposition, we need to 
explain 
(i) Every path (in T) found by RefinedTwigStack 

must match a root-to-leaf path in q. 
(ii) Any path (in T), if it matches a root-to-leaf path 

in q and each of its nodes satisfies the condition 

(i) and (ii) given in 2.2, must be found by 
RefinedTwigStack. 
Proof of (i). To see that (i) holds, we notice the 

following two properties of the algorithm: 
(1) Any node v in any L(qi) satisfies the condition (i) 

and (ii) given in 2.2. 
(2) Any node v put in a S(qi) satisfies the condition 

below: 
Let q’ be the parent of qi. The node on the top of 

S(q’) must be an ancestor of v. 
So each time when we meet a leaf node q’’, all 

the paths found must match the path from the root of 
q to q’’. 

Proof of (ii). Let P = q1 → q2 ... → qm be a path in 
q. Let {t1, t2, ..., tm} be a set of nodes lying on a path 
in T, which makes up a matching path of P with 
each ti satisfying the condition (i) and (ii) given in 
2.2. But this matching path has not been found by 
RefinedTwigStack. Then, there exists a k such that 
all tj (k ≤ j ≤ m) do not have a chance to be put onto 
the corresponding stacks. First, we notice that k > 1 
since t1 must appear in L(q1) and will be definitely 
put onto S(q1) during the computation process. Now 
we consider tk with k > 1, which does not have a 
chance to be put onto S(qk). In terms of line 8 in 
RefinedTwigStack, we must have S(qk+1) = {} when 
we try to put tk onto S(qk+1). This implies that tk-1 
must have been popped out at a earlier time point 
when we try to put another node t’ onto S(qk) with 
RightPos(tk-1) < LeftPos(t’). But we have obviously 
LeftPos(t’) < LeftPos(tk). So we have RightPos(tk-1) 
< LeftPos(tk), which contradicts fact that tk-1 is an 
ancestor of tk. From this analysis, we know that tk 
has a chance to be put onto S(qk). The same analysis 
applies to tk+1, ..., tm. This completes the proof. 

The time complexity of RefinedTwigStack is 
easy to analyze. In the whole process, each node v in 
a L(qi) is accessed only once. So the total cost is 
bounded by 

 O( ( )∑
=

m

i
iqL

1
) = O(m⋅n) 

4 GENERAL CASES 

The method discussed in Section 3 can be easily 
extended to handle general cases that a query tree 
contains both c-edges and d-edges. For this purpose, 
we define a third matrix p(q, T) as follows. 
 An entry pij = 1 indicates that there exists some 

child k of j, which ‘matches’ i, i.e., cik = 1; 
otherwise, pij = 0. 

S(q5) S(q4) S(q3) S(q2) S(q1) 

 
 
v3 

 
 
< 

 
 
v2 

 
 
v1 

 
 
 

 
 
v3 

 
 
v3 

 
 
v2 

 
 
v1 

 
 
 

S(q5) S(q4) S(q3) S(q2) S(q1) 

(a) (b) 

(c) (d) 

(e) (f) 

 
 
v3 

 
 
v3 

 
 
v2 

 
 
v1 

 
 
v2 

 
 
v3 

 
 
v3 

 
v4 
v2 

 
 
v1 

 
 
v2 

 
 
v5 

 
 
v3 

 
v4 
v2 

 
 
v1 

 
 
v2 

 
 
v5 

 
 
v5 

 
v4 
v2 

 
 
v1 

 
 
v2 

(g) (h) 
Figure 10: Sample trace. 
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Accordingly, the algorithm matrixGeneration 
should be slightly changed so that the manipulation 
of p(q, T) is involved. 
Algorithm generalMatrixGeneration(T, q) 
Input: tree T (with nodes 1, ..., n) and tree q (with nodes 1, 
..., m) 
Output: c(q, T) with values created. 
begin 
1. for u := 1, ..., m do { 
2. for v := 1, ..., n do 
3. {if v satisfies the predicate at u then 
4.  let u1, ..., uk be the c-children of u; 
5.  let u1’, ..., ug’ be the d-children of u; 
6.  if vup

1
∧ ... ∧ vuk

p = 1 and vud '1
∧ ... ∧ vuk

d ' = 1 

7.  then cuv ← 1;} 
8. let v1, v2, ..., vh be the nodes such that

puvc = 1 (1 ≤ p 

≤ h); 
9. let {w1, ..., wr} be a set such that each node in it is an 

ancestor of some vp (1 ≤ p ≤ h). Set
luwd = 1 for each wl 

(1 ≤ l ≤ r). 
10. let {t1, ..., ts} be a set such that each node in it is a 

parent of some vp (1 ≤ p ≤ h). Set
lutd = 1 for each tl (1 

≤ l ≤ s). 
11. } 
end 

Since each node u in q may have both c- and d-
children, each time when checking it against a node 
v in T we need to check the corresponding entries in 
both d(q, T) and p(q, T) (see line 6). In addition, 
besides the computation of new values for some 
entries in d(q, T) in each step, we need also to 
compute new values for the corresponding entries in 
p(q, T) (see line 10). 

5 CONCLUSION 

In this paper, a new method is discussed, which 
substantially improves the method proposed in 
(Bruno and et al, 2002) for doing twig joins that are 
identified as a core operation for query evaluation in 
XML databases. Concretely, our method improves 
the algorithm TwigStack and TwigStackXB presented 
in (Bruno and et al, 2002) from O(m2⋅n) to O(m⋅n), 
where m and n are the sizes of the query tree and 
document tree, respectively. In addition, a system 
implementation and experiments are reported, which 
shows that our method uniformly outperforms 
TwigStack, completely conforming to the conducted 
theoretic analysis. 
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