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Abstract. We introduce an approach based on evidence accumulation (EAC) 
for combining partitions in a clustering ensemble. EAC uses a voting mecha-
nism to produce a co-association matrix based on the pairwise associations ob-
tained from N partitions and where each partition has equal weight in the com-
bination process. By applying a clustering algorithm to this co-association ma-
trix we obtain the final data partition. In this paper we propose a clustering en-
semble combination approach that uses subsampling and that weights differ-
ently the partitions (WEACS). We use two ways of weighting each partition: 
SWEACS, using a single validation index, and JWEACS, using a committee of 
indices. We compare combination results with the EAC technique and the 
HGPA, MCLA and CSPA methods by Strehl and Gosh using subsampling, and 
conclude that the WEACS approaches generally obtain better results. As a 
complementary step to the WEACS approach, we combine all the final data 
partitions produced by the different variations of the method and use the Ward 
Link algorithm to obtain the final data partition. 

1 Introduction 

Clustering is a procedure of partitioning data into groups or clusters based on a con-
cept of proximity or similarity between data. There is a huge amount of clustering 
algorithms, even though no single algorithm can successfully discover by itself all 
types of cluster shapes and structures. Recently, clustering ensemble approaches were 
introduced [1-7,22-28] based on the idea of combining the partitions of a cluster en-
semble into a final data partition.  

The concept underlying to EAC method, by Fred and Jain, is to combine the re-
sults of a cluster ensemble into a single combined final data partition, considering 
each clustering result as an independent evidence of data organization. Using a voting 
mechanism and taking the pairwise associations as votes, the N data partitions of n 
patterns are mapped into an n ×  n co-association matrix: 

NvotesjiassocCo ij /),(_ =  (1) 
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where votesij is the number of times the pattern pair (i,j) is assigned to the same clus-
ter among the N clusterings. The final data partition (P*) is obtained by applying a 
clustering algorithm to the co-association matrix. The final number of clusters can be 
fixed or automatically chosen using lifetime criteria [2,3]. 

Strehl and Ghosh explored graph theoretical concepts in the combination of clus-
tering ensembles. The partitions included in the clustering ensemble are mapped into 
a hypergraph, where vertices correspond to samples, and partitions correspond to 
hyperedges. They proposed three heuristics to try to answer the combination problem: 
the hypergraph-partition algorithm (HGPA), the meta clustering algorithm (MCLA) 
and the cluster-based similarity partitioning algorithm (CSPA).  

Duarte et al. proposed the WEAC approach [4,5], also based on evidence accumu-
lation clustering. WEAC uses a weighted voting mechanism to integrate the partitions 
of the clustering ensemble in a weighted co-association matrix. Two different meth-
ods are followed: SWEAC, where each clustering is evaluated by a relative or inter-
nal cluster validity index and the contribution of each clustering is weighted by the 
value achieved for this index; JWEAC, where each clustering is evaluated by a set of 
relative and internal cluster validity indices and the contribution of each clustering is 
weighted by the overall results achieved with these indices. The final data partition is 
obtained by applying a clustering algorithm to the weighted co-association matrix. 

In this paper we test how subsampling techniques influence the combination re-
sults using the WEAC approach (WEAC with subsampling, WEACS). Partitions in 
the ensemble are generated by clustering subsamples of the data set. Each subsample 
has 80% of the elements of the data set. As with the WEAC approach, two different 
methods are used to weight data partitions in the co-association matrix (w_co_assoc 
matrix): Single Weighted EAC with subsampling (SWEACS) and Joint Weighted 
EAC with subsampling (JWEACS).  

We assessed experimentally the performance of the WEACS approach and com-
pared it with the single application of Single Link, Complete Link, Average Link, K-
means and Clarans algorithms and with the subsampling versions of EAC, HGPA, 
MCLA and CSPA methods. 

Section 2 summarize the cluster validity indices used in WEACS. Section 3 pre-
sents the Weighted Evidence Accumulation Clustering with subsampling (WEACS) 
and the experimental setup used. In section 4 synthetic and real data sets are used to 
assess the performance of WEACS. Finally, in section 5 we present the conclusions. 

2 Cluster Validity Indices 

Cluster validity indices address the following two important questions associated to 
any clustering: how many clusters are present in the data; and how good the cluster-
ing itself is. For a summary of cluster validity measures and comparative studies see 
for example [8,9] and the references therein. 

We can use three approaches to do cluster validity [10]: external validity indices 
assess the clustering results based on a structure that is assumed on the data set 
(ground truth); internal validity indices assess the clustering results in terms of quanti-
ties that involve the vectors of the data set themselves; and relative validity indices 
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assess a clustering result by comparing it with other clustering results, obtained by the 
same algorithm but with different input parameters. 

In this work, we employed a set of widely used and referenced internal and relative 
cluster validity indices, to evaluate the quality of the clusterings to be included and 
weighted in the w_co_assoc matrix. We used two internal indices, the Hubert Statistic 
and Normalized Hubert Statistic (NormHub) [11], and fourteen relative indices: Dunn 
index [12], Davies-Bouldin index (DB) [13], Root-mean-square standard error 
(RMSSDT) [14], R-squared index (RS) [14], the SD validity index [9], the S_Dbw 
validity index [9], Caliski & Cooper cluster validity index [15], Silhouette statistic (S) 
[16], index I [17], XB cluster validity index [18], Squared Error index (SE), 
Krzanowski & Lai (KL) cluster validity index [19], Hartigan cluster validity index 
(H) [20] and the Point Symmetry index (PS) [21]. 

3 Weighted Evidence Accumulation Clustering Using  
Subsampling (WEACS) 

The WEACS approach is an extension of the WEAC approach [4,5] by using sub-
sampling in the construction of the cluster ensemble. Both methods extend the EAC 
technique by weighting differently data partitions in the combination process accord-
ing to cluster validity indices. The use of subsampling in WEACS has two main rea-
sons: to create diversity in the cluster ensemble and to test the robustness of the 
method. In fact, other works have shown that the use of subsampling increase diver-
sity in the cluster ensemble leading to more robust solutions [22,24,26].  

Like in WEAC, WEACS proposes the evaluation of the quality of each data parti-
tion by one or more cluster validity indices, which ultimately determines its weight in 
the combination process. We can obtain poor clustering results in a simple voting 
mechanism, if a set of poor clusterings overshadows another isolated good clustering. 
By weighting the partitions in the weighted co-association matrix according to the 
evaluation made by cluster validity and by assigning higher relevance to better parti-
tions in the clustering ensemble, we expect to achieve better combination results. 

Considering n the number of patterns in a data set and given a clustering ensemble 
P=  { }NPPP ,...,, 21  with N partitions of n*0.8 patterns produced by clustering sub-
samples of the data set, and a corresponding set of normalized indices with values in 
the interval [0,1] measuring the quality of each of these partitions, the clustering en-
semble is mapped into a weighted co-association matrix:  

w_co_assoc(i,j)= 
1

.
( , )

LN
Lij

L

vote VI
S i j=

∑ ,  
(2) 

where N is the number of clusterings, voteLij is a binary value, 1 or 0, depending if the 
object pair (i,j) has co-occurred in the same cluster (or not) in the Lth partition, LVI is 
the normalized cluster validity index value for the Lth partition and ( , )S i j  is a matrix 
such that (i,j)-th entry is equal to the number of data partitions from the total N data 
partitions where both patterns i and j are simultaneous present. The final data partition 
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is obtained by applying a clustering algorithm to the weighted co-association matrix. 
The proposed WEACS method is schematically described in table 1. 

Table 1. WEACS approach. 

Input:  
n – number of data patterns of the data set 
P = { }NPPP ,...,, 21 - Clustering Ensemble with N data partitions of n*0.8 patterns 

produced by clustering subsamples of the data set 
{ }NVIVIVIVI ,...,, 21=  - Normalized Cluster Validity Index values of the corre-

sponding data partitions 
Output: Final combined data partitioning. 
Initialization: set w_co_assoc to a null n× n matrix. 
1. For L=1 to N  

Update the w_co_assoc: for each pattern pair (i,j) in the same cluster, set 

w_co_assoc(i,j)=w_co_assoc(i,j)+ 
.

( , )

L
Lijvote VI

S i j
 

voteLij - binary value (1 or 0), depending if the object pair (i,j) has co-occurred in 
the same cluster (or not) in the Lth partition 

LVI  - the normalized cluster validity index value for the Lth partition 
( , )S i j  - number of data partitions where patterns i and j are present  

2. Apply a clustering algorithm to the w_co_assoc matrix to obtain the final data 
partition 

 
In WEACS we used two different ways of weighting each data partition: 
1. Single Weighted EAC with subsampling (SWEACS): in this method, the quality 

of each data partition is evaluated by a single normalized relative or internal clus-
ter validity index, and each vote in the w_co_assoc matrix is weighted by the 
value of this index: 

LVI = ( )_ Lnorm validity P  (3) 

2. Joint Weighted EAC with subsampling (JWEACS): in this method, the quality of 
each data partition is evaluated by a set of relative and internal cluster validity in-
dices, and each vote in the w_co_assoc matrix being weighted by the overall con-
tributions of these indices:  

LVI =
( )

1

_ LNInd
ind

ind

norm validity P

NInd=
∑  

(4) 

where NInd  is the number of cluster validity indices used, and 
( )_ L

indnorm validity P is the value of the indth validity index over the partition PL. 

We used sixteen cluster validity indices in our experiments. 
In the WEACS approach we can use different clustering ensembles construction 

methods, different clustering methods to obtain the final data partition, and, particu-
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larly in the SWEACS version, we can use even different cluster validity indices to 
weight the data partitions. These constitute variations of the approach, taking each of 
the possible modifications as a configuration parameter of the method. As shown in 
the experimental results section, although the WEACS leads in general to good re-
sults, no individual configuration tested led consistently to better best results in all 
data sets as compared to the subsampling versions of EAC, HGPA, MCLA and CSPA 
methods. Strehl and Gosh [6] proposed to use the average normalized mutual infor-
mation (ANMI) as criteria for selecting among the results produced by different 
strategies. The “best” solution is chosen as the one that has maximum average mutual 
information with all individual partitions of the clustering ensemble. By comparing 
the best results according to the consistency index with ground truth information (P0), 
(Ci(P*,P0)), with the correspondent consensus values (ANMI) it was proved in [28] 
and we could confirm in this work that there is no correlation between these two 
measures; the mutual information based consensus function is therefore not suitable 
for the selection of the best performing method.  

To solve this problem we use a complementary step to the WEACS approach. It 
consists in combining all the final data partitions obtained in the WEACS approach 
with a clustering ensemble construction method or in combining of all the final data 
partitions obtained in the WEACS approach with all clustering ensemble construction 
methods. These data partitions are combined using the EAC approach and the final 
data partition (P*) is obtained by applying a clustering algorithm to this new co-
association matrix. 

3.1 Experimental Setup 

3.1.1 Generation of Clustering Ensembles 
There are several different approaches to produce clustering ensembles. We produced 
clustering ensembles using a single algorithm (Single Link (SL), Complete-Link 
(CL), Average-Link (AL), K-means and Clarans (CLR)) with different parameters 
values and/or initializations, and using diverse clustering algorithms with diverse 
parameters values and/or initializations. Specifically, each clustering algorithm makes 
use of multiple values of k and K-means and Clarans in addition make use of multiple 
initializations of clusters centers. We investigated also a clustering ensemble that 
includes all the partitions generated by all the clusterings algorithms (ALL).  

3.1.2 Normalization of Cluster Validity Indices 
We can find two types of indices: some of them are intrinsically normalized and oth-
ers are not. In this work we use two indices intrinsically normalized and fourteen that 
are not. The Normalized Hubert Statistic and Silhouette index are normalized be-
tween [-1,1] but we only consider values between [0,1].We use two internal validity 
indices and fourteen relative validity indices. The best result for some indices is the 
highest value and for others the lowest value. When the indices of the first type only 
have values superior to zero, the normalization is made by dividing the value obtained 
for the index by the maximum value obtained over all partitions (in-
dex_value=value_obtained/Maximum_value). When the indices of the second type 
only have values superior to zero, the normalization is made by dividing the mini-
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mum value obtained over all partitions by the partition value obtained for the index. 
(index_value= Minimum_value/value_obtained). Some other indices increase (or 
decrease) as the number of clusters increase and it is impossible to find neither the 
maximum nor the minimum. With these indices, we look for the value of k where the 
major local variation in the value of the index happens. This variation appears as a 
“knee” in the plot and corresponds to the number of clusters existent in the data set. 
The best value of this kind of indices typically is not the highest (or lowest) value 
achieved. Thus, these indices can’t be incorporated directly in the w_co_assoc matrix. 
The best value of these indices is where the “knee” appears. The value 1 is given to 
the partition correspondent to the “knee” in the index. To incorporate these indices in 
the co-association matrix we adopted the following approach: run the clustering algo-
rithms varying the number of clusters to be achieved between [1, kmaximum] where 
kmaximum is the maximum number of clusters we suppose to exist in the data set; then, 
we have to compare the partition correspondent to the “knee” with each of the other 
partitions generated by this algorithm. We used an external index, the Consistency 
index (Ci), proposed in [1] to compare these clusterings. We utilized this approach to 
Hubert Statistic, RMSSDT index, RS index and Squared Error index. The expected 
number of clusters in Hartigan cluster validity index is the smallest k >=1 such that 
H(k)<=10. Given that Hartigan index is not calculated for values of k greater than the 
expected number of clusters (typically achieve negative values) we have to use to this 
index the same procedure used to the indices based on the “knee” to achieve an index 
value for partitions with k’s greater than the expected number of clusters. Table 2 
shows the criteria to achieve the best value with each validity index.  

Table 2. Criteria to obtain the best value according to each validity index. 

Index Criteria Index Criteria Index Criteria Index Criteria 
Hubert “Knee“ RMSSDT “Knee“ CH Max SE “Knee“ 
NormHub Max RS “Knee“ S Max KL Maximum 
Dunn Max SD Min I Max H  Smallest k: 

H(k)<=10 
DB Min S_Dbw Min XB Min PS Minimum 

3.1.3 Extraction of the Final Combined Data Partition 
The w_co_assoc matrix can be seen as a new similarity matrix between patterns; we 
therefore apply a clustering algorithm to it to obtain the final combined data partition 
P*. In our experiments, we assumed that the final number of clusters is known and 
we used the k-means, SL, AL and Ward’s link (WR) algorithms to obtain the final 
partition. To assess the performance of the combination methods, we compare the 
final data partitions with ground truth information and we used the Consistency index 
(Ci) to compare these partitions. 
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4 Experimental Results  

4.1 Data Sets 

Synthetic data sets For simplicity of visualization we considered 2-dimensional 
patterns. These data sets were produced aiming the evaluation of the performance of 
WEACS in a multiplicity of conditions, like distinct data sparseness in the feature 
space, arbitrary shaped clusters, well separated and touching clusters. Figure 1 plots 
these data sets. 

 
       (a) Bars          (b) Cigar       (c) Half Rings  (e) Spiral 

Fig. 1. Synthetic Data Sets. 

The Bars data set has 2 classes (200 and 200) and the density of the patterns in-
creasing with increasing horizontal coordinate. The Cigar data set has 4 classes (100, 
100, 25 and 25). The Half Rings data set is composed by 3 uniformly distributed 
classes (150, 150 and 200) within half-ring envelops. The Spiral data set consists of 
200 samples divided evenly in 2 classes. 
Real Data Sets Four real-life data sets were considered to show the performance of 
the WEACS: Breast Cancer, Iris, DNA microarrays and Handwritten Digits. The 
Breast Cancer data set (http://www.ics.uci.edu/~mlearn/MLRepository.html) has 683 
samples (9 features) spitted in two classes: Benign and Malignant. The Iris data set is 
divided in three types of Iris plants (50 samples per class), characterized by 4 fea-
tures, and with one class well separated from the other two, which are intermingled. 
The Yeast Cell data set (DNA microarrays) consists of the fluctuations of the gene 
expression levels of over 6000 genes over two cell cycles. The available data set is 
restricted to the 384 genes with 17 features (http://staff.washington.edu/kayee/model/) 
whose expression level peak at different time points corresponding to the 5 phases of 
the cell cycle. It was used the logarithm of the expression level (Log Yeast) and a 
“standardized” version (Std Yeast) of the data (with mean 0 and variance 1). The 
Handwritten Digits, is available at the UCI repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.html), and consists in 3823 samples, 
each with 64 features. A subset (Optical) composed by the first 100 samples of all the 
digits was used from a total of 3823 training samples (64 features). 

4.2 Combination of Clustering Ensembles Using WEACS 

The quality of the final data partition, P*, obtained with the WEACS method is 
evaluated by calculating the consistency of P* with ground truth information P0, 
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using the Consistency index Ci(P*,P0). We assume that the true number of clusters is 
known, being the number of clusters in P*.  

Using subsamples of a data set (80% of the number of patterns in the data set), we 
applied each of the clustering ensemble construction methods (SL, AL, CL, KM and 
CLR) to generate 50 clustering ensembles each with 100 partitions with k randomly 
chosen in the set {10,…,30}. Then, we applied the EAC, HGPA, MCLA, CSPA and 
WEACS approaches to each of these clustering ensembles. Finally, we calculate the 
average results over the 50 runs. Due to space limitations, it was not possible to pre-
sent results of the application of the subsampling version of EAC and WEACS ap-
proaches to all datasets. As an example, in table 3 we present Ci(P*,P0) indices values 
for SL, AL, CL, Clarans, K-means and ALL clustering ensembles with Std Yeast data 
set. In this table, rows are grouped by the clustering ensembles construction method. 
Inside each clustering ensemble construction method appears the four clustering 
methods (K-means, SL, CL and WR) used to extract the final data partition. ALL 
cluster ensemble construction method gather all the partitions produced by all the 
methods (N=500). 

Table 3. Ci(P*,P0) indices values with Std Yeast data set. 
  EAC JWEACS Hubert Nhubert Dunn RMSSDT RS S_Dbw CH S index_I XB SE DB SD H KL PS

 KM 31.66 31.43 30.19 31.01 31.73 31.28 31.19 30.04 27.90 35.16 31.29 29.82 31.58 29.96 31.16 30.44 31.65 29.48
 SL 35.93 36.17 35.96 35.70 35.93 35.96 35.96 35.93 35.96 35.42 35.69 35.95 35.96 35.93 35.70 36.18 35.71 35.69
 AL 36.18 36.23 35.71 35.94 35.72 35.71 35.71 35.94 36.69 35.42 35.98 35.97 35.71 36.42 36.21 36.92 35.98 35.98
 WR 37.23 37.24 37.23 37.23 36.99 37.23 37.23 37.23 37.47 35.42 37.23 37.24 37.23 37.47 37.24 37.23 37.23 37.48
 KM 66.23 62.72 63.35 65.89 63.36 64.16 63.76 62.94 64.58 65.65 65.64 63.49 65.98 63.71 64.49 64.34 64.92 64.11
 SL 36.20 36.20 36.20 36.20 35.96 36.20 36.20 35.96 36.20 36.20 36.20 36.20 36.20 36.20 36.20 36.20 36.20 35.96
 AL 47.66 47.74 47.74 47.66 48.22 47.74 47.74 47.74 56.51 48.41 55.80 47.74 47.74 48.17 47.66 47.74 47.74 47.74
 WR 68.76 68.34 68.82 68.74 68.31 68.82 68.82 69.27 68.86 68.79 69.09 68.83 68.82 68.74 68.81 68.35 68.82 68.30
 KM 53.57 56.62 57.63 56.97 55.02 56.90 54.66 55.98 55.76 52.26 52.79 49.30 47.12 53.54 56.55 54.39 57.22 57.84
 SL 37.19 37.33 37.15 37.33 37.15 37.15 37.15 37.33 45.27 37.19 45.27 37.33 37.15 37.19 37.33 37.33 37.15 37.19
 AL 66.74 66.64 68.11 66.65 66.74 68.11 68.11 66.75 68.18 66.45 67.89 66.42 68.11 66.74 66.69 68.11 68.11 66.69
 WR 58.68 58.45 58.43 58.44 58.43 58.43 58.43 55.56 57.21 58.44 57.20 58.47 58.43 58.43 58.45 58.44 58.43 58.44
 KM 55.42 53.58 66.64 56.31 61.12 60.75 53.58 55.45 58.19 64.08 58.95 56.55 58.61 58.56 56.48 57.67 50.88 61.02
 SL 48.47 48.22 57.33 48.22 49.43 57.33 57.33 47.98 56.81 48.93 44.83 48.46 48.45 48.47 48.47 56.59 37.43 48.47
 AL 69.45 69.38 69.39 69.44 69.13 69.39 69.39 69.45 69.42 69.42 69.44 69.36 69.41 69.43 69.42 69.38 69.41 69.42
 WR 57.10 57.44 56.96 57.38 56.97 56.96 56.96 57.06 55.96 57.33 56.95 61.03 57.61 57.20 56.91 60.76 57.60 57.20
 KM 48.57 52.97 61.71 55.73 53.55 57.68 52.74 52.81 55.03 58.94 58.52 59.88 49.14 51.89 55.27 48.53 54.52 55.45
 SL 48.11 48.08 48.30 48.30 50.47 48.30 48.30 50.40 48.30 48.25 47.98 50.23 48.30 48.11 48.30 48.33 48.30 48.05
 AL 68.65 66.97 66.97 66.97 66.99 65.07 65.07 66.97 67.13 66.97 64.98 66.98 65.07 66.97 66.97 66.97 65.07 66.96
 WR 58.12 57.40 59.97 57.41 56.57 55.47 55.47 53.99 53.85 55.17 58.91 57.89 55.47 57.40 58.18 55.42 55.47 58.15
 KM 55.05 62.66 66.24 60.07 59.45 62.47 63.64 56.93 50.90 57.44 56.33 57.44 66.06 53.05 62.90 62.62 61.15 56.33
 SL 35.94 35.94 35.94 36.20 35.94 35.94 35.94 35.94 35.95 36.20 35.95 35.95 35.94 35.95 35.94 35.95 35.94 35.94
 AL 36.71 37.73 37.71 67.47 36.76 37.71 37.71 37.19 68.65 68.66 68.67 36.47 37.73 36.72 37.67 36.70 37.73 36.73
 WR 58.80 74.69 71.20 69.31 67.11 68.96 68.96 66.99 61.60 72.63 59.81 69.74 68.35 67.06 68.24 67.90 68.35 67.49

CLR

ALL

SL

AL

CL

KM

 
Comparing Ci results for the Std Yeast data set (table 3), we can see that both ver-

sions of the WEACS approach have a performance better than EAC. JWEACS ob-
tained 74,69% and SWEACS 72,63% in the best result over all cluster validity indi-
ces versus 69.45% of EAC. Analyzing the experimental results in the nine data sets, 
we can see that none of the ensemble combination approaches systematically pro-
duces the best results in all the situations. However, in average, SWEACS and 
JWEACS approaches produce better results when compared with EAC. The 
JWEACS and the SWEACS results for each cluster validity index are in many situa-
tions equal to EAC results, in other situations the EAC results are improved with the 
SWEACS and JWEACS approaches and in fewer situations the EAC results are bet-
ter than those of SWEACS and JWEACS. 

By examining the clustering ensemble construction methods, we can observe that 
in 6 of the 9 data sets used, the partitions of the ALL clustering ensemble construc-
tion method provide the best results in the EAC, JWEACS and SWEACS methods. 
Therefore, we can say that the joint of all the partitions produced by all the clustering 
ensemble construction methods is a good choice to construct cluster ensembles for 
these approaches. 
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We obtained also results of the single application of each clustering algorithm (SL, 
CL, AL, KM and CLR) to each data set. Table 4 presents best individual results pro-
duced by each clustering method (lines SL to KM) and best combined results per 
combination strategy (lines EAC to Strehl) over 50 runs. In the 7th line of the table we 
present the best Ci result of the 3 Strehl & Gosh heuristics (HGPA, MCLA and 
CSPA). 

Table 4. Ci results in SL, CL, AL algorithms and Ci best results in CLR, KM, Strehl, EAC and 
WEACS approaches over 50 runs. 

Spiral Log Yeast Std Yeast Optical Cigar Breast Iris Half Rings Bars
SL 100 34.9 36.2 10.6 60.4 65.15 68 95 50.25
CL 52 28.91 66.67 51.8 55.6 92.83 84 72 98.75
AL 52 28.65 65.89 75.7 87.2 94.29 90.67 73.4 98.75

CLR 64.5 38.28 71.61 79.4 98 96.34 93.33 81.2 98.75
KM 64.5 35.94 71.09 77.5 74.8 96.49 91.33 77.6 99.5

Strehl 100 37.94 65.57 84.98 72.81 96.48 98 95.05 99.5
EAC 100 40.93 69.45 82.73 100 97.07 93.95 100 99.5

SWEACS 100 41.58 72.63 84.31 100 97.2 93.33 100 99.5
JWEACS 100 41.51 74.69 82.39 100 97.07 93.33 100 99.5  

 
Almost in all data sets the WEACS results outperform the single application of all 

the clustering algorithms. In the Log Yeast and Std Yeast data sets, we can see the 
superiority of the SWEACS and JWEACS approaches. In Cigar and Half Rings data 
sets, both the EAC and WEACS approaches obtain 100%, which are much better 
results than the ones obtained by other algorithms. The SWEACS approach obtained 
in 4 data sets better best results than the EAC approach, in 5 data sets better best 
results than the best result of the Strehl heuristics and in 3 data sets better best results 
than the JWEACS version. On other hand, the EAC approach obtained only in 1 data 
set a better best result than the SWEACS approach, in 2 data sets a better best result 
than the JWEACS approach and in 5 data sets better best results than the best result 
of the Strehl heuristics. Strehl heuristics obtained in 2 data sets better best results than 
the EAC approach, in 2 data sets better best results than the SWEACS approach and 
in 2 data sets better best results than the JWEACS approach. The JWEACS approach 
obtained in 2 data sets better best results than the EAC approach, in 5 data sets better 
best results than the best result of the Strehl heuristics and in 1 data set a better best 
result than the SWEACS approach. The average percentage of improvement in the 
best results of SWEACS as compared to EAC, over all data sets, was of 0,55% while 
the average percentage of improvement in the best results of JWEACS as compared 
to EAC, over all data sets, was of 0,54%. The average percentage of improvement in 
the best results of SWEACS as compared to Strehl heuristics, over all data sets, was 
of 4,25% while the average percentage of improvement in the best results of 
JWEACS as compared to Strehl heuristics, over all data sets, was of 4,24%.  

Table 5 shows the average Ci results of the CLR and KM algorithms and of the 
combining clustering ensemble approaches over 50 runs. In the 4th line of the table we 
present the average Ci result of the 3 Strehl & Gosh heuristics (HGPA, MCLA and 
CSPA). We can see that none of the methods obtain in all data sets the best average 
Ci results. The CLR and KM algorithms and the EAC and Strehl & Gosh approaches 
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obtain two best average Ci results and the JWEACS approach obtains one best aver-
age Ci result. 

Table 5. Average Ci results of CLR, KM, Strehl, EAC and WEACS approaches over 50 runs. 

Spiral Log Yeast Std Yeast Optical Cigar Breast Iris Half Rings Bars
CLR 57.40 31.58 62.53 73.80 71.20 95.61 89.37 76.55 97.06
KM 57.85 30.98 60.93 68.01 61.48 96.33 78.18 71.92 97.46

Strehl 68.37 32.25 51.59 69.44 68.11 80.03 93.72 93.04 96.04
EAC 71.78 34.78 50.68 58.55 83.23 77.32 70.38 84.98 83.19

SWEACS 70.97 34.37 51.96 57.23 82.13 77.55 71.84 83.24 80.71
JWEACS 70.83 34.62 51.67 57.60 83.63 77.37 70.76 84.86 83.24  
 
Table 6 presents the Ci results of all the final data partitions obtained after the ap-

plication of the complementary step to the WEACS approach.  

Table 6. Ci results of the final data partitions obtained after the applicaton of the complemen-
tary step to the WEACS approach. 

Spiral Log Yeast Std Yeast Optical Cigar Breast Iris Half Rings Bars
 KM 100.00 24.76 30.43 35.47 73.90 69.38 71.25 100.00 95.74

SL  SL 100.00 34.94 35.95 11.60 94.98 65.15 65.36 100.00 95.75
 AL 100.00 34.90 36.74 20.20 94.47 68.25 71.25 100.00 95.75
 WR 100.00 28.29 31.99 43.76 95.01 68.33 71.25 100.00 95.75
 KM 50.51 33.99 65.88 73.26 80.37 96.78 77.27 100.00 64.25

AL  SL 99.22 35.42 43.91 67.70 97.66 65.15 69.10 60.32 64.25
 AL 50.98 35.42 63.32 67.29 98.20 65.15 69.10 99.60 64.25
 WR 50.74 31.79 68.30 84.29 98.07 96.78 78.27 95.00 64.25
 KM 53.46 33.86 57.77 64.73 89.77 96.76 88.08 95.00 99.50

CL  SL 96.40 30.21 67.86 60.42 99.58 95.35 74.67 95.00 67.78
 AL 50.94 29.82 58.89 72.19 99.58 96.61 74.67 95.00 99.50
 WR 51.20 34.78 57.86 72.90 99.98 96.61 74.80 95.00 99.50
 KM 51.03 36.97 56.82 72.82 63.79 67.94 88.12 88.18 98.67

KM  SL 68.49 40.89 62.65 57.26 70.80 64.57 89.40 72.41 98.67
 AL 51.77 40.89 69.42 79.49 70.80 67.92 89.53 82.91 98.67
 WR 51.81 40.89 55.16 78.08 70.80 67.94 89.53 99.23 98.67
 KM 98.27 35.26 54.44 64.65 71.32 90.58 80.39 92.59 98.75

CLR  SL 97.82 36.39 57.14 39.19 100.00 69.75 52.00 99.80 96.68
 AL 79.96 34.81 67.10 78.55 100.00 69.65 52.00 93.64 98.75
 WR 82.89 35.34 53.97 77.33 100.00 69.65 52.00 93.64 98.75
 KM 100.00 33.22 64.92 68.06 77.29 97.05 68.67 99.20 98.83

ALL  SL 100.00 35.42 40.68 49.52 100.00 65.15 69.33 99.90 99.50
 AL 100.00 31.29 60.48 66.59 100.00 97.05 69.33 99.90 99.42
 WR 100.00 33.16 69.80 80.78 100.00 97.05 94.00 99.90 99.42  

 
We can see in the last line of the table that by combining the final data partitions 

obtained in the WEACS approach when it uses the partitions of the ALL clustering 
ensemble construction method and then by applying the Ward Link algorithm 
(ALL+WR) to obtain the final data partition we obtain in 5 (Spiral, Std Yeast, Cigar, 
Breast Cancer and Iris data sets) of the 9 data sets the best Ci results and in 2 other 
data sets (Half Rings and Bars) the results obtained are very close to the best Ci re-
sults. In the Half Rings data set, the result obtained is 99,90% while the maximum 
obtained is 100% and in the Bars data set the result obtained is 99,42% while the 
maximum obtained is 99,50%. In Optical data set the result obtained is 80,78%, a 
value inferior to the maximum obtained by other combination, 84,29%. However, this 
result (80,78%) is close to the maximum obtained by the EAC approach (82,73%) 
and much superior to the average value obtained by the EAC approach (58,55%) and 
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all other combination clustering ensemble approaches. In Log Yeast data set the result 
obtained is 33,16%, a value inferior to the maximum obtained by other combination, 
40,89%. This result (33,16%) is inferior to the maximum obtained by the EAC 
approach (40,93%) and a litle inferior to the average value obtained by the EAC 
approach (34,78%) and by both versions of WEACS (34.37% and 34.62%). 
However, this result (33,16%) is superior to the average value obtained by the CL 
(28,91%), AL (28,65%), CLR (31,58%), KM (30,98%) and Strehl (32,25%) methods.  

Table 7 presents the percentage difference (the improvement in the accuracy) be-
tween the performance of the WEACS approach with the complementary step 
(ALL+WR) and the average values obtained with the single application of the algo-
rithms, EAC, WEACS and Strehl approaches in each data set. The last column shows 
the average improvement relatively to each single algorithm and each combination 
clustering ensemble approach by using the WEACS approach with the complemen-
tary step (ALL+WR), over all data sets. In all approaches this improvement is supe-
rior to 10%, allowing concluding that this approach is robust and that could be fol-
lowed to obtain good clusterings. It can also be seen that in all data sets, with the 
exception of Std Yeast data set, the values obtained by the WEACS approach with the 
complementary step (ALL+WR) obtain always better values than the average of all 
the other approaches.  

Table 7. Percentage difference (improvement) between the performance of the WEACS ap-
proach with the complementary step (ALL+WR) and the average values obtained with the 
single application of the algorithms, Strehl, EAC and WEACS approaches in each data set. 

Spiral Log Yeast Std Yeast Optical Cigar Breast Iris Half Rings Bars Improve
SL 0.00 -1.74 33.60 70.18 39.60 31.90 26.00 4.90 49.17 28.18
CL 48.00 4.25 3.13 28.98 44.40 4.22 10.00 27.90 0.67 19.06
AL 48.00 4.51 3.91 5.08 12.80 2.76 3.33 26.50 0.67 11.95

CLR 42.60 1.58 7.27 6.98 28.80 1.44 4.63 23.35 2.36 13.22
KM 42.15 2.18 8.87 12.77 38.52 0.72 15.82 27.98 1.96 16.77

Strehl 31.63 0.91 18.21 11.34 31.89 17.02 0.28 6.86 3.38 13.50
EAC 28.22 -1.62 19.12 22.23 16.77 19.73 23.62 14.92 16.23 17.69

SWEACS 29.03 -1.21 17.84 23.55 17.87 19.50 22.16 16.66 18.71 18.23
JWEACS 29.17 -1.46 18.13 23.18 16.37 19.68 23.24 15.04 16.18 17.72  

5 Conclusions 

In this paper we present the WEACS approach that explores the subsampling to in-
crease the diversity of the clustering ensembles and extends the idea of EAC, propos-
ing the weighting of multiple clusterings by internal and relative validity indices. 
Partitions in the clustering ensembles are produced by clustering subsamples of the 
data set using K-means, Clarans, SL, CL and AL algorithms. We make use of two 
different techniques to combine the clustering ensembles: using only the partitions 
generated by a single algorithm with different initializations and/or parameters val-
ues; and using partitions generated by different clustering algorithms with different 
initializations and/or parameters values. Using a voting mechanism, the partitions of 
the cluster ensembles are weighted in the SWEACS version by an internal or relative 
index to be incorporated in a w_co_assoc matrix; in the JWEACS version all internal 
and relative indices contribute to weight each partition. The combined data partition 
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is achieved by clustering the w_co_assoc matrix using the K-means, SL, CL, AL or 
WR algorithms. Experimental results with both synthetic and real data show that 
SWEACS lead in general to better best results than the EAC and Strehl methods. 
However, no individual WEACS configuration leads systematically to the best results 
in all data sets. As a complementary step to the WEACS approach we combine all the 
final data partitions obtained by the use of the ALL clustering ensemble construction 
method. We use the EAC approach to do this combination and we use the Ward Link 
algorithm to obtain the final data partition. We reach almost in all data sets the best 
results or values very close to the best results.  

These results show that the association of the subsampling and the weighting 
mechanisms with cluster combination techniques lead to good results.  
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