An Electronic Voting System Supporting Vote Weights

Charlott Eliassohand Andé Ziiqueté
1 Blekinge Institute of Technology, Karlskrona, Sweden

2 |EETA/ University of Aveiro, Portugal

Abstract. Typically each voter contributes with one vote for an election. But
there are some elections where voters can have different weights associated with
their vote. In this paper we provide a solution for allowing an arbitrary number
of weights and weight values to be used in an electronic voting system. We chose
REVS, Robust Electronic Voting System, a voting system designed to support
Internet voting processes, as the start point for studying the introduction of vote
weights. To the best of our knowledge, our modified version of REVS is the
first electronic voting system supporting vote weights. Another novelty of the
work presented in this paper is the use of sets of RSA key pairs with a common
modulus per entity, for saving both generation time and space.

1 Introduction

Electronic voting protocols should respect some basic properties of elections, namely
accuracy, democracy, privacy and verifiability [1]. One of those properties, democracy,
states thaté&ach eligible voter is allowed to vote and to vote at most 6ndéis prop-
erty is a normal requirement in most electoral processes but is far from being axiomatic.
In fact, there are some scenarios where the votes from some persons have, or should
have, a different weight than the other votes. For instance, some communities, such as
the associates of a football club, can have a weight somehow proportional to duration of
the membership; or a member from an administration board can have a different weight
for solving draw situations. Thus, voting weights are a useful, real-life form of differ-
entiating participants in voting processes. However, as of today we have no knowledge
of electronic voting systems with support for weighted votes.

This paper will focus on the support for weighted votes a particular voting system
— REVS (Robust Electronic Voting System [2]). REVS is a fault-tolerant electronic
voting system designed for voting through the Internet. It uses replication as the basic
mechanism to tolerate system failures in communications, servers and voters’ applica-
tions. Furthermore, it also tolerates failures in the correct behavior of the several entities
running the voting protocol: neither voters nor servers, until a certain level of collusion,
can interfere with the correct behavior of the system without notice.

Supporting weighted votes means that, when voting, a voter’s vote is wonbtes.
To implement this service in REVS, several requirements were considered. The basic
requirement was to minimize the modifications on the protocol of REVS, in order to

Eliasson C. and Zuquete A. (2006).

An Electronic Voting System Supporting Vote Weights.

In Proceedings of the 4th International Workshop on Security in Information Systems, pages 246-255
Copyright © SciTePress



reduce the probability of introducing new vulnerabilitiesthe final protocol. Other
more specific requirements were the following:

— Scalability: support for an arbitrarily large set of avhilaweights and support of
arbitrarily high weights;

— Efficiency: the performance of the system should not be mptdisturbed when
extensively using different weights;

— Usability: for a voter it should be equal to vote the “tragiital”” way or using a
weight attribute; and

— Anonymity: a weighted vote, or a set af votes provided by a voter with weight
w, should not provide any hint about the voter who cast it.

The final solution respects all these requirements exceptatst one, anonymity: in
some particular cases, a voter can be linked to his vote.ciniahen there is a single
voter allowed to cast a vote with a specific weight, or a sinvglier that actually used
a specific weight, the voter can be link to his vote. This peablvas not solved in the
protocol presented in this paper because we didn't find b/fe@sy solution that does
not interfere too much with any of the other requirementstifarmore, this anonymity
problem already appears in paper-based voting systemsewigers with different

weights use bulletins of different colors or cast their gdtedifferent ballot boxes, one
per each weight.

REVS uses RSA [3] keys and Chaum’s algorithm [4] for blindbynéng votes from
authorized voters. For supporting weights we extendeduthiigvior by using sets of
RSA keys for the signing process. But, for saving time andspae used sets of RSA
keys sharing the same modulus. As far as we know, this was oeee before.

Our solution for supporting weighted votes was implemeimedtie code of REVS,
which is publicly availablg REVS is fully implemented in Java, which makes its de-
ployment very easy.

This paper is structured as follows. Section 2 overviews RESection 3 presents
some approaches that were considered for adding weighted t@ REVS but aban-
doned in favor of the solution presented in Section 4. Se@&idiscusses the security of
the solution. Section 6 presents some details of its imphtation. Finally, Section 7
draws some conclusions and forecasts future work. Sinceawe ho knowledge of
other electronic voting systems supporting vote weigtiste is not one section dedi-
cated to related work.

2 Overview of REVS

REVS is a blind-signature based voting system designedefcure and robust elec-
tronic voting [2, 5, 6]. The REVS architecture, depicted igufe 1, includes a client
application, an electoral Commissioner, and a set of elatservers — Ballot Distrib-
utors, Administrators, Anonymizers and Counters. All tdeal servers can be arbitrar-
ily replicated for improving load balance, availability for preventing collusion-based
frauds. Valid votes can be cast repeatedly in several Cmjraied even in the same
Counter, without affecting the final tally.

8 http://www.gsd.inesc-id.pt/revs



Ballot Distributors Administrators Anonymizers Counters

dhu—il

. -
S Commissioner Voter's module (client application)

Fig. 1. Architecture of REVS.

REVS uses a blind-signature protocol that resulted frometr@ution of three
other protocols: FOO, EVOX and EVOX Managed Administra{@rs9]. Figure 1 also
presents REVS' protocol steps, which are the following:

1 - Ballot distribution. The Voter contacts a Ballot Distributor to get a ballot for a
given election. The Ballot Distributor returns him the reqted ballot, the election’s
public key and the election’s operational configuratiory(eservers’ keys and loca-
tions), all signed by the Commissioner. Voting bulletine 2ML documents, signed
by the Commissioner, providing a set of rules for presensind verifying the voting
options for voters.

2 - Ballot signing. After expressing his will on the ballot, the voter commitsthe
ballot with a random bit string and generates a digest of timengitted ballot. Then the
voter's module generates a random blinding factor, apfilteshe digest and sends the
result to a subset of the Administrators for signing.

An Administrator, after receiving a signing request, vesfif it had already signed
a blind digest for the requesting voter. If not, it signs tlevand saves that signature;
if it had signed before, it returns the previously saved dafter receiving the signa-
ture, the voter’s module removes the blinding factor andfiesrits correctness using
the Administrator’s public key. This process is repeatetll @anrequired number of
signatures is collected. The valuetahust be higher thaiv/2, to prevent voters from
getting more than one valid vote.

3 - Ballot Submission. The voter's module constructs the ballot submission pagkag
joining the ballot, its signatures and the bit commitmerteil he submits this package
to the Counters through the Anonymizers, encrypted withkaibycryptosystem using
a random symmetric session key and the election’s publi¢c daycluding the voting
protocol. A voter can submit the same package to any Coustaaay times as he feels
necessary to be sure that the ballot has reached his dastinat

4 - Tallying Phase. After the end of the election the Commissioner discloseslbe
tion’s private key. Then the counting process is performgdhle set of Counters and
involves the following steps: (i) decryption of submissjgackages with the election’s
private key; (ii) verification that all requiretisignatures from the Administrators are
present; (iii) removal of repeated votes, i.e., the onek tie same bit commitment;
(iv) tallying the remaining votes from all Counters.



3 Evaluation of Possible Solutions

The basic idea of this work is to give a weight to a vote (or tmger) and, at some
point in the system, multiply the vote by its weight. This da@ done in a number
of ways and many ideas of how to make the implementation haea lsonsidered.
Before describing our solution, we start by describing thermatives considered and
the reasons for discarding them when facing the requiresnent

3.1 Votes with an Embedded Weight

A possibility was to include weights in voting bulletins tibuted to voters, which

would then be copied into the votes sent to Counters. Butapjgroach requires a
strong assumption: the voters’ application must be trustgdo forge weights. Since
the voters’ application may be tampered in some scenarasely when “voting any-

where” is considered, the voters’ side cannot be trusted/tothge correct input for the
system when weights are considered.

The simple copy/paste of weights could be strengthened tiygé cleartext value
of the weight when submitting a blinded vote digest for geftta signature from an
Administrator. Then, the weight, checked and signed byhalrequired Administra-
tors, could be added to the final vote submitted to Countefisit Bommitment value
should also be added to the weight to prevent stolen, sigegghis, to be used by other
voters. The drawback of this approach is that protocol ngess&tom voters to Admin-
istrators and from voters to counters would increase in, siamely would double in
size. This collides with the requirement of keeping the greniance of system close to
the performance of the initial version of REVS.

3.2 Casting of Votes Accordingly to a Weight

Another possibility is to multiply a vote by giving the voternumber of votes to deal
with. A voter could only fill in one ballot but then the voteggplication would run the
voting protocokw times, usingw different bit commitments.

This approach has many drawbacks. In terms of performanseales badly with
the valuew: (i) The voter would have to keep different bit commitments; (ii) The
voter would have to run the protocol times; (iii) Administrators would have to keep
w signed votes for the voter; and (iv) Counters would havedeesind county different
votes for the voter.

Moreover, one of the mechanisms currently used by REVS tbvd#afault toler-
ance — the need afsignatures fromiV Administrators,N/2 < t < N — could allow
voters to get more valid votes than the ones they are entitleBor instance, with 3
Administrators and = 2, a voter withw = 2 could get 3 valid votes. We can use well
suited NV andt values for an election for tackling this specific weight boagnerabil-
ity, but at the end that would complicate the deployment efdyistem due to the use of
weights.

This approach, however, has the advantage of providingyaniboynfor voters. Fur-
thermore, it gives voters the ability of casting differemtes among the set of votes
allowed by their weight.



4 QOur Solution

The solution we chose for this work was to cast different afgres on votes for dif-
ferent weights. The Administrators are given differéftsigning keys, one for each
possible weight, and the knowledge of the weightor each voter. Furthermore, Ad-
ministrators return to a voter the weight bound to its voteH®yAdministrator’s signa-
ture.

The Counters are given differenf x W validation public keys, one for each Ad-
ministrator and possible weight. For each vote they use afs&tpublic keys, corre-
sponding to the signing keys representing the same weighénwWhbters download a
voting bulletin for a particular election they also get theeight and the public keys of
all Administrators bound to the weight or, otherwise, all ffix 17 public keys used by
Counters.

The knowledge of weights bound to keys does not provide in&tion on specific
voters; and the knowledge of a voter’s weight is official kifextge. This way, exceptin
special circumstances, privacy is ensured.

4.1 Changes in the Protocol

The changes in the protocol are minor. For each election wd tedefine the number
W of possible weights and their value. For each allowed welgdre will be an associ-
ated asymmetric key pair per Administrator. The Commissi@stablishes a mapping
between each weight and each public key of each Administ(atoeafter referred to
as thewKpub table). This table is sent to the Counters for the tally process.

The process of registering voters must be enriched to acoatata the specification
of one weight per voter. The mapping between voters and wseighst then be sent to
Administrators; they need it for choosing the correct gevieey for signing a voter’s
vote according to his weight.

In REVS, voters get the public keys of all Administrators twe woting bulletin,
for validating the signatures provided by the latter. Wherigivis are considered, for
distributing the right information to voters on voting ketih two solutions are possible:

1. Distribute a generic bulletin to all the voters, a bulietdntaining the WKpub table.
This simplifies the task of the Distributor but the size of ti&pub table may be a
problem for performance.

2. Distribute customized bulletins to voters, i.e., buistwith the public keys of Ad-
ministrators corresponding to the voters’ weights. In d@se, the Commissioner
has to producéV different, signed bulletins and the Ballot Distributors shuse
the mapping between voters and weights for giving votersigtd bulletins. This
complicates the task of Ballot Distributors but keeps theent size of bulletins.

In both cases, the voter get its weight when it gets blindatigres from Adminis-
trators. In the first case that helps him to select the propbligpkeys from the WKpub
table for validating the Administrators’ signatures. Intbcases, it allows the voting
application to present to the voter the weight that is bemgsered for his vote.

If all the voting weights got from Administrators are not theme, the voter must
complain for a configuration problem. Otherwise, it progagats weight to the ballot



submission package sent to Counters. The propagated weigbt mandatory for the
final tally, it is only for accelerating the counting processen if wrong, the vote can
still be counted, though with more computational overheadounters.

At the end of an election, the votes submitted to Countergaigated. This means
deciphering them with the election’s private key (disctbby the Commissioner) and
checking the Administrators’ signatures. A vote is validtiis correctly signed by at
leastt Administrators and all of them used their private key for shene weight. Thus,
a votes’ weight can be directly inferred from the Adminisbras signatures on it and if
the vote is valid, then it counts as many times as its weightin@ers may use the weight
in a received voting package as a hint for getting the righosAdministrators’ public
keys. But, in case of failure, Counters try other sets, apoading to other weights.

4.2 Optimizations

The number of Administrator's asymmetric key pairs growspartionally with the
numberlV of weights. This as an impact on scalability, both in the gatien of /' x NV
key pairs, required by all Administrators, and in the WKpulléaused by Counters and
possibly distributed in bulletins. However, the producted multiple RSA signing keys
has an opportunity to minimize this scalability issue. Nbiie process for creating
W RSA keys for a single entity can create the modutysnce and latter use the same
n for making all RSA keys.

The optimized generation process runs as follows. The fegtdair is calculated
with the original behavior of the RSA algorithm, wherés the moduluse is the public
exponent and is the private exponent [3]:

1. Generate two large random primgsandg, of approximately equal size such that
their productn = pq is of the required bit length, e.g. 1024 bits, and compute
n=pgandg(n) = (p—1)(¢—1).

2. Choose a (small) integerl < e < ¢(n), such thagced(e, ¢(n)) = 1 and compute
the secret exponenf 1 < d < ¢(n), suchthaed =1 (mod ¢(n)).

3. The public key ie, n) and the private key i&, n).

The otherlV — 1 key pairs with the same are the computed as follows:

1. Choose a (small) integef, e < ¢’ < ¢(n), such thaged(e’, $(n)) = 1. For pre-
venting the deduction of straightforward relationshipsaeend values,e’ should
also be coprime to all othervalues computed for the same

. Compute the secret exponefitsuch that’d’ =1 (mod ¢(n)).

3. The public key ige’, n) and the private key i&l’, n).

N

Using the same modulus for all key pairs of each Administrator has several ad-
vantages. First, we save computational time and space wdmaputing the key pairs
— only two large prime values andg need to be generated per Administrator. Second,
we save memory and bandwidth for storing and transmittieg/MKpub table.

This optimization cannot be extended to encompass all Adinators” key pairs,
because when we have sevefalalues for the same modulus all d values must be
known only by the key pair owner. Otherwise, the owner of divalue could discover
all otherd values using the common modulus attack [10, 11].



4.3 Computing Blind Signatures Using Different Key Pairs

The voter’s application only gets the voter’s weight in teplres of Administrators. But
this raises a problem, because the Chaum’s RSA-based [inatgre scheme used in
REVS requires the voter knowing in advance the key pairsAbatinistrators will use
(thus, knowing in advance the voter’s weight):

1. The voter gets a randoinand computes ! such thatc-k=! =1 (mod n).

2. The voter blinds the vote digektv) by computingk®-h(v) mod n, and sends the
result,h’(v), to the Administrator.

3. The Administrator computég (v)¢ mod n and sends the result to the voter.

4. The voter computels—t-A’(v)¢ mod n and getsh(v)¢ mod n.

As we can clearly see, in steps 1 and 2 the voter needs to kreoputhlic components
e andn of an Administrator key pair for blinding the vote digest.

We handled this problem by changing the blind signature edatjwns and not the
protocols messages. Given the fact that all key pairs of aniAidtrator have the same
modulusn, then the computations are done as follows:

1. The voter gets a randoinand computes—! such that-k~* =1 (mod n).

2. The voter blindsh(v) by computingknrv “.h(v) mod n, where: represents a
weight, e; the public key of the Administrator for that weight afild the number
of weights; the resulty’ (v), is sent to the Administrator.

3. The Administrator computées (v)%» mod n, whered,, is the private key for the
weightw of the voter, and sends the result ando the voter.

w
4. The voter computes™! -k~ I, “.h'(v)® mod n and getsh(v)* mod n, the
intended result.

When we have a single weighti{ = 1), it is easy to see that these calculations are
exactly the same that were performed in the original REV $esys

5 Security Evaluations

The security of REVS was already evaluated and discussed vwhgas proposed
(c.f. [2,5]). Therefore, here we will mainly discuss the wgty of the upgrades in-
troduced in order to support vote weights.

The introduction of weight capabilities adds three extguieements to the voting
system: (i) it is not possible for a vote weight to be alter@dljt ensures that eligible
voters use their correct weight; and (iii) neither authiesinor anyone else can use vote
weights to link any ballot to the voter who cast it.

Regarding the first requirement, a vote cannot be alterealizechat requires chang-
ing ¢ signatures, just like in the original REVS. Since the weigh¢tmbedded in the
signatures, changing a vote weight requires changingabigmatures on a vote. A set
of ¢t colluded Administrators can do it, but mainly in theory,cgrthat requires access
to all the copies of that vote stored in the Counters. Theggfibrequires a larger col-
lusion, involving allt Administrators and an undetermined, arbitrarily largecpatage
of Counters.



Regarding the second requirement, vote weights are forgegiministrators and
not arbitrarily chosen by voters. Thus, Administrators agaproper weights just like
they manage the list of eligible voters. And single Admiragirs cannot cheat, because
that would make them disagree between each other.

Regarding the third requirement, there are privacy isdadact, if a single voter is
entitled to a specific weight, or if a single voter uses a dfpawgeight, then anyone with
access to the authorization databases used by Administredo link the vote to the
voter. Nevertheless, current paper-based voting prosess@ot handle this problem
either. Unless a voter could break its weighted vote in manitaty votes, which may
be tedious or infeasible for large weights, the voter mustaudifferent bulletin or cast
the vote in a differentiated ballot box, thus raising the earivacy problem. Conclud-
ing, our solution is not worse than existing paper-basedtigols, mainly when large
weights are considered. Solving this problem and keepiagylstem scalable remains
an open issue.

Finally, we need to discuss the security implications ofisigga common modulus
by all the RSA key pairs of each Administrator. There are sémm@vn problems in
using the same modulus for different RSA key pairs [11, p&§] But in our case they
do not apply:

— The private component of the keys pairs with the same modulust be known
only by a single entity. Otherwise, an entity knowing a ptévealued could com-
pute other private valued used by other entities (all of them sharing the same
modulusn, of course) [10]. In our case, this is not a problem: each Adfstriator
chooses an and compute$V different(e,,, d,,) pairs for it. Atthe end, alle,, n)
pairs are published as the Administrator’s public keys &edXdministrator keeps
privately all thed,, values.

— The same message encrypted with two RSA public keys sharing the same mod-
ulusn can be decrypted without knowing the private keys [12]. Agai our case
this is not a problem because we do not use the RSA key pairofdidentiality,
but for signing votes. Thus, we do not encrypt with public poments, we only
encrypt with private components.

Concluding, in terms of security our solution is capable mfbecing a correct use
of vote weights but presents some privacy issues that magaapphen small sets of
voters share the same weight. Furthermore, the shared o®dptimization for the
RSA signing keys does not, as far as we can see, introduce uleerabilities in the
voting protocol. Namely, all the known shared modulus &dado not apply to our
protocol.

6 Implementation

REVS is fully implemented in Java and uses MySQL databasstte configuration
information used by REVS servers. These databases aresdddastore information
produced and/or gathered by servers, such as signaturesigutdoy Administrators
and voting submission packages sent to Counters.



In this section we briefly describe the changes required M®B order to support
our solution for handling vote weights. The changes are maince the basic protocol
was mainly left unchanged, and where all implemented.

Commissioner. At the Commissioner, new options to manage weights werechtide
the graphical interface. The number of weightss entered first and thereafter the valid
weights and the weight for each voter. The data of allowedjktsiis then to be sent
to the Administrators, which required only a minor additiorhandling the exchange
of data between Commissioner and Administrator. There svlaéo additions in the
exchange of data from the Commissioner to the Administsatiod to the Counters to
include the WKpub table.

Administrators. The information of allowed weights from the Commissioneunsgd
as a template to make the signing keys for each AdministrAtentirely new func-
tion was written for the making of optimized RSA key pairsicg no such function
was available in Java libraries. The private component ohday pair is saved in a
database table with the corresponding weilKpri table ), which was added in the
Administrators database.

When a vote arrives, the weight of the voter is checked in thersaable. The
weight is then used to check, in the WKpri table, which sigrkag to use for the given
weight and the vote is signed with it.

Ballot distributors. Two solutions where discussed for distributing informatio vot-
ers, in Section 4.1. We do not consider the WKpub table to bdarfi@ enough size to
cause any performance problems for this work, so we chosi#sheolution; to attach
the WKpub table to the bulletin and to use only one bulletindibroters participating
in an election.

The solution we chose leaves the Ballot Distributors witremy knowledge of the
voters’ weights and keeps them fast and simple. It also gesviess changes needed to
the system.

Voter's module. The voter's module was changed to deal with the WKpub tabdg, th
is now part of the bulletin. The blind signing algorithm wdscachanged to the new
one presented in Section 4.3, the weights replied by Aditnat@'s are checked (they
must be all equal) and presented to the voter in the graphitaiface. Finally, the
vote weight is propagated in the submission package senvwat€rs for accelerating
counting procedures.

Counters. In the validation of each vote was added code to check thehweigthe
vote, forwarded by the voter in the submission package, amgkt the corresponding
public keys from the WKpub table. This validation includes ttsk of the weight being
altered by the voter. The counting of valid votes only neettedminor addition of
counting the votes as many times as the weight says, insteanlyocounting them
once.

7 Conclusions and Future Work

In this paper, we evaluated different possibilities to malsipport for weighted votes
in the electronic voting system REVS and described the lmdstisn for the system.



Namely, our solution relies on using sets of signing keygp#irrepresent the different
weights allowed in an election. We also presented a perfocsanhancing solution for
making the, sometimes large, set of RSA signing key pairs fitee same modulus.

To the best of our knowledge, this is the first electronic n@tsystem supporting
votes weights. The same happens with the optimization uwettié 11 RSA key pairs
for each Administrator, we do not know of any system using it.

Considering our requirements — scalability, efficiencyghibty and anonymity —,
the first three of them were attained. Regarding anonyntigretis still a problem for
the case of a single voter with a weighted vote. This is a forefgal problem, since it
also exists in paper-based elections. We tried to find aisalt this problem without
interfering with the basic characteristics of REVS but & #nd we rejected all the
ideas of how to deal with the problem in this work. Consediyeand in the context of
REVS, our main issue for future work is to deal properly whistprivacy issue.

References

1. Cranor, L., Cytron, R.: Sensus: A security-conscious electfuoiling system for the Inter-
net. In: Proc. of the Hawaii Int. Conf. on System Sciences, Wailea diaWSA (1997)

2. Joaquim, R., dquete, A., Ferreira, P.. REVS — A Robust Electronic Voting Systerl $A
Int. Journal of WWW/Internet (2003)

3. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digigignatures and
Public-Key Cryptosystems. Comm. of the ACM (1978)

4. Chaum, D.: Blind signature system. In: Advances in Cryptology — ERY '83 Proc., New
York, USA, Plenum Press (1984) 153—-153

5. Lebre, R., Joaquim, R.lifjuete, A., Ferreira, P.: Internet Voting: Improving Resistance to
Malicious Servers. In: IADIS Int. Conf. Applied Computing 2004, Lishb®ortugal (2004)

6. Joaquim, R.: A fault tolerant voting system for the internet. Mastegsi#h IST / UTL
(2005)

7. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Schdor Large Scale
Elections. In: Advances in Cryptology — AUSCRYPT '92 Proc. (LNCS){Dueensland,
Australia, Springer-Verlag (1992)

8. Herschberg, M.: Secure Electronic Voting Using the World Wide Wedistiet's thesis, MIT
(1997)

9. DuRette, B.: Multiple Administrators for Electronic Voting. Bs.C thesis9@)9

10. Simmons, G.J.: A “weak” privacy protocol using the RSA crydgmethm. Cryptologia7
(1983) 180-182

11. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: HahkdbbApplied Cryptography.
CRC Press (2001) 5th Printing.

12. Delaurentis, J.M.: A further weakness in the common modulus@obfor the RSA cryp-
toalgorithm. Cryptologia (1984)



