
Abstract Platform and Transformations for
Model-Driven Service-Oriented Development

João Paulo A. Almeida1,2, Luís Ferreira Pires2, Marten van Sinderen2

1Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands

2Centre for Telematics and Information Technology, University of Twente,
P.O. Box 217, 7500AE, Enschede, The Netherlands

Abstract. In this paper, we discuss the use of abstract platforms and
transformation for designing applications according to the principles of the
service-oriented architecture. We illustrate our approach by discussing the use
of the service discovery pattern at a platform-independent design level. We
show how a trader service can be specified at a high-level of abstraction and
incorporated in an abstract platform for service-oriented development.
Designers can then build platform-independent models of applications by
composing application parts with this abstract platform. Application parts can
use the trader service to publish and discover service offers. We discuss how
the abstract platform can be realized into two target platforms, namely Web
Services (with UDDI) and CORBA (with the OMG trader).

1 Introduction

The Model-Driven Architecture (MDA) has been introduced as an approach to
manage system and software complexity in distributed application design. MDA
defines a set of basic concepts such as model, metamodel and transformation, and
proposes a classification of models that offer different abstractions [16]. The main
benefits of software development based on MDA – software stability, software
quality and return on investment – stem from the possibility to derive
implementations of an application in different platforms from the same platform-
independent models (PIMs), and to automate to some extent the model transformation
process.

Service-oriented computing (SOC) promises to deliver the methods and
technologies to facilitate the development and maintenance of distributed (enterprise)
applications [21]. The service-oriented paradigm is in essence characterized by the
explicit identification and description of the externally observable behaviour, or
service, of an application. Applications can then be discovered and linked, based on
the description of their externally observable behaviour [22]. According to this
paradigm, developers in principle do not need to have knowledge about the internal
functioning and the technology-dependent implementation of the applications being
linked. Often the term service-oriented architecture (SOA) is used to refer to the

Paulo A. Almeida J., Ferreira Pires L. and van Sinderen M. (2006).
Abstract Platform and Transformations for Model-Driven Service-Oriented Development.
In Proceedings of the 2nd International Workshop on Model-Driven Enterprise Information Systems, pages 49-63
DOI: 10.5220/0002501800490063
Copyright c© SciTePress

architectural principles that underlie the communication of applications through their
services [8].

We can observe from the above that service-oriented computing and model-driven
engineering share some common goals, namely they both strive to facilitate
development and maintenance of distributed enterprise applications, although they
achieve these goals in different ways. In this paper we discuss a combination of MDA
and SOA, resulting in a model-driven service-oriented development approach that can
profit from the benefits of both these developments.

In particular, this paper provides the following contributions to model-driven
service-oriented development:
1. we prescribe how services can be modelled in a platform-independent manner. For

that, we use a general-purpose behaviour modelling language called Interaction
Systems Design Language (ISDL) [13, 23] in combination with UML [19] and
OCL [18];

2. we incorporate the service discovery pattern to the platform-independent design
level. Our solution consists of modelling a trader service at a high-level of
abstraction, and including it in an abstract platform for service-oriented
development. This enables designers to build platform-independent models of an
application by composing application parts with this abstract platform. Application
parts can then use the service trader to publish and discover service offers;

3. we discuss the implementation (via transformations) of platform-independent
models into two target platforms, namely Web Services [27, 28] (with UDDI
repositories [15]) and CORBA (with the OMG trader [17]). We discuss how the
characteristics of the abstract platform are accommodated during this
transformation step.

The paper is organised as follows. Section 2 presents an overview of the different
levels of models and model transformations addressed in this paper. Section 3
presents the proposed abstract platform for service-oriented development. Section 4
discusses the implications of the abstract platform for model transformations that lead
to platform-specific realisations, and illustrates the approach with an application
example. Finally, Section 5 summarises our results and indicates topics for future
work.

2 Design Process Overview

We consider the following organization of the model-driven service-oriented
development process into different levels of models: (i) the application service
specification level, which describes the services offered by application parts to their
environment; (ii) the platform-independent application design level and (iii) the
platform-specific application design level. In this paper, we focus on the latter two
levels.

The platform-independent application design level describes services that make use
of an abstract platform [3, 5]. This abstract platform consists of an abstraction of
service infrastructure characteristics that are assumed for the platform-independent
design level. The abstract platform we discuss here supports the service discovery
pattern at a platform-independent design level, and is further referred to as SOA

50

trader abstract platform in this paper. The service discovery pattern we adopt uses a
trader, with which potential service consumers interact to find services based on
service properties [26].

The platform-specific application design level describes the realisation of the
platform-independent application design for a particular middleware platform. In
order to show the flexibility of the relation between the platform-independent
application design level and the platform-specific application design level two
different middleware platforms are used, namely, Web Services and CORBA.

Fig. 1 depicts the organisation of the design trajectory we assume in this paper,
with the three aforementioned levels of models. It reveals the composition of
application services and the two elements that form the SOA trader abstract platform
(in grey): the service trader and the underlying SOA abstract platform. In addition, it
reveals the use of two target concrete platforms, namely Web Services and CORBA.
Model transformations are depicted as arrows from a source model to a target model.

run - time
repositor y run - time
repositor y

application parts
interact through the
SOA platform

(service discovery)

SOA abstract platform
(services, service providers, service endpoints)

service trader

SOA abstract platform
(services, service providers, service endpoints)

application services

T2
platform

selection

abstract
platform

selection

T3

Web Services
(WSDL + UDDI)

CORBA
(OMG Trader)

T1

application
services

specification

platform-specific
application

design

platform-specific
application

design

application parts
interact directly

model transformations

models

platform-
independent

application design

Fig. 1. Design trajectory consisting of three levels of models.

3 The SOA Trader Abstract Platform

This section defines the elements of the SOA abstract platform. We combine the two
abstract platform definition approaches we have defined in [4]: the language-level
approach and the model-level approach. In the language-level approach, the
characteristics of an abstract platform are implied by the set of modelling constructs,
patterns and styles used to model the application. For example, using “signals” in
UML implies an abstract platform based on asynchronous messaging. In the model-
level approach, the characteristics of an abstract platform are implied by the set of
design artefacts that comprise the abstract platform. The trader service defined in this
paper is an example of such a design artefact. An application designer can build the

51

application by composing application parts with the abstract platform. In this
approach, the modelling language is used to describe: (i) the application, (ii) any
design artefacts included in the abstract platform, and (iii) the composition of the
application and these artefacts.

3.1 Overview

We first define the underlying SOA abstract platform, using a language-level
approach. The language adopted for this level is ISDL [13], which is suitable for the
definition of services and their interactions. This language has a formal semantics and
conformance rules, which allow one to assess the conformance of behaviour
refinements. The concepts in ISDL are not constrained by UML, and provide better
support for the middleware-platform-independent modelling of interactions, as argued
in [2]. We use UML class diagrams to model information attributes used in ISDL
behavioural specifications, and OCL to model constraints on these attributes. The
ISDL metamodel is defined as a MOF metamodel in [7], which facilitates its
combination with UML and OCL. Fig. 2 depicts the modelling constructs of ISDL,
UML and OCL schematically (language-level).

The SOA trader abstract platform is built on top of the underlying service-oriented
abstract platform and is defined with a model-level approach. This abstract platform
provides a trader service, which is defined in ISDL. Information attributes (e.g.,
service offers) are described with UML. The use of a trader service is a well
established pattern of service discovery in service-oriented architectures. Examples of
service traders in middleware platforms are the OMG CORBA trader [17] and the
UDDI registry [15] (a Web Services technology). Our trader service resembles the
trading function that has been defined in the scope of the Reference Model for Open
Distributed Processing (RM-ODP) [14, 11].

Fig. 2 shows schematically how the elements of the SOA trader abstract platform
are defined and incorporated in the platform-independent application design.

52

language-level (M2)

instantiation of language elements

model-level (M1)

language elements

SOA abstract platform incorporation of pre-defined artefacts

SOA trader abstract platform service trader

ISDL
concepts

…
+

UML class diagrams
 and OCL

…

…

service 2 pre-defined
artefacts from

abstract platform

platform-independent
application design

…

… service 1

Fig. 2. SOA trader abstract platform definition and usage.

3.2 SOA Abstract Platform

The SOA abstract platform supports the interaction of various (potentially distributed)
service providers through their services. The concept of abstract interaction discussed
in [2, 13] is suitable for this purpose. In ISDL, behaviours are defined in terms of
(abstract) actions and interaction contributions and constraints on them. Since services
only concern observable behaviour, at this level behaviours only contain interaction
contributions.

An abstract interaction models the successful completion of a shared activity
between the interacting parts, and establishes a result at some location and some time.
Constraints can be defined to restrict the results of information established in the
interaction, and to restrict which behaviours are allowed to interact with each other. In
general, each interacting party constrains the attributes established as result of an
interaction: a party may offer a set of values, accept a set of values, or both. These
constraints on values supply different ways of cooperation [24], namely, value
passing, value checking and value generation. Value passing occurs when an
interacting party offers a value and the other parties accept this value. Value checking
occurs when all interacting parties offer the same value. In value generation, the
interacting parties offer a range of acceptable values and the interaction happens if it
is possible to establish a value that matches all requirements. The SOA abstract
platform supports only value passing, since this is a more suitable abstraction of the
support provided by target platforms.

Fig. 3 illustrates the ISDL notation with a simple service client/provider example.
It shows an example of a structured behaviour (of name Composition), which consists
of five behaviour instantiations (of names c1, c2, c3, s1 and s2) of two behaviour
types (of names ClientBehaviour and ProviderBehaviour). An interaction contribution
is represented by a semi-circle drawn on the border of the behaviour in the context of
which it is defined.

53

ClientBehaviour

i

](loc.e1 = c) and (loc.e2 = s)[
Location loc

ServiceEndpoint s, ServiceEndpoint c

ServerBehaviour

i
]loc.e2 = e[

Location loc

ServiceEndpoint e

Composition

c1ClientBehaviour
i

]s = "s1"
c = "c1";[

c2ClientBehaviour
i

]s = "s1"
c = "c2";[

c3ClientBehaviour i

]s = "s2"
c = "c3";[

s1ServerBehaviour

i]e = "s1"[

s2ServerBehaviour

i]e = "s2"[

Fig. 3. Example of usage of SOA abstract platform (exported from Grizzle [9]).

In Fig. 3 each interaction is represented by two interaction contributions connected by
a line. We use a composite location type (Location), which consists of two
(interchangeable) service endpoints (ServiceEndpoint). A constraint of an interaction
contribution is drawn on a box attached to the interaction contribution. In this
example, the location constraints are such that servers may interact with any client.
The clients constrain location such that c1 only interacts with s1, c2 only interacts
with s1 and c3 only interacts with s2. Arrows represent enabling causality relations
between interaction contributions, and triangles represent entry points that allow
behaviours to be instantiated with some parameter values.

Fig. 4 shows the UML class diagram that defines the location attribute type
Location used at the platform-independent application design level.

Fig. 4. Location and ServiceEndpoint classes.

54

3.3 SOA Trader Platform

In order to allow for service discovery, the SOA trader abstract platform contains a
trader service, which registers a number of service offers. Fig. 5 depicts the classes
relevant to service offers.

Fig. 5. Service offers.

Service offers (instances of ServiceOffer) are represented as information attributes,
exchanged with the trader in an export interaction. Service offers include a service
endpoint (an instance of ServiceEndpoint) and a number of service properties
(instances of ServiceProperty). A service endpoint in a service offer determines how
the service represented by this service offer can be accessed. An application part that
accesses a service should refer to the service endpoint that corresponds to the desired
service. This can be done by properly constraining the location attribute.

Service properties may be either static or dynamic. Static properties have
immutable values, which are determined when a service provider exports a service
offer. Dynamic properties are evaluated dynamically when a lookup operation is
performed [26]. Each static service property consists of a name-value pair. In Fig. 5
these pairs are represented by the attributes of the subclasses of ServiceProperty. Each
dynamic service property consists of a service endpoint (instance of ServiceEndpoint)
and a service property type (value of the datatype attribute). The service endpoint
associated to a dynamic service property is used by the trader to inspect the current
value of the dynamic property. The service property type identifies the type of the
dynamic property.

A client of the trader service specifies a service query by providing a service type
(ServiceType) and an expression (ServiceQueryExpression) involving service
properties (ServiceProperty). ServiceQueryExpression includes support for basic
arithmetic and Boolean operators. The definition of ServiceQueryExpression is
omitted here due to space restrictions (we refer to [6] for details).

55

Fig. 6 depicts the behaviour definition of the trader service in ISDL. A
reqServiceQuery interaction is followed by the execution of the PropertyEvaluation
behaviour that evaluates the service query expression. Its exit_offers exit parameter
represents a sequence of offers that comply with the service query.

Fig. 6. ServiceTrader behaviour.

The rspServiceQuery interaction returns the list of endpoints for the service offers in
exit_offers. The list of current offers (offers) is updated in a recursive instantiation of
the ServiceTrader behaviour: the occurrence of export results in the inclusion of the
exported offer (export.offer) in offers and the occurrence of withdraw results in the
exclusion of the offer. In Fig. 6, a diamond represents a choice and a square
represents a disjunction of enabling relations.
Fig. 7 shows the PropertyEvaluation behaviour definition. This behaviour evaluates
the service query expression for each service offer and is specified by recursive
instantiation. A service offer is only included in exit_offers when the service query
evaluates to true for that particular offer. When the evaluation of a service query
requires the evaluation of dynamic service properties, the
DynamicPropertyEvaluation behaviour is instantiated. Since the recursively
instantiated PropertyEvaluation behaviour is directly enabled, this recursive
instantiation pattern does not force a particular order for service property evaluation:
all service properties are evaluated independently, and the results are combined with a
conjunction (a filled black square in the ISDL notation).

56

Fig. 7. PropertyEvaluation behaviour.

Fig. 8 shows the DynamicPropertyEvaluation behaviour definition. This behaviour is
also defined by recursive instantiation, using the same instantiation pattern that was
used for PropertyEvaluation. For each dynamic property, two interactions occur:
reqEvalDP and rspEvalDP. These interactions occur at the endpoint registered in the
service offer as a dynamic property evaluator.

Fig. 8. DynamicPropertyEvaluation behaviour.

The following OCL definitions have been omitted here due to space limitations:
evalQExpression and evalQExpressionStatic, which are used in PropertyEvaluation
to determine whether an offer complies with a service expression; and
exprRequiresEval, which is used select properties that must be evaluated in order to
evaluate the expression. The complete trader specification can be found in [6]. All
constraints in the specification are defined as follows: the left-hand side consists of
the name of the (location or information) attribute being constrained; and the right

57

hand side consists of a side-effect-free OCL expression. The expression determines
the value of the constrained attribute. This simplifies significantly the evaluation of
constraints in the simulation of the service behaviour.

4 Transformation Patterns

In this section, we discuss the transformation patterns related to the SOA trader
abstract platform. As an example application we consider a printer service.

4.1 From Application Service Specification to Platform-Independent
Application Design

We assume that an interaction printReq is defined at the application service
specification level, which determines that some client has requested to print some
document. In this example, the client of the printer service defines the maximum size
of the queue it is willing to accept. This is done by using a combination of a value
passing and value generation interaction (in accordance with the terminology of
Section 3.2): the document is passed to the printer service and the size of the queue is
determined possibly after consulting the queue length of many different printers,
taking into consideration the interaction constraint of the maximum queue size
imposed by the printer client. The actual size of the queue determines whether the
interaction is successful or not. The use of this kind of interaction is only allowed at
the application service specification level. Fig. 9 shows the PrinterClient and the
PrinterService at the service specification level.

At the platform-independent application design level, the original interaction
corresponds to a sequence of three (value passing) interactions: a request to the
service trader, a response from the service trader and the actual interaction.
Expressions on service properties in the query to the service trader are derived from
information attributes and their constraints at the service specification level. This
derivation requires marking of the service specification to indicate which information
attributes should be used in the service query (in this case, the attribute queueSize).
The interaction occurs at a service endpoint according to the response issued by the
service trader. Fig. 9 also shows the PrinterClient_ and the PrinterService_ at the
platform-independent application design level (the trader service is omitted because
of space limitations). The queueSizeReq and queueSizeRsp are used to evaluate the
queue size dynamic property.

58

Fig. 9. DynamicPropertyEvaluation behaviour.

The decision to implement the abstract printReq interaction as combination of a query
and the actual print request may not be formally correct according to our refinement
rules. This is because we cannot guarantee that the actual queue size at the time of the
print request at the lower abstraction level is smaller than the maximum queue size, as
prescribed in the most abstract specification. However, this implementation is an
acceptable approximation if (i) the time between the reqServiceQuery and the
printReq in behaviour PrintClient_ is negligible compared with the rate at which jobs
are submitted to the printer, and (ii) the SOA trader is capable of timely updating the
dynamic properties.

4.2 From Platform-Independent Service to Platform-Specific Service

In order to show the flexibility of the relation between the platform-independent
application design level and the platform-specific application design we describe
below a possible transformation of platform-independent application designs into two
different middleware platforms, namely, Web Services and CORBA. These platforms
differ significantly with respect to their support for service discovery.

CORBA provides a trader [17] that supplies a constraint language that allows one
to define expressions that correspond to ServiceQueryExpression attribute values. In
[6], a textual syntax for a ServiceQueryExpression has been defined such that any
ServiceQueryExpression in this form is identical to an expression in the OMG trader
constraint language. Furthermore, the OMG trader also supports dynamic service
properties. A service exporter must implement the DynamicPropEval IDL interface
[17]. This interface includes an evalDP operation, which receives as a parameter the
property name and the required return type. The evalDP operation returns the value of
the property.

59

In the case of Web Services technologies, service discovery is provided by UDDI
[15]. UDDI does not support dynamic service properties and supports no query
language, being able only to provide the values of static service properties (tModels
[15]) to its clients.

A realisation of the trader service in CORBA is rather straightforward and does not
require decomposition of the trader service. A realisation of the trader service in
UDDI is more complex due to the differences in the support provided by UDDI and
the trader service as specified in the abstract platform. We approach this by
introducing a service decomposition step prior to realisation. Fig. 10 shows the two
approaches to platform-specific realization. In the case of the CORBA realisation,
only one platform-independent application design level is used (level 1 in Fig. 10). In
the case of the Web Services/UDDI realization, both platform-independent
application design levels 1 and 2 are used.

abstract platform logic

service trader (static only)

service
decomposition

application services

service trader

(dynamic properties)

service trader with dynamic
properties, query language

platform-independent
application design (level 1)

Transformation of a level 1 design into
CORBA / OMG trader realizations does
not require a service decomposition step.

Transformation of a level 2 design into a
Web Services / UDDI realization does not
require service decomposition step.

service trader with static
properties only, restricted
queries

platform-independent
service design (level 2)

application services

Fig. 10. Realization of the SOA trader platform into two different platforms.

The abstract platform logic must bridge the gap between the trader service at the
abstract platform and the service provided by a UDDI registry. Each service offer is
registered as an entry in the UDDI registry. Given a query, the abstract platform logic
uses the UDDI registry to retrieve all entries for a particular service type, evaluates
the expressions (which may include dynamic property evaluation) and returns the list
of service offers for which expressions evaluate to true. In order to support dynamic
service properties, Web service endpoints that are used to evaluate dynamic properties
must be registered as an additional tModel, which is present only for dynamic service
properties.

60

5 Conclusions and Future Work

We have discussed how services can be modelled in a platform-independent manner,
using a combination of a general-purpose behaviour modelling language (ISDL) with
UML class diagrams and OCL constraints. The result is an abstract platform for
platform-independent application designs based on the SOA principles. We have
applied the modelling technique for the trader service, introducing the service
discovery pattern at the platform-independent level. The trader service supports
dynamic service properties and a simple constraint language for service queries.

We stress that the trader service specification in ISDL defines constraints on the
interactions of a client with the trader, without prescribing any internal details of the
trader. This is compatible with the service-oriented design principle that services only
concern observable behaviour [22]. This gives us maximum flexibility for the further
decomposition of the trader, as shown by the realisation of the service trader into a
more rudimentary trader (UDDI, featuring no constraint language and no dynamic
service properties). This realisation illustrates how target platform differences can be
accommodated in the platform-specific realisation step. Further, our specification of
the trader service is such that no particular strategy for evaluation of static or dynamic
properties is implied. This allows different strategies to be adopted at platform-
specific realisation level.

We have used ISDL to model the behavioural aspects of services for four main
reasons. Firstly, ISDL supports a broad spectrum of abstraction levels which allows
us to cover from service specification to service design seamlessly. Secondly, the
concept of abstract interaction in ISDL enables us to capture service designs in a
middleware-platform-independent manner (as shown in [2]). Thirdly, ISDL allows to
capture causality relations between interactions without constraining the internal
implementation of services. And, finally, conformance rules have been defined [23]
which can be used to verify whether service designs respect service specifications.

Most approaches to MDA and SOA in literature ignore the description of the
behaviour of individual services, specifying individual services solely based on
messages exchanged (e.g., described in WSDL or UML class diagrams [10]), or
focusing solely on the orchestration of multiple services (e.g., [12]). A consequence
of this is that properties of the composition of services cannot be derived from
specifications and specifications cannot be simulated. The modelling techniques we
have discussed in this paper addressed both aspects.

We have focused on the behavioural aspects of the SOA trader abstract platform
and we have not considered the typing system for the trader service. A natural
extension of the work reported in this paper is the support for taxonomies and service
typing rules.

We have used the Grizzle tool [9] to simulate the trader service specification.
Further work on the tool support will involve integrating this tool with support for
MOF QVT transformations [20], which will allow us to specify and execute the
transformations discussed in this paper in generic model transformation tools.
Currently some experiments with a transformation similar to that of section 4.1 have
been reported in [6] using GReAT model transformations [1].

61

Acknowledgements

This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl).
Freeband is sponsored by the Dutch government under contract BSIK 03025.

References

1. A. Agrawal, G. Karsai, A. Ledeczi, “An end-to-end domain-driven software development
framework”. In: Proc. 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’03). ACM Press (2003) 8–
15

2. Almeida, J.P.A., Dijkman, R., Ferreira Pires, L., Quartel, D., van Sinderen, M.: Abstract
Interactions and Interaction Refinement in Model-Driven Design. In: Proceedings Ninth
IEEE EDOC Conference (EDOC 2005), IEEE Computer Society Press, Sept. (2005)
273−286

3. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach to
platform-independent design based on the service concept. In: Proceedings Seventh IEEE
Int’l Conf. on Enterprise Distributed Object Computing (EDOC 2003). IEEE Computer
Society Press (2003) 112−123

4. Almeida, J.P.A., Dijkman, R., van Sinderen, M., Ferreira Pires, L.: Platform-Independent
Modelling in MDA: Supporting Abstract Platforms, in Proceedings Model-Driven
Architecture: Foundations and Applications 2004 (MDAFA 2004), Linköping University,
Linköping, Sweden, (2004) 219−233. Revised version appeared in Lecture Notes in
Computer Science, vol. 3599, Springer (2005) 174−188

5. Almeida, J.P.A. Dijkman, R. van Sinderen, M., Ferreira Pires, L.: On the Notion of
Abstract Platform in MDA Development, In: Proc. 8th IEEE Int’l Conf. on Enterprise
Distributed Object Computing (EDOC 2004), IEEE Computer Society Press, Sept. (2004)
253−263

6. Almeida, J.P.A., Iacob, M.E., Jonkers, H., Quartel, D.: Platform-Independent Modelling of
Service Infrastructure Components, Freeband A-MUSE/D1.6, TI/RS/2005/078, Telematica
Instituut, Enschede, The Netherlands (2005); https://doc.telin.nl/dscgi/ds.py/Get/File-59319

7. Dijkman, R.M.: Consistency in Multi-Viewpoint Architectural Design, Ph.D. thesis,
University of Twente, The Netherlands (2006)

8. Erl, T.: Service-oriented architecture: Concepts, technology, and design. Prentice-Hall
(2005)

9. Grizzle, http://isdl.ctit.utwente.nl/tools/grizzle
10. Grønmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven Web Services

Development. In Proceedings IEEE International Conference on e-Technology, e-
Commerce and e-Service (EEE-04), Taipei, Taiwan (2004) 42–45

11. Kutvonen, L.: Achieving Interoperability through ODP Trading Function, In: Proc. 2nd Int’l
Symposium on Autonomous Decentralized systems (ISADS 1995), IEEE Computer
Society Press, Apr. (1995) 63−69

12. Mantell, K.: From UML to BPEL, Model Driven Architecture in a Web services world,
IBM (2005) http://www-128.ibm.com/developerworks/webservices/library/ws-uml2bpel/

13. ISDL home, http://isdl.ctit.utwente.nl/
14. ITU-T / ISO: ODP Trading Function: Specification, ITU-T Recommendation X.950 | IS

13235-1 (1997)
15. OASIS: OASIS - Committees - OASIS UDDI Specifications TC; http://oasis-

open.org/committees/uddi-spec/doc/tcspecs.htm

62

16. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
17. Object Management Group: Trading Object Service Specification, V1.0, formal/00-06-27

(2000)
18. Object Management Group: Unified Modelling Language: Object Constraint Language

version 2.0, ptc/03-10-04 (2003)
19. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
20. Object Management Group: 2nd revised submission to the MOF 2.0 Q/V/T RFP, ad/05-03-

02 (2005)
21. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. In: Communications

of the ACM, Vol. 46, No. 10 (2003) 24–28
22. Quartel, D., Dijkman, R., van Sinderen, M.: Methodological support for service-oriented

design with ISDL. In: Proceedings of the 2nd International Conference on Service-Oriented
Computing (ICSOC) (2004) 1–10

23. Quartel, D.: Action relations Basic design concepts for behaviour modelling and
refinement, Ph.D. thesis, University of Twente, Enschede, The Netherlands (1998)

24. Quartel, D., Ferreira Pires, L., van Sinderen, M., Franken, H., Vissers, C.: On the role of
basic design concepts in behaviour structuring. In: Computer Networks and ISDN Systems,
Vol. 29, No. 4 (1997) 413–436

25. Quartel, D. Ferreira Pires, L., van Sinderen, M.: On Architectural Support for Behaviour
Refinement. In: Distributed Systems Design, Journal of Integrated Design and Process
Science, Vol. 6, No. 1. Society for Design and Process Science (2002)

26. Vinoski, S.: Service Discovery 101, in IEEE Internet Computing, IEEE Computer Society,
Vol. 7, No. 1 (2003) 69–71

27. World Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework, W3C
Proposed Recommendation (2003); http://www.w3.org/TR/soap12-part1

28. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1, W3C
Note (2001); http://www.w3.org/TR/wsdl

63

