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Abstract. MDE has provided several significant improvements in the develop-
ment of complex systems by focusing on more abstract issues than programming.
However, improvments are needed on the semantic side in order to reach high-
level certification such as the one currently required for critical embedded sys-
tems (which will also probably be required in the near future for Information
Systems as application of Basel Il kind of agreements). This paper presents dif-
ferent means to specify models semantics at the metamodel level. We will focus
on the definition of executable SPEM-based development process models (work-
flow related models) using an approach defined for the TOPCASED project.

1 Introduction

Model-Driven Engineering (MDE) has succeeded in establishing a new, more abstract,
approach to large scale system development. A system can be described using many
different models which are related to each other using model transformations. The key
point is to use as many different models as life-time or technology aspects in the system.
The main difference with programs is that model focus on the abstract syntax whereas
programs focus on the concrete syntax. A single model can then be represented using
different graphical or textual concrete syntaxes. For data-centred systems, the level of
abstraction thus provided led to significant improvements and seems to correspond to
an adequate semantic level. For computation-centred systems, further steps are required
in order to give a precise enough account of the dynamic aspects of the models.

This contribution gives some insights on approaches for defining metalevel model
semantics derived from the work done by the programming language community. The
evocated experiments take place in the TOPCASED project [1] whose purpose is to de-
fine and implement a MDE-centred CASE tool for critical embedded software and hard-
ware systems. The certification authorities for TOPCASED application domain (aero-
nautic, space, automotive...) require high quality system validation approaches which
are currently based on formal tools. Currently, Information Systems do not require this
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kind of certification. However, we can guess that, in the fgarre, the software devel-
oped for Basel Il level IS will also follow this level of reqeiments.

The TOPCASED toolkit aims at easing the definition of new D$modeling lan-
guages by providing metalevel technologies such as cansyettax (both textual and
graphical) editor generators, static validation and dyinarecution of models. This
contribution will describe how semantic considerationsigieed for programming lan-
guages can be integrated in the MDE approach. We will focusnanof the available
technologies for creating executable models; the othes ik be reported in forth-
coming publications.

As an example, we apply our proposal for the modeling of a semplified process
description language (PDL). This PDL provides the concéptrocessesRroces$
composed of activityActivity) sequences representing the various tasks which must be
realized during the development. These activities may baected using a relation of
precedenceRrecedeswhich makes it possible to indicate a partial ordeart-to-start
finish-to-startandfinish-to-finish(PrecedenceKind This kind of example is very close
to the workflow-based modeling of IS.

2 Syntax in Metamodeling

2.1 Abstract Syntax Definition

The abstract syntax of a modeling language is the strucaxaiession of its con-
cepts and the relations which bind them. Metamodeling lagga such as the OMG
standard MOF (Meta Object Facility) [2], provide sets ofreémtary entities and re-
lations in which terms we can describe our own metamodel.adiays, the definition
of this syntax is well mastered and supported by many metafimgdenvironments
(Eclipse/Ecore [3], GME/MetaGME [4], AMMA/KM3 [5] and XMRvosaic/Xcore
[6]).

To describe the abstract syntax of our SimplePDL, we use tueeEeditor from
the TOPCASED project. It is a graphical editor that allows tfescription of the ab-
stract syntax. For SimplePDL, we draw the metamodel of figurierocess Activity
andPrecedesre instances of the EClass metaclass of Ecore. Their ¢hesdics, such
as, e.g.name are described as EAttribute and their relationships afieettas ERef-
erence. This metamodel will be used as a basis for the vaewxperiments. First of
all, we would like to have a concrete syntax to be able to defindels conforming to
SimplePDL.

2.2 Concrete Syntax Design

Concrete syntax provides a formalism, graphical or textioahandle concepts of the
abstract syntax and thus to describe “instances” of theatistyntax. The definition
of ad hoc concrete syntaxes is well mastered, indeed magcscexist for this pur-

pose which are mainly built upon EMF (Eclipse Modeling Framik) : GMF, Merlin

3 Generic Modeling Frameworkt t p: / / ww. ecl i pse. org/ gnf/tutorial /
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Fig. 1. The Ecore metamodel of our Simple PDL.
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Fig. 2. Configurator model.

Generatdt, GEMS, TIGER [7], etc. The current challenge aims at being ablesteg-
ate automatically a concrete syntax from an already defihsttact syntax [4, 6]. This
generative approach, in addition to its generic qualitiesyld allow to standardize the
construction of concrete syntaxes.

The TOPCASED environment offers a tool called “graphicatladyenerator” that
allows to define a graphical concrete syntax and the assdc&ditor for an Ecore
model. The generation process takes place after the gemerdtthe textual syntax
(XML) provided by EMF [3]. It is based on the definition of theins of the graphical
formalism (concrete syntax) and its mapping to the basedsmmdel (abstract syntax).
These two things are described in tbenfiguration mode(configurato) that offers
strong possibilities for the personalization of this catersyntax.

For SimplePDL, we first defined the model of our concrete syfitgure 2).Activity
andGuidanceare defined ablode(boxes).Precedess defined as aikdge a connec-
tion between two node®rocesss represented asRiagram which is a package that
will contain the other items. The concrete syntax may neelitiadal items that do not
correspond to any abstract concept. For example, we neattt@@idancelinkas an
Edgeto connect &uidanceto the descridedctivity. GuidanceLinkdo not correspond
to any concept of SimplePDL but is required to link a guidatecan activity (ERef-
erence nameduidanceon the base metamodel, figure 1). Please note that concepts of
abstract syntax (figure 1) and concepts of concrete syngxréfi2) are different con-

“http://sourceforge. net/projects/merlingenerator/
® Generic Eclipse Modeling Systeft t p: / / sour cef or ge. net / pr oj ect s/ gens/
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Fig. 3. Extensions of the SimplePDL abstract syntax.
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Fig. 4. Generated editor to provide a graphical concrete syntax to SimplePDL.

cepts that have to be mapped to each other. We used the saraeuham the mapping

was obvious.

To be able to use the TOPCASED editor generator, we had toeéxter abstract
syntax (fig. 1) to add two containment references, one betRescessand Guidance
and the other betwedprocessandPrecedegfig. 3a). This is required to be able to put

ik Value
+* Guidance MyGuidance
=A2
4+ Precedes pk_finish_finish
4 Precedes pk_start_start

the corresponding graphical iten#ativity andGuidance in the Procesgpackage.

Figure 4 shows the generated editor. All the concepts of thégurator model are
available using the palette. Clicking on a palette item athdireg it on the diagram,
creates a graphical feature (node, edge) and instantieetresponding SimplePDL

metaclass according to the configurator model.



3 Semantics in Metamodeling

In the scope of MDE there are currently a lot of languages aotrtiques to define
the abstract and concrete syntax of a modeling languageettawthese techniques do
not take into account the description of the precise meaoirige concepts provided
by a modeling language. Consequently, the semantics of taaguages has to be de-
fined by the use of additional techniques allowing to enrigirtabstract syntax. These
problems have previously been handled by the programmimguige community. It is
not surprising that the same approaches can also be usedNeoan separate model-
ing language semantics into three categories (as definggtdgramming languages):
axiomatic, operational and denotational (left for furtiesrk). Each of them can be
applied at different levels.

3.1 Axiomatic Semantics

The axiomatic semantics is based on mathematic logic aodsto define correctness
for the use of programming language constructions. Theciplim is to define axioms
and deduction rules to express the meaning of such consimaciccording to invari-
ants, pre and post-conditions. Thus it gives the preciseasgos of every program
written in this language along with a correctness proof sehdn a model-driven ap-
proach, we restrict this semantics to models static arglyghich allow us to check
the correctness of models structure. This vision of axiteregmantics can be added
by means of Well-Formed-Rules (WFR), which are expressedemtetamodel and
have to be respected by the models. The OMG recommends thef @EL (Object
Constraint Language) [8] for the expression of WFR on metaisod he metamodel
WFR can be seen as a mean to reduce the number of valid modats. drre can use
OCL checkers (e.g., Use [9]) to verify the correctness of @ehin accordance with
each of the WFR expressed on its metamodel.

One can also check whether a model satisfy its WFR or not by snefaa declara-
tive transformation language such as ATL (Atlas TransfdiomaLanguage) [10]. The
idea is to define transformation rules that match errors angéigte a diagnostic model
containing much more details than the Boolean return vafiendOCL checker. The
details concerning the errors depend on the diagnosticueetal. This technique has
been proposed by the ATLAS team and carried out thanks to ATl [ATL transfor-
mation rules are defined to detect the negation of a WFR andateribe corresponding
diagnostic model (fig. 5).

In the scope of our language (SimplePDL), several consgrdiave to be defined
to guarantee the consistency of the models which conforrhéarietamodel. As an
example we proposed the following rules :

“ An activity must not precede itself " :

context Precedes inv :
sel f.before <> self.after

“ A process must not contain two activities with the same name

context Process inv :
self.activities->forAll(al, a2 : Activity |
al <> a2 inplies al.name <> a2.nane)
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Context Precedes inv :
self .before <> self.after

rule NoReflexivity {
from
p : PDL!Precedes (
not p.before <> p.after )
to
o : Problem!Problem (
location <- p.location,
severity <- Severity::error, metamodel
description <- 'The activity ' + p.before.name
+ ' can’t precede itself.' ) .
} severity,
description, location.

source
metamogdel

error

static analysis

negation

)

| ansformation rules .
1 1

« confo:rmTo »

e

source

model 4

« confo:rmTo »

error
model
e

Fig. 5. Checking model with ATL.

3.2 Operational Semantics

The operational semantics allows to precisely describedtimamic behavior of the
constructions of a language. In MDE, it aims to express theWieral semantics of
a metamodel and thus build executable conforming modelsthpurpose, two ap-
proaches are available. First of all, the one which is closéne operational semantics
in programming languages consists in the definition of fiansations between two ex-
ecution states of a model. The whole set of transformatiwrigen in conformance to
the metamodel, defines the behavior of models. The secondamsésts of describing
the behavior of each concept of the metamodel in an imperatay using metapro-
gramming languages such as Kermeta [12], xOCL [6] or an addoguage such as
AS-MOF [13].

Our first experimentation is related to Kermeta which is defias an executable
metamodeling language, or as an object oriented metapnogireg language, i.e., it
allows to describe metamodels whose models are executéblmeta relies on the
Ecore metamodeling language, it has been defined as a "vggdgtween a behavioral
model and the Ecore metadata model [12]. The Kermeta me&inemdomposed of
two packages. The first one calledre corresponds to Ecore. The second one called
behavioris built as a metaclass hierarchy representing the expressiat constitute
the body of theoperationfeatures defined in theore package. Thus, Kermeta allows
to specify the structure of a metamodel as well as its behavio

Kermeta is integrated as a plug-in to the Eclipse IDE, andaviples a genera-
tion tool Ecore2Kermetavhich has allowed us to translate our SimplePDL metamodel
(fig. 1) to a Kermeta version. This version of our metamodsl lbeen used as a basis
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for the programming of the SimplePDL models behavior. Ireotd code this behavior,
we have had to define precisely what is the execution of a SiRipL model.

A Processs composed oActivities which goes through different states during the
enactment of th®rocessnot started, in progress and completed. In order to reptese
those states we have added fitegressattribute to theActivity Eclass Thus, its pro-
gression rate value corresponds to its three possiblesstate not started ; [0..99]: in
progress and 100: complete.Pxocesshave been executed when all the contained ac-
tivities are completed. The behavior of our SimpleP@bcessconsists of authorizing
users to set the values of activities progression rate rdgptoprecedeselation, until
they are all finished. The handling of the progression ratktleprecededink for each
Activity implies the extension of our metamodel (fig. 1) in order to Huxlnecessary
operations (fig. 3b). Thus, the execution of SimplePDL psses was implemented in
Kermeta as a loop proposing to the user the following chaices

— Stop the process executidQuit the loop.

— Start an enactable activityDne selects the activity which can be started. An activity
can start if thestartableoperation return3rue, i.e., if it is an initial one, or if its
preceding activities and tHerecededink which bind them to it allows to.

operation startable() : Boolean is do
var start_ok : kermeta::standard:: Bool ean
var previousActivities : seq Activity [0..*]
var prevPrecedes : seq Precedes [O.. ]

if progress==-1 then
/] Cetting the activities which have to be started

prevPrecedes := previous.select{p | p.kind ==
PrecedenceKi nd. pk_start_start }

previ ousActivities : = prevPrecedes.collect{p | p.before}
start_ok := previousActivities.forAll{a | a.progress >= 0}
/] Cetting the activities which have to be finished
prevPrecedes : = previous.select{p | p.kind ==

PrecedenceKi nd. pk_finish_start }
previ ousActivities : = prevPrecedes.collect{p | p.before}
start_ok := start_ok and

(previousActivities.forAll {a | a.progress==100})
result := start_ok or (previous.size() == 0)
el se

result := false

end
end

The user chooses the activity he wants to start, thepritgressis set to 0.

operation start() : Void is do
progress := 0
end

— Make the progression rate of a started activity evol@e selects the activities
whose progression rate can evolve. Then, the user choases¢hwhose progres-
sion he wants to increase and gives the progression pegeetitat will be added
to the current rate (operati@etProgression

— Finish an activity: One selects all the activities that can be stopped, i.esetho
whosefinishableoperation returrue finishableevaluate whether an activity can
be stopped or not according to the precedences rules to \tligcbubjected (rela-
tion Precede}
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operation finishable() : Boolean is do
var finish_ok : kerneta::standard:: Bool ean
var previousActivities : seq Activity [0..*]
var prevPrecedes : seq Precedes [O..*]
/1 Activities nust be started
if progress < 100 and progress >= 0 then
/] Testing previous activities
prevPrecedes : =
previous.select{p | p.kind == PrecedenceKi nd. pk_finish_finish }
previ ousActivities := prevPrecedes.collect{p | p.before}
finish_ok := previousActivities.forAll{a | a.progress==100}
result := (finish_ok or previous.size()==0)
el se
result := fal se
end
end

Then the user selects the one he wants to be finished.

operation conplete() : Void is do
progress := 100
end
This loop and the choices proposals are implemented in tdg bbtherun() op-
eration of theProcessmetaclass. This execution model describes the behavidlt of a
the models which conform to our Kermeta metamodel (SimpléPDrepresents the
operational semantics of our Process Description Language

4 Related Work

The definition of a rigorous semantics for modeling langsgageurrently a crucial is-
sue in the "Model-Driven” world. We can note two works thahbeith this particularly
important problem.

The ISIS laboratory from the Vanderbilt University has beevolved in model
engineering for many years. They promote the principles € ¥Model-Integrated
Computing), which places models as center piece for thgiated software develop-
ment. They are developing the GME tool [4], which allows tectébe DSL for multi-
aspect and hierarchical models. In this scope they faceatme groblem concerning
the definition of precise semantics. They recently propasédnchor” the semantics
of a particular DSL into a well-defined and formal semantiasdei [14]: the ASM
(Abstract State Machine) [15] using their transformatioadeling language GReAT
(Graph Rewriting And Transformation language) [16].

Xactiunf is a company founded in 2003 whose objective is to providetjua so-
lutions for the development of large software system basedadel-driven principles.
They developed the XMF-Mosaic tool [6], which allows to defldSL, to simulate and
validate models thanks to an extension of the OCL langualiedceOCL (eXecutable
OCL). It provides means to transform models and to define inggpetween them and
other features for handling models.

These works are very close to the objectives of the TOPCAS®BManment, i.e.,
proposing an adaptive modeling environment based on agreeapproach (as GME,
XMF), offering means of simulation, validation of modelste definition of rigorous
semantics.

®http://ww. xacti um com
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5 Conclusion and Future Work

This paper advocates the need for more semantic consmeratiMDE. We then
present several approaches for the integration of thesgspahich are derived from
previous work from the programming languages communityfatas on the definition
of executable models for a very small subset of the SPEM dpueént process mod-
eling language. This work was based on the use of the Kerroetavhich weaves the
model semantics with the metamodel. Further work will deteg other approaches in
order to gather engineering knowledge around the semarig.NFor instance, we are
studying the possibility to define denotational semantitge programming languages
scope, this semantics describes instructions as mattehalkijects (i.e., function, in-
teger, tuples, truth value etc.). The main idea of denatatisemantics is to associate
each phrase of the language with the appropriate matheahabifect and thus, to map
syntactic domain to a well-defined semantic domain. Mathig@aobjects are called
the denotationof syntactic phrases, which are themselves saidetaoteobjects. We
can say that this denotation is a kind of translation to théheraatics world.

We are foreseeing a similar approach to provide a rigorotisitien of DSL se-
mantics. The idea is to target a well-known and well-defirmthfl language instead
of mathematical objects. The challenge is to define transdtion from DSL to another
language owned by a different technological space and #malrigorous semantics.
This is often called translational semantics [6]. Thosdtetogical bridges allow to
profit from simulation, checking and execution tools pr@ddy the targeted techno-
logical spaces. We are considering to us ATL to define transitions from our DSL
to semantics models such as Petri nets, timed automatansitioa systems.

We are also expecting to use model transformations to desiivriting rules over
models. Thus, we will be able to express operational secgittia closer way to for-
mer Structural Operational Semantics defined for progrargrianguages by Plotkin
[17]. The main profit of this method is that semantics of a leage is expressed in
its own terms, i.e., there is no need of additional concexte@ those related to the
transformation language.

This work puts forward the fact that many different metanisdeed to be defined
in order to manage the various aspects of a system. All thestels are differents
but related. These relations must be managed in order t@eethe amount of work
required for the definition of their semantics.
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