
Towards Rigorous Metamodeling

Benôıt Combemale1, Sylvain Rougemaille1, Xavier Cŕegut1, Fréd́eric Migeon1,
Marc Pantel1, Christine Maurel1 and Bernard Coulette2

1 FéRIA-IRIT-LYRE
118, route de Narbonne

F-31062 Toulouse Cedex 9

2 GRIMM ISYCOM
5, allée Antonio Machado
F-31058 Toulouse Cedex 9

Abstract. MDE has provided several significant improvements in the develop-
ment of complex systems by focusing on more abstract issues than programming.
However, improvments are needed on the semantic side in order to reach high-
level certification such as the one currently required for critical embedded sys-
tems (which will also probably be required in the near future for Information
Systems as application of Basel II kind of agreements). This paper presents dif-
ferent means to specify models semantics at the metamodel level. We will focus
on the definition of executable SPEM-based development process models (work-
flow related models) using an approach defined for the TOPCASED project.

1 Introduction

Model-Driven Engineering (MDE) has succeeded in establishing a new, more abstract,
approach to large scale system development. A system can be described using many
different models which are related to each other using model transformations. The key
point is to use as many different models as life-time or technology aspects in the system.
The main difference with programs is that model focus on the abstract syntax whereas
programs focus on the concrete syntax. A single model can then be represented using
different graphical or textual concrete syntaxes. For data-centred systems, the level of
abstraction thus provided led to significant improvements and seems to correspond to
an adequate semantic level. For computation-centred systems, further steps are required
in order to give a precise enough account of the dynamic aspects of the models.

This contribution gives some insights on approaches for defining metalevel model
semantics derived from the work done by the programming language community. The
evocated experiments take place in the TOPCASED project [1] whose purpose is to de-
fine and implement a MDE-centred CASE tool for critical embedded software and hard-
ware systems. The certification authorities for TOPCASED application domain (aero-
nautic, space, automotive...) require high quality system validation approaches which
are currently based on formal tools. Currently, Information Systems do not require this

Combemale B., Rougemaille S., Crégut X., Migeon F., Pantel M., Maurel C. and Coulette B. (2006).
Towards Rigorous Metamodeling.
In Proceedings of the 2nd International Workshop on Model-Driven Enterprise Information Systems, pages 5-14
DOI: 10.5220/0002501500050014
Copyright c© SciTePress



kind of certification. However, we can guess that, in the nearfuture, the software devel-
oped for Basel II level IS will also follow this level of requirements.

The TOPCASED toolkit aims at easing the definition of new DSL or modeling lan-
guages by providing metalevel technologies such as concrete syntax (both textual and
graphical) editor generators, static validation and dynamic execution of models. This
contribution will describe how semantic considerations designed for programming lan-
guages can be integrated in the MDE approach. We will focus onone of the available
technologies for creating executable models; the other ones will be reported in forth-
coming publications.

As an example, we apply our proposal for the modeling of a verysimplified process
description language (PDL). This PDL provides the concept of processes (Process)
composed of activity (Activity) sequences representing the various tasks which must be
realized during the development. These activities may be connected using a relation of
precedence (Precedes) which makes it possible to indicate a partial orderstart-to-start,
finish-to-startandfinish-to-finish(PrecedenceKind). This kind of example is very close
to the workflow-based modeling of IS.

2 Syntax in Metamodeling

2.1 Abstract Syntax Definition

The abstract syntax of a modeling language is the structuralexpression of its con-
cepts and the relations which bind them. Metamodeling languages such as the OMG
standard MOF (Meta Object Facility) [2], provide sets of elementary entities and re-
lations in which terms we can describe our own metamodel. Nowadays, the definition
of this syntax is well mastered and supported by many metamodeling environments
(Eclipse/Ecore [3], GME/MetaGME [4], AMMA/KM3 [5] and XMF-Mosaic/Xcore
[6]).

To describe the abstract syntax of our SimplePDL, we use the Ecore editor from
the TOPCASED project. It is a graphical editor that allows the description of the ab-
stract syntax. For SimplePDL, we draw the metamodel of figure1. Process, Activity
andPrecedesare instances of the EClass metaclass of Ecore. Their characteristics, such
as, e.g.,name, are described as EAttribute and their relationships are defined as ERef-
erence. This metamodel will be used as a basis for the variousexperiments. First of
all, we would like to have a concrete syntax to be able to definemodels conforming to
SimplePDL.

2.2 Concrete Syntax Design

Concrete syntax provides a formalism, graphical or textual, to handle concepts of the
abstract syntax and thus to describe “instances” of the abstract syntax. The definition
of ad hoc concrete syntaxes is well mastered, indeed many projects exist for this pur-
pose which are mainly built upon EMF (Eclipse Modeling Framework) : GMF3, Merlin

3 Generic Modeling Framework,http://www.eclipse.org/gmf/tutorial/

6



Fig. 1. The Ecore metamodel of our Simple PDL.

<<Diagram>>

Process

<<Node>>

Activity
<<Node>>

Guidance
<<Edge>>

GuidanceLink
<<Edge>>

Precedes
target

source

Fig. 2. Configurator model.

Generator4, GEMS5, TIGER [7], etc. The current challenge aims at being able to gener-
ate automatically a concrete syntax from an already defined abstract syntax [4, 6]. This
generative approach, in addition to its generic qualities,would allow to standardize the
construction of concrete syntaxes.

The TOPCASED environment offers a tool called “graphical editor generator” that
allows to define a graphical concrete syntax and the associated editor for an Ecore
model. The generation process takes place after the generation of the textual syntax
(XML) provided by EMF [3]. It is based on the definition of the items of the graphical
formalism (concrete syntax) and its mapping to the base Ecore model (abstract syntax).
These two things are described in theconfiguration model(configurator) that offers
strong possibilities for the personalization of this concrete syntax.

For SimplePDL, we first defined the model of our concrete syntax (figure 2).Activity
andGuidanceare defined asNode(boxes).Precedesis defined as anEdge, a connec-
tion between two nodes.Processis represented as aDiagram, which is a package that
will contain the other items. The concrete syntax may need additional items that do not
correspond to any abstract concept. For example, we need to add GuidanceLinkas an
Edgeto connect aGuidanceto the descridedActivity. GuidanceLinkdo not correspond
to any concept of SimplePDL but is required to link a guidanceto an activity (ERef-
erence namedguidanceon the base metamodel, figure 1). Please note that concepts of
abstract syntax (figure 1) and concepts of concrete syntax (figure 2) are different con-

4 http://sourceforge.net/projects/merlingenerator/
5 Generic Eclipse Modeling System,http://sourceforge.net/projects/gems/

7



(a) Concrete syntax (b) Operational semantics

Fig. 3. Extensions of the SimplePDL abstract syntax.

Fig. 4. Generated editor to provide a graphical concrete syntax to SimplePDL.

cepts that have to be mapped to each other. We used the same name when the mapping
was obvious.

To be able to use the TOPCASED editor generator, we had to extend our abstract
syntax (fig. 1) to add two containment references, one between ProcessandGuidance,
and the other betweenProcessandPrecedes(fig. 3a). This is required to be able to put
the corresponding graphical items (ActivityandGuidance) in theProcesspackage.

Figure 4 shows the generated editor. All the concepts of the configurator model are
available using the palette. Clicking on a palette item and adding it on the diagram,
creates a graphical feature (node, edge) and instantiates the corresponding SimplePDL
metaclass according to the configurator model.

8



3 Semantics in Metamodeling

In the scope of MDE there are currently a lot of languages and techniques to define
the abstract and concrete syntax of a modeling language. However, these techniques do
not take into account the description of the precise meaningof the concepts provided
by a modeling language. Consequently, the semantics of these languages has to be de-
fined by the use of additional techniques allowing to enrich their abstract syntax. These
problems have previously been handled by the programming language community. It is
not surprising that the same approaches can also be used here. We can separate model-
ing language semantics into three categories (as defined forprogramming languages):
axiomatic, operational and denotational (left for furtherwork). Each of them can be
applied at different levels.

3.1 Axiomatic Semantics

The axiomatic semantics is based on mathematic logic and allows to define correctness
for the use of programming language constructions. The principle is to define axioms
and deduction rules to express the meaning of such constructions according to invari-
ants, pre and post-conditions. Thus it gives the precise semantics of every program
written in this language along with a correctness proof scheme. In a model-driven ap-
proach, we restrict this semantics to models static analysis, which allow us to check
the correctness of models structure. This vision of axiomatic semantics can be added
by means of Well-Formed-Rules (WFR), which are expressed on the metamodel and
have to be respected by the models. The OMG recommends the useof OCL (Object
Constraint Language) [8] for the expression of WFR on metamodels. The metamodel
WFR can be seen as a mean to reduce the number of valid models. Thus, one can use
OCL checkers (e.g., Use [9]) to verify the correctness of a model in accordance with
each of the WFR expressed on its metamodel.

One can also check whether a model satisfy its WFR or not by means of a declara-
tive transformation language such as ATL (Atlas Transformation Language) [10]. The
idea is to define transformation rules that match errors and generate a diagnostic model
containing much more details than the Boolean return value of an OCL checker. The
details concerning the errors depend on the diagnostic metamodel. This technique has
been proposed by the ATLAS team and carried out thanks to ATL [11]. ATL transfor-
mation rules are defined to detect the negation of a WFR and generate the corresponding
diagnostic model (fig. 5).

In the scope of our language (SimplePDL), several constraints have to be defined
to guarantee the consistency of the models which conform to the metamodel. As an
example we proposed the following rules :

“ An activity must not precede itself ” :
context Precedes inv :

self.before <> self.after

“ A process must not contain two activities with the same name” :
context Process inv :

self.activities->forAll(a1, a2 : Activity |
a1 <> a2 implies a1.name <> a2.name)

9



Fig. 5. Checking model with ATL.

3.2 Operational Semantics

The operational semantics allows to precisely describe thedynamic behavior of the
constructions of a language. In MDE, it aims to express the behavioral semantics of
a metamodel and thus build executable conforming models. For this purpose, two ap-
proaches are available. First of all, the one which is closerto the operational semantics
in programming languages consists in the definition of transformations between two ex-
ecution states of a model. The whole set of transformations,written in conformance to
the metamodel, defines the behavior of models. The second oneconsists of describing
the behavior of each concept of the metamodel in an imperative way using metapro-
gramming languages such as Kermeta [12], xOCL [6] or an action language such as
AS-MOF [13].

Our first experimentation is related to Kermeta which is defined as an executable
metamodeling language, or as an object oriented metaprogramming language, i.e., it
allows to describe metamodels whose models are executable.Kermeta relies on the
Ecore metamodeling language, it has been defined as a ”weaving” between a behavioral
model and the Ecore metadata model [12]. The Kermeta metamodel is composed of
two packages. The first one calledcore corresponds to Ecore. The second one called
behavioris built as a metaclass hierarchy representing the expressions that constitute
the body of theoperationfeatures defined in thecorepackage. Thus, Kermeta allows
to specify the structure of a metamodel as well as its behavior.

Kermeta is integrated as a plug-in to the Eclipse IDE, and it provides a genera-
tion tool Ecore2Kermetawhich has allowed us to translate our SimplePDL metamodel
(fig. 1) to a Kermeta version. This version of our metamodel has been used as a basis

10



for the programming of the SimplePDL models behavior. In order to code this behavior,
we have had to define precisely what is the execution of a SimplePDL model.

A Processis composed ofActivities, which goes through different states during the
enactment of theProcess: not started, in progress and completed. In order to represent
those states we have added theprogressattribute to theActivity Eclass. Thus, its pro-
gression rate value corresponds to its three possible states : -1: not started ; [0..99]: in
progress and 100: complete. AProcesshave been executed when all the contained ac-
tivities are completed. The behavior of our SimplePDLprocessconsists of authorizing
users to set the values of activities progression rate, according toprecedesrelation, until
they are all finished. The handling of the progression rate and theprecedeslink for each
Activity implies the extension of our metamodel (fig. 1) in order to addthe necessary
operations (fig. 3b). Thus, the execution of SimplePDL processes was implemented in
Kermeta as a loop proposing to the user the following choices:

– Stop the process execution:Quit the loop.

– Start an enactable activity:One selects the activity which can be started. An activity
can start if thestartableoperation returnsTrue, i.e., if it is an initial one, or if its
preceding activities and thePrecedeslink which bind them to it allows to.

operation startable() : Boolean is do
var start_ok : kermeta::standard::Boolean
var previousActivities : seq Activity [0..*]
var prevPrecedes : seq Precedes [0..*]

if progress==-1 then
// Getting the activities which have to be started
prevPrecedes := previous.select{p | p.kind ==

PrecedenceKind.pk_start_start }
previousActivities := prevPrecedes.collect{p | p.before}
start_ok := previousActivities.forAll{a | a.progress >= 0}
// Getting the activities which have to be finished
prevPrecedes := previous.select{p | p.kind ==

PrecedenceKind.pk_finish_start }
previousActivities := prevPrecedes.collect{p | p.before}
start_ok := start_ok and

(previousActivities.forAll{a | a.progress==100})
result := start_ok or (previous.size() == 0)

else
result := false

end
end

The user chooses the activity he wants to start, then itsprogressis set to 0.

operation start() : Void is do
progress := 0

end

– Make the progression rate of a started activity evolve:One selects the activities
whose progression rate can evolve. Then, the user chooses the one whose progres-
sion he wants to increase and gives the progression percentage that will be added
to the current rate (operationsetProgression).

– Finish an activity:One selects all the activities that can be stopped, i.e., those
whosefinishableoperation returnTrue. finishableevaluate whether an activity can
be stopped or not according to the precedences rules to whichit is subjected (rela-
tion Precedes).

11



operation finishable() : Boolean is do
var finish_ok : kermeta::standard::Boolean
var previousActivities : seq Activity [0..*]
var prevPrecedes : seq Precedes [0..*]
// Activities must be started
if progress < 100 and progress >= 0 then

// Testing previous activities
prevPrecedes :=

previous.select{p | p.kind == PrecedenceKind.pk_finish_finish }
previousActivities := prevPrecedes.collect{p | p.before}
finish_ok := previousActivities.forAll{a | a.progress==100}
result := (finish_ok or previous.size()==0)

else
result := false

end
end

Then the user selects the one he wants to be finished.
operation complete() : Void is do

progress := 100
end

This loop and the choices proposals are implemented in the body of therun() op-
eration of theProcessmetaclass. This execution model describes the behavior of all
the models which conform to our Kermeta metamodel (SimplePDL); it represents the
operational semantics of our Process Description Language.

4 Related Work

The definition of a rigorous semantics for modeling languages is currently a crucial is-
sue in the ”Model-Driven” world. We can note two works that deal with this particularly
important problem.

The ISIS laboratory from the Vanderbilt University has beeninvolved in model
engineering for many years. They promote the principles of MIC (Model-Integrated
Computing), which places models as center piece for the integrated software develop-
ment. They are developing the GME tool [4], which allows to describe DSL for multi-
aspect and hierarchical models. In this scope they face the same problem concerning
the definition of precise semantics. They recently proposedto ”anchor” the semantics
of a particular DSL into a well-defined and formal semantics model [14]: the ASM
(Abstract State Machine) [15] using their transformation modeling language GReAT
(Graph Rewriting And Transformation language) [16].

Xactium6 is a company founded in 2003 whose objective is to provide practical so-
lutions for the development of large software system based on model-driven principles.
They developed the XMF-Mosaic tool [6], which allows to define DSL, to simulate and
validate models thanks to an extension of the OCL language called xOCL (eXecutable
OCL). It provides means to transform models and to define mapping between them and
other features for handling models.

These works are very close to the objectives of the TOPCASED environment, i.e.,
proposing an adaptive modeling environment based on a generative approach (as GME,
XMF), offering means of simulation, validation of models bythe definition of rigorous
semantics.

6 http://www.xactium.com

12



5 Conclusion and Future Work

This paper advocates the need for more semantic consideration in MDE. We then
present several approaches for the integration of these points which are derived from
previous work from the programming languages community. Wefocus on the definition
of executable models for a very small subset of the SPEM development process mod-
eling language. This work was based on the use of the Kermeta tool which weaves the
model semantics with the metamodel. Further work will detail the other approaches in
order to gather engineering knowledge around the semantic MDE. For instance, we are
studying the possibility to define denotational semantics.In the programming languages
scope, this semantics describes instructions as mathematical objects (i.e., function, in-
teger, tuples, truth value etc.). The main idea of denotational semantics is to associate
each phrase of the language with the appropriate mathematical object and thus, to map
syntactic domain to a well-defined semantic domain. Mathematical objects are called
the denotationof syntactic phrases, which are themselves said todenoteobjects. We
can say that this denotation is a kind of translation to the mathematics world.

We are foreseeing a similar approach to provide a rigorous definition of DSL se-
mantics. The idea is to target a well-known and well-defined formal language instead
of mathematical objects. The challenge is to define transformation from DSL to another
language owned by a different technological space and that has a rigorous semantics.
This is often called translational semantics [6]. Those technological bridges allow to
profit from simulation, checking and execution tools provided by the targeted techno-
logical spaces. We are considering to us ATL to define transformations from our DSL
to semantics models such as Petri nets, timed automata or transition systems.

We are also expecting to use model transformations to describe rewriting rules over
models. Thus, we will be able to express operational semantics in a closer way to for-
mer Structural Operational Semantics defined for programming languages by Plotkin
[17]. The main profit of this method is that semantics of a language is expressed in
its own terms, i.e., there is no need of additional concepts except those related to the
transformation language.

This work puts forward the fact that many different metamodels need to be defined
in order to manage the various aspects of a system. All these models are differents
but related. These relations must be managed in order to reduce the amount of work
required for the definition of their semantics.

References

1. Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Cŕegut, X., Pantel,
M.: the TOPCASED project: a toolkit in open source for critical aeronauticsystems design.
In: Embedded Real Time Software (ERTS), Toulouse (2006)

2. Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Core Specification. (2003)
3. Budinsky, F., Steinberg, D., Ellersick, R.: Eclipse Modeling Framework : A Developer’s

Guide. Addison-Wesley Professional (2003)
4. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., IV, C.T., Nordstrom, G., Sprinkle,

J., Volgyesi, P.: The generic modeling environment. In: Workshop onIntelligent Signal
Processing, Budapest, Hungary (2001)

13



5. ATLAS: KM3 : Kernel metametamodel. Technical report, LINA & INRIA, Nantes (2005)
6. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied metamodelling -a foundation for

language driven development. version 0.1 (2004)
7. Ehrig, K., Ermel, C., Ḧansgen, S., Taentzer, G.: Towards graph transformation based gener-

ation of visual editors using eclipse. Electr. Notes Theor. Comput. Sci127(2005)
8. Object Management Group, Inc.: UML Object Constraint Language (OCL) 2.0 Specifica-

tion. (2003) Final Adopted Specification.
9. Richters, M., Gogolla, M.: Validating UML models and OCL constraints. In Evans, A., Kent,

S., Selic, B., eds.: UML 2000 - The Unified Modeling Language. Advancing the Standard.
Third International Conference. Volume 1939 of LNCS., Springer Verlag (2000) 265–277

10. Jouault, F., Kurtev, I.: Transforming models with atl. In: Proceedings of the Model Trans-
formations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica (2005)

11. Bézivin, J., Jouault, F.: Using atl for checking models. In: GraMoT. (2005)
12. Muller, P.A., Fleurey, F., Jéźequel, J.M.: Weaving executability into object-oriented meta-

languages. In: LNCS, Montego Bay, Jamaica, MODELS/UML’2005, Springer (2005)
13. Breton, E.: Contributioǹa la repŕesentation de processus par des techniques de méta-

mod́elisation. PhD thesis, Université de Nantes (2002)
14. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with model

transformations. In LNCS 3748, S.V., ed.: Model Driven Architecture - Foundations and
Applications, First European Conference (ECMDA-FA). (2005) 115–129

15. Gurevich, Y.: The abstract state machine paradigm: What is in and what is out. In: Ershov
Memorial Conference. (2001)

16. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The design of a lan-
guage for model transformations. Technical report, Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN 37235, USA. (2005)

17. Plotkin, G.: A structural approach to operational semantics. Technical Report DAIMI FN-19,
Department of Computer Science, Aarhus University, Denmark (1981)

14


