
An Observation-based Algorithm for Workflow
Matching

Kais Klai1, Samir Tata2 and Issam Chebbi2

1 Technical University Eindhoven
2 GET/INT France

Abstract. This work is in line with theCoopFlow approach dedicated for inter-
organizational workflow cooperation that consists of workflow advertisement,
workflow interconnection, and workflow cooperation. To support interconnec-
tion, we propose in this paper a efficient algorithm for workflow matching3.

1 Introduction

Research on workflow management has focused on inter-organizational issues and much
has been achieved so far [4, 1]. Problems to be encountered on this research include
mainly autonomy of workflow processing, flexibility, and lack of arbitrary workflow
support. To deal with these issues, we have developed theCoopFlow approach [3] that
consists of three steps: workflow advertisement, interconnection, and cooperation. In
fact, for building an inter-organizational workflow, each organization has to advertise,
within a common registry, a description of its offered and required activities within their
workflows. For workflow interconnection, each organization identifies its partners us-
ing a matching mechanism. For matching workflows, we propose in this paper a new
algorithm using symbolic observation graphs (SOGfor short) [2]. The rest of this paper
is organized as follows. Section 2 describes informally our novel method of workflow
abstraction based onSOGs. Section 3 presents a efficient algorithm to workflow match-
ing. Using workflow matching, Section 4 shows how inter-organizational workflow is
formed. Conclusion and perspectives are presented in Section 5.

2 Workflow Abstraction

An inter-organizational workflow can be considered as the cooperation of several local
workflows. Each one has two types of activities (transitions): cooperative activities that
interact with other workflows and local activities that perform local actions. In order to
set up cooperation, workflows have to be abstracted to preserve privacy, and advertised
into a registry to be found and interconnected to partners’ workflows. Workflows are
reprenseted by Wf-nets [5]: A WF-net is a Petri net that has onesource place and

3 This research has been partially funded by the Netherlands Organisation for Scientific Re-
search (NWO) under FOCUS/BRICKS grant number 642.000.504.

Klai K., Tata S. and Chebbi I. (2006).
An Observation-based Algorithm for Workflow Matching.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
193-197
DOI: 10.5220/0002500801930197
Copyright c© SciTePress



one sink place and all its nodes (places or transitions) should be on some path from
source to sink. To define workflow abstraction and matching, we need to introduce
some definitions. Letσ be a sequence of transitions (σ ∈ T ∗). The projection ofσ on a
set of transitionsX ⊆ T (denoted byσ⌊X ) is the sequence obtained by removing from
σ all transitions that do not belong toX. A sequenceσ = t1t2 . . . tn over transitions is
said to be accepted ifi (resp.o) is in set of input (resp. output) places oft1 (resptn)
andσ can be executed by the workflow. The languageL(W ) of a workflowW is the
set of all accepted sequences and the projection function isextended toL as follows:
L⌊X = {σ⌊X , σ ∈ L}.

To abstract workflows, we useSOG introduced in [2] as an abstraction of thereach-
ability marking graph of a given Petri net within a model checking approach. The build-
ing of theSOG is guided by the set of the cooperative transitions. Such activities are
calledobserved, since they interact with other workflows, while the other transitions
areunobserved. Then, theSOG is defined as a deterministic graph where each node is
a set of markings linked by unobserved sequences of transitions and each arc is labeled
with an observed transition. Nodes of theSOG are calledmeta-states and may be rep-
resented and managed efficiently by using Ordered Binary Decision Diagram (OBDD
techniques) [6].

The SOG technique is suitable for abstracting workflows for many reasons: First,
theSOG allows one to represent the language of the workflow projected on the coop-
erative transitions i.e. the local behaviors are hidden. The second reason is that such an
abstraction is suitable for checking whether two workflows represented by theirSOG
can be interconnected (see section 3). Finally, the reducedsize of theSOG (in general)
could be an advantage when one plans to store and manage a big number of workflows
abstractions in a same registry. For sake of space, we do not give the SOG building
algorithm, we refer the reader to [2] for more details about theSOG technique.

3 An Algorithm for Workflow Matching

Given a Wf-netW1 and a registry of potential partners forW1, we discuss in this section
the selection criteria allowing to choose of a Wf-netW2 in the registry as partner of
W1. Such criteria are based on the observable behavior ofW1, i.e. its behavior on the
cooperative transitions, which must match with the observable behavior ofW2. Each
cooperative transitiont of Wf-netW is represented by a tuplet = 〈name, type,msg〉
s.t.(1) thename attribute oft is the label associated tot, (2) thetype attribute oft is a
boolean variable and it says whethert is supposed to receive a message (t.type = 1), or
to send a message (t.type = 0), and (3) themsg attribute oft represents the semantic
description of the message (using a common ontology)t has to send or to receive.

In order to check whether there exists a correspondence between two cooperative
transitionst1 and t2 belonging to two different Wf-nets, we need to compare these
transitions with respect to their attributes. Two attributes are taken in account:type and
msg. For instance, ift1 is a reception transition thent2 must be a sending transition and
both transitions have to match on the semantic of the exchanged message. We denote
by t1.msg ≡ t2.msg the fact that messages oft1 andt2 deal with the same data type

194



and semantics. Now, ift1.type = ¬(t2.type) andt1.msg ≡ t2.msg, then we say that
t1 matches witht2 (and vice versa) and denote this relation byt1 ∼ t2.

The following hypothesis is important for the remaining part of the paper. It says
that, within the same Wf-netW1, if a cooperative transition occur in a Wf-net more than
once then these occurrences are executed in an exclusive way. In this case we denote
by {t} the set of occurrences of a cooperative transitiont in a Wf-net. Let〈W1,m1〉
be a marked Wf-net and letT1 be its set of cooperative transitions. Then∀t1 ∈ T1,
∀σ = αt1α

′t1, whereα andα′ ∈ T ∗
1

, thenσ 6∈ L(W1,m1) (H).
To define formally the fact that a Wf-netW1 can cooperate with a given Wf-netW2,

we need to introduce a renaming procedureLW1
and define acooperation candidate

property.
Let W1 and W2 be two Wf-nets and letT1 and T2 be their sets of cooperative

transitions. The renaming procedureLW1
associated toW1 is defined as follows:

LW1
(W2) = ∀t2 ∈ T2 if ∃t1 ∈ T1 s.t.t1 ∼ t2 thent2.name := t1.name.

Let 〈W1,m1〉 and〈W2,m2〉 be two marked Wf-nets:〈W2,m2〉 is said to be a can-
didate for cooperation with〈W1,m1〉 iff L⌊T1

(〈W1,m1〉) ⊆ L⌊T2
(〈LW1

(W2),m2〉).
To check the above inclusion of projected language, we use the SOG of W1 and

W2. Actually, the Wf-netW2 would be an effective candidate to cooperate withW1

if the language induced by theSOG of W1 is included in that induced bySOG of
LW1

(W2). The inclusion test Algorithm 1 works on the fly i.e. the building of the syn-
chronized product between the involvedSOGs can be stopped at any moment as soon
as the inclusion is proved unsatisfied. When the synchronizedproduct is entirely built,
one deduce that the inclusion holds. The parameters of this algorithm are theSOGs
SoG1 = 〈s0, S1, E1〉 andSoG2 = 〈s′

0
, S′

1
, E′

1
〉 of (W1,m1) and(LW1

(W2),m2) re-
spectively.s0 (resp.s′

0
) is the initial meta-state ofSoG1 (resp.SoG2), S1 (resp.S2)

its set of meta-states andE1 (resp.E2) its set of arcs. The data structures used by

Algorithm 1 (L(SoG1 = 〈s0, S1, E1〉) ⊆ L(SoG2 = 〈s′
0
, S2, E2〉))?

1: States1, s2, s′1, s′2;
2: Set of transition f1, f2;
3: stack st;
4: s1 = s0; s2 = s′0;
5: f1 = Out(s0), f2 = Out(s′0);
6: if f1 6= ∅ andf2 6= ∅ then
7: if (Names(f1) 6⊆ Names(f2)) then
8: return false;
9: end if

10: end if
11: Synch = {〈s1, s2〉};
12: st.Push(〈s1, s2, f1〉);
13: repeat
14: st.Pop(〈s1, s2, f1〉);

15: for t ∈ f1 do
16: s′1 = Img(s1, t); s′2 = Img(s2, t)
17: if 〈s′1, s

′

2〉 6∈ Synch then
18: f1 = Out(s′1); f2 = Out(s′2);
19: if f1 6= ∅ andf2 6= ∅ then
20: if (Names(f1) 6⊆ Names(f2)) then
21: return false;
22: end if
23: Synch = Synch ∪ {〈s′1, s

′

2〉};
24: st.Push(〈s′1, s

′

2, f1〉);
25: end if
26: end if
27: end for
28: until st == ∅;
29: return true;

Algorithm 1 are a tableSynch and a stackst. Synch is used to store the states of the

195



synchronized product non completely treated. An item ofst is a tuple〈s1, s2, f1〉 com-
posed of a reachable meta-state of(W1,m1), a reachable meta-state of(LW1

(W2),m2)
and a set of cooperative transitions enabled from both nodes. Moreover, three functions
are usedOut(), Img() andNames(). Out() is applied to a node of theSOG and return the
set of transitions labeling its output edges.Img() is applied to a states1 and a transition
t (enabled in this node) and returns the reached state.Names() is applied to a set of
transitionsf and returns the set of transitions’ names.

4 Workflow Interconnection

The interconnection of two workflowsW1 andW2 satisfying the cooperation candidate
property is performed by completingW1 (resp.W2) by an interface which connect its
cooperative transitions to those ofW2 (resp.W1) via some buffer places.

Let W1 = 〈P1, T1, P re1, Post1〉 andW2 = 〈P2, T2, P re2, Post2〉 be two Wf-
nets. LetC1 andC2 be the cooperative transitions ofW1 andW2 respectively. Then
the interface workflow is represented by a Petri netInt12 = 〈B, T, Pre, Post〉 defined
as follows: (1)B is a set of buffers. For all subsets{t1} and{t2} of occurrences of
transitionst1 andt2 in W1 andW2 resp., such thatt1 ∼ t2, there exists an associated
buffer placeb ∈ B, (2)T = C1∪C2 and (3) for each placeb and associated occurrences
subsets{t1} and{t2} of cooperative transitions: ift1.type = 1 (resp.t1.type = 0) then
Pre(t1) = b andPost(t2) = b (resp.Post(t1) = b andPre(t2) = b).

Now one can use the interface workflow in order to interconnect the associated Wf-
netsW1 andW2. This interconnection is simply performed by composing these three
Petri nets by fusion of shared transitions (the cooperativetransitions). The obtained net
can be simply transformed, so that it satisfies the Wf-net properties, by adding a new
source place (resp. a sink place) and connect it to the two existing source places (resp.
sink places) via a new transition.

5 Conclusion and Perspectives

In line with theCoopFlow approach that consists of three steps: workflow advertise-
ment, interconnection, and cooperation, we showed, in thispaper, how to abstract the
behavior of workflows and presented an efficient algorithm for matching and inter-
connecting Wf-net partners. Currently, we are implementingalgorithms for workflow
abstraction and interconnection in order to be integrated into theCoopFlow framework.

References

1. A. Van Dijk. Contracting workflows and protocol patterns. InProceedings BPM, Eindhoven,
The Netherlands, June 2003.

2. S. Haddad, J-M. Ilíe, and K. Klai. Design and evaluation of a symbolic and abstraction-based
model checker. In Farn Wang, editor,ATVA, volume 3299 ofLNCS. Springer, 2004.

3. I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic inter-organizational
workflow cooperation.Data and Knowledge Engineering Journal, 56:2, 2006.

196



4. W.-M.-P. van der Aalst and M. Weske. The p2p approach to interorganizational workflows.
13th Int. Conf. on Advanced Information Systems Engineering. Springer-Verlag, 2001.

5. W.-M.-P. van der Aalst. The application of petri nets to workflow management. Journal of
Circuits, Systems, and Computers, 8(1):21–66, 1998.

6. I. Wegener. Branching programs and binary decision diagrams: theory and applications.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

197


