Towards Model Checking C Code with OPEN/CASAR*

Maria del Mar Gallardo, Pedro Merino and David S§an

Dpto. de Lenguajes y Ciencias de la Compuiaci
University of Malaga
29071 Malaga, Spain

Abstract. Verification technologies, like model checking, have obtained great
success in the context of formal description techniquesrg), however there

is still a lack of tools for applying the same approach to real programming
languages. One promising approach in this second scenario is the reuse of
well known and stable software architectures originally designedas, like
OPENCAESAR OPENCASARIs based on a core notation for Labeled Transi-
tions Systems and contains several modules that can help users to implement
tasks such as reachability analysis, bisimulation, and test generation. All these
functions are accessible with a standard that makes it possible the generation

of specific model checkers for new languages. In this paper, we discuss how to
construct a model checker for C distributed applications usingNOC/£SAR

1 Introduction

The difficulty of constructing reliable complex software is well known, especially
when developing distributed communication systems. Formal techniques suciilek
checkinghelp us to improve the quality of these systems, assuring the satisfaction of
certain critical properties (typically temporal properties). Traditional model checking
tools (sPIN[5], CAESAR[6]) have been oriented towards analyzing system models de-
scribed in a particular high level language also known as formal description technique
(FDT). For instance, the modelling languageoMELA is the input forspin, while
process algebras are valid inputs foxeSAR. However, currently, many academic and
commercial projects are focused on extending the techniques and algorithms developed
for FDTs to the usual and more complex implementation languages. This is the case of
Bandera and JPF [4] fomJAa and CMC andsockeTMC [2] for C.

There exist two main approaches to attack the problem of software verification. On
the one hand, Feaver, Bandera aimacKETMC, translate the original system, written in
a programming language, into a particutarT that is the standard input of an existing
model checker. This method, that is called “model-extraction”, allows us to reuse the
target tool, but having into account the additional effort of constructing a high level
model from the original system.

The second approach to verify software consistsriplementingnew “language-
specific tools”. Clearly, this method may involve a considerable amount of development

* Work partially supported by projects TIN2004-7943-C04-01 and TIC2005-09405-C02-01.

del Mar Gallardo M., Merino P. and Sanan D. (2006).
Towards Model Checking C Code with OPEN/C/ASAR.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages

DOI: 10.5220/0002499401980201
Copyright © SciTePress

199

Fig. 1. Schema for verifying systems with well-defined APIs.

work. Fortunately, some frameworks may assist in this t&sk.instance, the toolset
OPEN/CESARS3] permits the construction of specific model checkersjrias input
models described using a labeled transition systers)(The tool also provides an
application programmer interfacer1) which facilitates the construction efrss and
diverse libraries which, for instance, provide structuestore the states or compute
hashing functions.

In this paper, we propose to extend the range of input larepidgr the
OPEN/CESARframework, adding the possibility of verifying the popufadanguage.
Moreover, and following the idea ocdoCKETMC, the tool will be able to verify
clientserver applications that make an extensive use ofmne.g. the Sockeapl.
Figure 1 gives an overview of the process followed to verifgtems that use well-
definedaPri. As an initial step in the construction of a specific modelokee, this paper
describes how to translate cliesgrver applications into the data structures employed
by OPEN'CAESAR The new representation obtained will allow us to have morgrol
over the algorithms and data structures which play a cruaclalin the model checking
process. For instance, we may add new features to the moelekethsuch as variable
compression, hashing, abstraction, and the localizafienrors in the original code.

2 Integrating Cinto OPEN/CAESAR

In this section, we describe the process of construatirg representations from C
programs. This transformation will allow us to reuse thee® C£SAR environment
and all the programs developeddaDpP such aISIMULATOR, ALDEBARAN, etc. We
may structure the process of verifying C code inRE®/C£SARin four phases:

2.1 Analyzing theC Code

The translation of the original system must start with anyaig phase. This phase is
not trivial due to the complexity of the C language. In ordesimplify this task, we
first translate the C code into an intermediate. -based language namedL.

Once the code is written in the mark up language, we perforamatysis focussing
on two main issues. First, we need to extract every systelmmdlcontrol sentence for
the creation of the@rocess graphdescribed in the following section. Second, we need
to analyze every variable in the program to determine whettshould be inserted in
the state vector. In this case, the code has to be modifieddenee the field of the
state vector associated to the variable.

200

2.2 Creating the Process Graph

As mentioned above, our goal is to generate an implicétfrom a C application con-

taining external calls. In order to build the successor fiancneeded to specify the
LTS, we need a suitable representation of the different preseséthe system to be
analyzed. To this end, all these processes are converted graph before creating the
implicit LTS.

We consider two types of labels. On the one hand, a label npagsent a sequence
of C statements (a block) that do not include any system oall an the other, a label
may represent a single system call.

Non determinism is an important aspect when representistgisycalls. Non deter-
minism is implicit in communications, e.g. a broken conmattor failures in the calls
to osdue to the impossibility of assigning a descriptor in a sbskstem call. There-
fore, every system call with a nondeterministic behaviostrhe expressed by means
of various transitions showing every possible behaviohefftinction.

Another point that must be taken into account is the traiusiaif certain control
sentences in the original C code. If the selection or iteresitatements (if, case, while)
containApi calls, we explicitly translate the structure of these seces into the process
graph. We express each selection sentence as the contligoselection body, and the
else branch. Similarly, each iteration sentence is defisgeacondition and the body.

2.3 Generating the Implicit LTS

In the OPEN/CAESAR environment, the generation of ams model from a C system
involves the representation of states and labels of thesysind the implementation
of the interface provided bgAESARGraph.h. This interface gives us the necessary
primitives to manipulate states and labels that will be pathe finalLTs.

Therefore, every global state, usually called state vaotonodel checking, con-
tains the global data that may be accessed by all systemgzexas well as the local
data corresponding to particular process instances. Gtt#ia include, for instance,
channels in sockets ars buffers. Local process variables are clearly local data Th
global space also contains relevant data about the totabeuaf processes running in
the system. In addition, every process in execution kedpsniration about the actual
state of the process, its pid, and the process type.

Besides the state representation, we must provide the tapetsentatio. Labels
represent actions to be carried out in order to evolve froenstate to the following one.
The label concept afAESAR that have been inherited fronoTosdoes not exists in C.
In cAESARa label is considered as.@Tos gate and a number of experiments offered
by the gate. However, in the socket case, we can find a dir&atiarship between
the notions of gate and socket. Thus, the transition for tesysall, e.g. a read call,
generates a label similarte@ad(5) , where the number represents the socket identifier
used for this communication.

Moreover, the generation of this interface requires twagpgrimitives for con-
structing the transition relation of thas. One primitive is responsible for generating
the initial state, and the other generates the succesdes $ta any given state. The
algorithm works in two phases. In the first one, for everyaysprocess, it explores all

201

the transitions from its actual state. These transitioesatained from the automaton
associated to the process. The second phase of the alg@xgcntes each transition
generated, appropriately updating the state vector agamnd producing the corre-
sponding.Ts label. In order to execute the transition in thes, we need to execute the
associated code in the process graph. Recall that this sdte result of the previous
analysis described in Section 2.1. Thus, the successeristgenerated automatically
while executing the transition. It is worth noting that tmartsformed code works di-
rectly with the variables in the vector state.

The graph interface includes an initialization primitiGAESARI NI T_GRAPH,
which has to be called before using any operation with th@hgrahis method in-
volves the allocation in memory of the process graphs (de=tin Section 2.2) of the
different processes forming the system to be analyzed.

3 Conclusions and Future Work

Originally, OPEN/CE£SARWwere designed as an open environment extending the func-
tionality of CAESAR that is used for verifying aoTos specification. In this paper, we
propose to use this framework for analyzing C programs tleenuse of well defined
APIS. Most existing software model checkers are well suitedetafying distributed
systems. Some of them, such as JPF or Bandera, analyze sydtsaribed irnAvA.
Others are designed to analyze specific kinds of softwamnstance, SLAM [1] ver-
ifies whether the behavior of a driver is secure wrt the uséisefpi that it offers.

Actually, this proposal is its final stage of implementatiand the final version
will be available inhtt p: /7 ww. | cc. uma. es/ gi sum fnse/ t ool s . Future work could follow
several lines. On the one hand, we could compare the resoltglpd by our previous
tool sockETMC, and by the current proposal. This comparison should iatceac-
count not only the numerical results, but also the easir@sshitaining the models. On
the other, we also propose to extend our approach by coigjddifferentApis or by
implementing abstraction techniques.

References

1. Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. Stard static driver
verifier: Technology transfer of formal methods inside microsofiFM, pages 1-20, 2004.
2. M. Camara, M.M. Gallardo, P. Merino, and D. Sanan. Model cimgc&oftware with well-
defined apis: The socket case.(FMICS05) pages 17-26. ACM SIGSOFT, 2005.
3. H. Garavel. OPEN/CAESAR: An open software architecture for watifhn, simulation, and
testing. INTACAS’98 volume 1384, pages 68—84, 1998.
4. K. Havelund and T. Pressburger. Model checking java progtesing java pathfinder, 1999.
. Gerard J. Holzmann. The model checker SP3dftware Engineering?3(5):279—-295, 1997.
. J. -C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateeand M. Sighireanu.
CADP: a protocol validation and verification toolbox. In Rajeev Alur andmias A. Hen-
zinger, editorsProceedings of the Eighth International Conference on Computer Aided V
ification CAV, volume 1102, pages 437—-440, New Brunswick, NJ, USA, / 1996n&gr
Verlag.

[e2Né)]

