
A NEW APPROACH TO IMPLEMENT EXTENDED
TRANSACTION MODELS IN J2EE

Xiaoning Ding, Xiangfeng Guo, Beihong Jin, Tao Huang
Institute of Software, Chinsese Academy of Sciences,China

Keywords: Extended Transaction Models, J2EE, Entity Beans.

Abstract: Extended transaction model (ETM) is a powerful mechanism to ensure the consistency and reliability of
complicated enterprise applications. However, there is few implementation of ETM in J2EE. The existing
research is deficient in supporting range and requires some special database supporting. This paper explores
the obstacle which prevents J2EE from supporting ETMs, and argues it is because of the limitation of J2EE
XAResource interface and underlying databases. To overcome the obstacle, we propose a new approach,
which processes concurrency control inside J2EE application server instead of in database. Furthermore, we
implement TX/E service in JBoss to validate the approach, which is an enhanced J2EE transaction service
supporting extended transaction models. Compared to existing work, TX/E supports user-defined
transaction models and does not require any special database supporting.

1 INTRODCTION

The traditional and most widely used transaction
model, known as Flat model, has been proven
powerful in On-Line Transaction Processing (OLTP)
systems, such as banking and airline reservation.
Flat model has a strict ACID (Atomicity,
Consistency, Isolation and Durability) constraint.
However, its ACID constraint is too strict. Most
complicated enterprise applications in nowadays are
collaborative, loosely coupled or long-running.
When used for these applications, Flat model has
been found some serious problems (Mohan 1994).

Numerous extensions to Flat model have been
proposed to solve the problem, referred to as
extended transaction model (ETM) or advanced
transaction model (ATM). Each ETM is designed
for a specific application domain, with a relaxed
ACID constraint. Some famous ETMs include
Nested, Join/Split, MMT, Pro-Motion, and etc.

J2EE is a primary middleware platform for
enterprise applications. And most applications
running on J2EE are complex and critical, so it is
significant to support ETMs in J2EE. However, no
commercial J2EE application server can support
ETMs. The existing research of ETM was mostly in
database and workflow systems, and little was made
in J2EE. Furthermore, the little existing research in
J2EE also has some serious limitations, such as the
supporting range is limited, or some special database
supporting is required (Marek 2002).

In this paper, we explore the implementation
mechanism of ETMs in J2EE. We put forward a new
approach, which processes concurrency control
inside J2EE application server instead of in
underlying databases. The new approach does not
require any special database supporting.

The rest of this paper is organized as follows:
section 2 reviews the background and analyzes the
obstacles; section 3 discusses our approach; section
4 presents TX/E, the prototype system of our
approach; section 5 reviews the related works; and
we conclude the paper in the last section.

2 BACKGROUND

2.1 Extended Transaction Model

The traditional Flat model only supports three basic
methods (or control operations, events): Begin,
Commit and Rollback. All data operations are
bracketed by these three methods. An ETM usually
defines some additional methods. For example,
Join/Split model supports two extra methods: Join
and split. Each extra method has its specific syntax
and semantics.

Each ETM is designed for a specific application
area where the traditional ACID property is too
strict. To achieve the efficiency and flexibility, the
ETM relaxes the ACID property of the transaction in
different dimensions and to different extents.

118
Ding X., Guo X., Jin B. and Huang T. (2006).
A NEW APPROACH TO IMPLEMENT EXTENDED TRANSACTION MODELS IN J2EE.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 118-123
DOI: 10.5220/0002496701180123
Copyright c© SciTePress

To relax ACID property, ETM requires a
customized scheduling. In other words, it requires
adding specific semantics to scheduling. It is
necessary to set some flexible accessing roles on the
data items.

For example, in Flat model, if a data item is
modified by a transaction instance, then it can not be
accessed by any other instances until the holder
instance terminates (committed or rolled-back). The
accessing role is simple.

However, let’s look at the case of ETM. In
Nested model, after a child transaction instance
begins, it should be able to view the data items
which are locked by its parent instance. In this
example, the role is more complex: except the lock
holders, some instances (its children instances) are
allowed to view the data items, while some other
instances are not allowed to.

In conclusion, to implement various ETMs, the
transaction manager should provide a mechanism so
that the ETMs can set their necessary flexible
accessing roles.

2.2 J2EE Transaction Architecture

J2EE transaction service complies with JTS and JTA
specifications. Its architecture is coming from
CORBA OTS and X/Open DTP model.

In the architecture, clients (including stand-alone
Java Application and Session Bean) access the
underlying databases through the native database
interface, referred to as JDBC (Java Data Base
Connectivity) interface, while J2EE transaction
manager accesses the databases through
XAResource interface. Both interfaces are
implemented by the database vendors. Another way
client access database is entity bean. Entity bean is
an object-style encapsulation to the relational-data
from underlying database, and it is synchronized to
database through JDBC.

Figure1 shows the J2EE transaction service
architecture.

The XAResource interface is a simple java
mapping of X/Open XA interface. In essential, it is
just a set of functions.

According to JTS and JTA specification, J2EE
transaction manager is only responsible for
managing transaction identifiers and transaction
branches. The transaction manager performs its
work through the XAResource interface, such as
start(Xid), prepare(Xid), commit(Xid). J2EE
transaction manager is not aware of the detailed
accessed data and its concurrency control in the
underlying databases. And all of its work is just
issuing instructions to databases through
XAResource interface. i.e., the underlying database
is a black-box to J2EE transaction manager.

2.3 Discussion

Unfortunately, XAResource interface does not
include any functions to set the flexible accessing
roles. For example, J2EE transaction manager have
no way to inform the underlying database that a
child instance should inherit all locks of its parent
instance. It is also why the exiting research of ETM
in database can not be applied to J2EE directly. In
Data Base Management System (DBMS), we can
invoke lock manager to set the roles. However, as
mentioned above, we have no similar ability in
J2EE.

A straightforward way is to extend XAResource
interface so that it can pass any advanced
concurrency control instructions as we need.
However, it still can not work even we extend the
interface. Since in nowadays most commercial
databases only support Flat transaction model, and
do not support any advanced instructions. It is
meaningless to define an interface that few databases
can support it.

In conclusion, the difficulty of implementing
ETM in J2EE roots in the limitation of XAResource
interface and the underlying databases.

Some existing research was also troubled by this
obstacle. For example, in Bourgogne (Marek 2000),
a framework supports ETMs in J2EE, the system
provides an concurrency control instruction (called
primitive) delegate. The primitive is used to transfer
uncommitted data objects from one transaction
instance to another instance. However, since the
limitation mentioned above, there is no way to
inform databases the role. Thus the primitive
delegate can only be used between two transaction
branches with the same Xid. It is thought to be
difficult to break through this obstacle under the
current commercial databases (Marek 2002).

Figure 1: J2EE transaction service architecture.

A NEW APPROACH TO IMPLEMENT EXTENDED TRANSACTION MODELS IN J2EE

119

3 SOLUTION

3.1 Approach

As the J2EE official Object-Relational Mapping
(ORM) framework, Entity Bean is widely used in
recent years. It provides a “pure” object-oriented
paradigm and reduces the programming code.

Entity beans are managed by EJB container. EJB
container supplies the service of persistence, query,
concurrency control, etc. The concurrency controls
performed on entity beans is simple, usually a
thread-lock policy, i.e., when an entity bean is
accessed by a thread, it is locked and no other
threads can access it until the holder thread release
the lock.

While we face the limitation of XAResource
interface and underlying databases, how about we
implement primitives inside J2EE application server
by enhancing the concurrency control of entity
beans?

If we process the concurrency control inside
J2EE application server, we can avoid the above two
difficulties: 1) The flexible concurrency control is
implemented inside J2EE application server, and we
do not have to extend the XAResource interface to
pass through these instructions 2) The underlying
databases are not required to support ETMs and just
responsible for the data persistence and recovery.

Our approach is based on this idea. We restrict
entity beans as the only entrance for data accessing
and enhance its concurrency control. The work can
be divided into three parts:

1. J2EE transaction manager provides a set of
primitives; users invoke primitives to set
the desired accessing roles.

2. J2EE transaction manager maintains those
roles, and some necessary data structures,
such as lock table, log.

3. When clients access entity beans, we
perform concurrency control based on these
roles, instead of a simple thread-lock
policy.

The difference between two architectures is
illustrated as figure 2.

3.2 Benefits and Side-effects

In the new approach, all primitives are implemented
inside J2EE application server. It does not pass
through XAResource interface and does not require
support of databases. Thus we overcome the
obstacle.

Another benefit brought from our approach is the
ability to detect global deadlock. Most commercial
DBMS use locking as the concurrency control
mechanism. It can detect a local deadlock in the
wait-for graph and abort one of the deadlock
transactions. However, if a global transaction in
J2EE involves two or more different heterogeneous
databases, such as Oracle and DB2, each DBMS
transaction manager is only able to view its own
local wait-for table and cannot detect the global
deadlock. So it has to wait until one of the
transaction instances became timed-out. It is one of
the serious shortcomings in current J2EE transaction
service. After the concurrency control was upgraded
into J2EE application server, J2EE transaction
manager is able to control the global wait-for table
and detect the global deadlock.

The new approach also has some shortcomings.
After the entity beans are restricted as the only
entrance, accessing underlying databases through
JDBC directly is forbidden if the application client is
willing to employ an ETM. It may sacrifice some
efficiency in certain situations. However, it is not a
serious problem since the Entity Bean is efficient
and powerful nowadays.

4 TX/E SERVICE

To validate the approach proposed in last section, we
implement TX/E service in JBoss (Marc 2003), a
famous open source J2EE application server. TX/E
is an enhanced J2EE transaction service and
provides all interfaces required by JTA and JTS
specification. So it is compatible with the standard
J2EE transaction service.

Figure 2: Evolution of the architecture.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

120

4.1 Architecture

The TX/E service is organized in an extensible
manner. Each ETM is implemented as an add-on
module, named ETM adapter, and can be easily
plugged into the system. The system provides a
small set of primitives as the kernel, and each ETM
adapter is a properly composition of the primitives.
This architecture style (pluggable adapters and a set
of primitives) has lots of advantages and was
employed in several previous ETM frameworks,
such as RTF (Roger 1995).

The ETM adapter is a java class inherited from
the appointed class. We classify the users in the
TX/E system into two categories: model designer
and application client. The ETM adapter class is
implemented by model designer, which defines the
methods set and the attributes set of the ETM. The
application client uses these ETM adapter classes to
work.

The kernel, primitives set, is implemented inside
TX/E transaction manager. The ETM adapter calls
primitives to set the accessing roles on the entity
beans.

4.2 Programming Interface

All of the ETM adapter classes inherit from the base
class AbstractModel. As the root of the inheritance
tree, the AbstractModel defines the elements which
are common to every transaction model. For
example, it defines some properties such as Xid and
time-out. The AbstractModel also defines three
abstract methods: begin, commit and rollback. Being
abstract methods, these three methods are
guaranteed to be implemented in every inherited
class by Java language, i.e., every transaction model
in TX/E supports these three methods.

All primitives are provided in class Primitive,
which is organized as an inner class named
m_Primitive in class AbstractModel. To ensure the
consistency, m_Primitive is declared as protected.
Thus, model designers have the privileges to invoke
the primitives in the derived ETM adapter class,
while the application clients are not able to invoke
the primitives directly.

Figure 3 shows the class hierarchy after
deploying three ETMs: Flat, Nested and Join/Split.

After compilation, each ETM adapter class is
deployed to the specific directory with a
configuration file. The TX/E transaction manager
loads all ETM adapter classes during start-up, and
binds each class to the JNDI name described in the
corresponding configuration file. The application
client gets the ETM adapter class reference using

JNDI, and instances it to create an ETM transaction
instance.

4.3 Primitives Set

The capability of TX/E service is determined by the
primitives set. Primitives must be carefully selected
so that the ETM adapter has enough flexibility.
Fortunately, there are lots of research on which
primitives should be provided (Briliris 1994, Roger
1995). In general, there are four kinds of primitives
should be provided:

 Manage the life-cycle of transaction
instances, such as creating an instance of a
certain ETM type and terminating current
instance.

 Manage the control flow of transaction
instances, such as the dependency between
different methods.

 Manage the conflict and visibility.
 Manage the responsibility for modified data

objects.
Some important primitives defined in TX/E

include CreateDependency, RemoveDependency,
AddPermission, RemovePermission, AddTrigger,
removeTrigger, GetLockList, DelegateLock, and so
on.

4.4 Primitives Implementation

In TX/E transaction manager, a lock table records
the locking status and waiting queue of every entity
bean, and the transaction manager schedules each
accessing using a basic Two-Phased Locking (2PL)
algorithm.

All primitives are implemented by J2EE
transaction manager. Each primitive call lock
manager to set the accessing roles, and calls log
manager to do some necessary logging. For
example, the DelegateLock primitive is implemented
as following:

Figure 3: Class Hierarchy.

A NEW APPROACH TO IMPLEMENT EXTENDED TRANSACTION MODELS IN J2EE

121

1. Get the Xid of current transaction instance
from AbstractModel.

2. Query the lock manager, and get all lock
items which holder is the Xid of current
transaction.

3. Replace each lock item’s holder to the Xid
of target transaction instance.

By calling primitives, each ETM Adapter can set
the detailed accessing roles as they want.

After the accessing roles have been set, we need
to enhance the concurrency control of entity beans
so that we can schedule each invocation according to
the roles.

The JBoss EJB Container uses a Pipe and Filter
architecture style, and each service function is
implemented as an interceptor, such as logging,
security and transaction. Every invocation passes the
interceptor chain in turn. Its original concurrency
control is just a thread-lock policy. We modify the
existing interceptor EntityLockInterceptor of JBoss.
In this interceptor, we query J2EE transaction
manager to get the judgment to the fate of each
access, such as granting locks, blocking the instance
for locks, or aborting the instance.

The detailed architecture is illustrated in figure
4.

5 RELATED WORK

The traditional research on ETM framework is
usually based on database system. ACTA
(Panayiotis 1994) is a general framework for
specifying the structure and the behaviour of
transactions as well as for reasoning about the
concurrency and recovery properties of the ETMs.
ACTA is such a classic framework that nearly
become a standard to formal specification and
analysis of ETMs. Many concepts of ETM are

introduced and discussed in ACTA, such as
dependency, delegation, and permission. Most
primitives in following research were designed
according to these concepts. But unfortunately,
ACTA did not discuss the approaches to implement
ETMs.

ASSET (Briliris 1994), provided in ODE
database system, presents a set of primitives and
explains how to implement different ETMs upon
these primitives. To some extent, ASSET can be
regarded as a implementation of ACTA. ASSET
does not use the object-oriented paradigm for the
proposed primitives; it rather uses procedural
programming style. And, ASSET was based on
database system and no implementation was
provided.

Another way to build ETM framework is
proposed in (Anwar 1996). It demonstrates how
database event-condition-action (ECA) rules can be
used to support extended transaction models.

Reflective Transaction Framework (Roger 1995,
Roger 1996) is another framework to support ETMs,
and it is built on Transaction Processing Monitor
(TP Monitor). RTF allows the extension of both
functionality and interface of a conventional TP
Monitor to implement advanced transaction models.
The framework depends on the internal structure of
the TP Monitor, such as the lock manager and log
manager.

A practical framework on supporting ETMs in
J2EE is Bourgogne (Marek 2002, Marek 2000). It
extends the deployment descriptors set of EJB and
supplies several fixed primitives based on the
extension. The users can develop a few ETMs upon
these primitives.

However, Bourgogne still processes the
concurrency control through XAResource interface.
And the framework has the following limitations: 1)
some primitives defined in Bourgogne such as
Delegate can only be used between two transaction
branches with the same Xid. 2) Bourgogne does not
support defining new methods. So users can only
create dependencies between three fixed methods,
i.e., Begin, Commit and Rollback, which restrict its
supporting range and some flexible ETMs can not be
implemented. The author realized the limitation, and
argued that a database with special API supporting
have to be employed (Marek 2002).

There are also some implementations of a
specific ETM in J2EE such as (Jinling 2004). But
they are tailored for a specific ETM, not a general
framework.

J2EE Activity Service for Extended Transactions
is a newly proposed specification and is still in
discussion. It is a coordination framework that
supports some ETMs. However it is composed of
several individual atomic transactions. It can not

Invocation

Underlying DB

Concurrency
Control Lock Table

Entity Beans EntityLockInterceptor

Lock Manager Log

Log

Primitive
Transaction
Manager

ETM Adapter

Persistence

JDBC

Figure 4: Implementation Architecture.

User-defined

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

122

handle the concurrency and permission issues inside
an atomic transaction instance.

6 CONCLUSION

Extended transaction models are urgently needed in
J2EE to support complex enterprise applications.
However, there is little research in J2EE. We studied
the implementation of ETMs in J2EE in this paper.

Our contributions lie in three aspects. First, we
analyses the obstacle which prevents J2EE from
supporting ETMs, and argue that it is the limitation
of XAResource interface and the underlying
database.

Second, we propose a new approach, which
handles concurrency control inside J2EE application
server instead of in underlying databases. In the
newly proposed approach, all primitives are
implemented by J2EE transaction manager, and does
not need any special APIs of underlying database.
The new approach discards the XAResource
interface, and databases are only responsible for
persistence and recovery. We also discuss the
possible side-effects brought by the new approach.

Finally, to validate the approach, we
implemented an enhanced J2EE transaction service
TX/E in JBoss. Compared to existing work, TX/E
service supports user-defined transaction models and
does not require any special support of databases.

REFERENCES

C. Mohan, 1994. Tutorial: Advanced Transaction Models
Survey and Critique, In ACM SIGMOD International
Conference on Management of Data.

Marek Prochazek, 2002. Advanced Transactions in
Component-based Software Architecture, PhD thesis.

Marek Prochazka, 2000. Advanced Transactions in
Enterprise JavaBeans. In Proceedings of the EDO
2000 Workshop.

Marc Fleury, Francisco Reverbel, 2003. The JBoss
Extensible Server, In Proceedings of the 2003
ACM/IFIP/USENIX International Middleware
Conference.

Panayiotis K.Chrysanthis, Krithi Ramamritham, 1994.
Synthesis of Extended Transaction Models using
ACTA, ACM Transactions on Database Systems.

Briliris, A., S.Dar N Gehani, H.V.Jagadish,
K.Ramamritham, 1994. ASSET ： A System for
Supporting Extended Transactions, In Proceedings of
the 1994 ACM SIGMOD International Conference on
Management of Data.

Anwar, E., Chakrawarthy, S., 1996. Viveros, M., An
Extensible Approach To Realizing Advanced
Transaction Models, In Proceedings of the

International Workshop on Advanced Transaction
Models and Architectures.

Roger Barga, Calton Pu, 1995. A Practical and Modular
Method to implement extended transaction Models, In
Proceedings of International Conference on Very
Large Data Bases.

Roger Barga, Calton Pu, 1996. Reflection on a Legacy
Transaction Processing Monitor, In Proceedings of the
Reflection'96 Conference.

Jinling Wang, Beihong Jin, Jing Li, 2004. A Transaction
Model for Long Running Business Processes, In
Proceedings of the 6th International Conference on
Enterprise Information Systems.

A NEW APPROACH TO IMPLEMENT EXTENDED TRANSACTION MODELS IN J2EE

123

