Silvia Calegari, Davide Ciucci



Ontologies have proved to be very useful in sharing concepts across applications in an unambiguous way. Nowadays, in ontology-based applications information is often vague and imprecise. This is a well-known problem especially for semantics-based applications, such as e-commerce, knowledge management, web portals, etc. In computer-aided reasoning, the predominant paradigm to manage vague knowledge is fuzzy set theory. This paper presents an enrichment of classical computational ontologies with fuzzy logic to create fuzzy ontologies. So, it is a step towards facing the nuances of natural languages with ontologies. Our proposal is developed in the KAON ontology editor, that allows to handle ontology concepts in an high-level environment.


  1. AA.VV. (2004). Developer's Guide for KAON 1.2.7. Technical report, FZI Research Center for Information and WBS Knowledge Management Group.
  2. Abulaish, M. and Dey, L. (2003). Ontology Based Fuzzy Deductive System to Handle Imprecise Knowledge. In In Proceedings of the 4th International Conference on Intelligent Technologies (InTech 2003), pages 271- 278.
  3. Berners-Lee, T., Hendler, T., and Lassila, J. (2001). The semantic web. Scientific American, 284:34-43.
  4. Bouquet, P., Euzenat, J., Franconi, E., Serafini, L., Stamou, G., and Tessaris, S. (2004). Specification of a common framework for characterizing alignment. IST Knowledge web NoE, 2.2.1.
  5. Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle, D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Stumme, G., Sure, Y., Tane, J., Volz, R., and Zacharias, V. (2002). KAON - Towards a large scale Semantic Web. In ECommerce and Web Technologies, Third International Conference, EC-Web 2002, proceedings, volume 2455 of LNCS, pages 304-313. Springer-Verlag.
  6. Calvo, T., Mayor, G., and Mesiar, R., editors (2002). Aggregation Operators. Physica-Verlag, Heidelberg.
  7. Casillas, J., Cordon, O., Herrera, F., and Magdalena, L. (2003). Accuracy improvements to find the balance interpretability-accuracy in linguistic fuzzy modeling:an overview. In Accuracy Improvements in Linguistic Fuzzy Modeling, pages 3-24. Physica-Verlag, Heidelberg.
  8. Chang-Shing, L., Zhi-Wei, J., and Lin-Kai, H. (2005). A fuzzy ontology and its application to news summarization. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 35:859-880.
  9. Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5:199- 220.
  10. Guarino, N. and Giaretta, P. (1995). Ontologies and Knowledge Bases: Towards a Terminological Clarification. In Mars, N., editor, Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing, pages 25-32. IOS Press, Amsterdam.
  11. KAON (2005). Karlsruhe Ontology and Semantic Web Tool Suite (KAON).
  12. KAON2 (2005). Karlsruhe Ontology mantic Web Tool Suite 2
  13. Khang, T. D., Störr, H., and Hölldobler, S. (2002). A fuzzy description logic with hedges as concept modifiers. In Third International Conference on Intelligent Technologies and Third Vietnam-Japan Symposium on Fuzzy Systems and Applications, pages 25-34.
  14. Klement, E. P., Mesiar, R., and Pap, E. (2000). Triangular Norms. Kluwer Academic, Dordrecht.
  15. Klir, G. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall.
  16. Lammari, N. and Mtais, E. (2004). Building and maintaining ontologies: a set of algorithms. Data and Knowledge Engineering, 48:155-176.
  17. Matheus, C. (2005). Using Ontology-based Rules for Situation Awareness and Information Fusion. In Position Paper presented at the W3C Workshop on Rule Languages for Interoperability.
  18. Motik, B., Maedche, A., and Volz, R. (2002). A Conceptual Modeling Approach for Semantics-Driven Enterprise Applications. In Proceedings of the First International Conference on Ontologies, Databases and Application of Semantics (ODBASE-2002), volume 2519 of LNCS, pages 1082-1099. Springer-Verlag.
  19. Oberle, D., Staab, S., Studer, R., and Volz, R. (2005). Supporting application development in the semantic web. ACM Trans. Inter. Tech., 5:328-358.
  20. OWL (2005). Ontology Web Language (OWL).
  21. Pacholczyk, D. (1998). A new approach to linguistic negation based upon compatibility level and tolerance threshold. In Polkowski, L. and Skowron, A., editors, Proceedings of RSCTC98, volume 1424 of LNAI, pages 416-423.
  22. Pacholczyk, D., Quafafou, M., and Garcia, L. (2002). Optimistic vs. pessimistic interpretation of linguistic negation. In Proceedings of AIMSA02, volume 2443 of LNAI, pages 132-141.
  23. Pan, J., Stamou, G., Tzouvaras, V., and Horrocks, I. (2005). f-swrl: A Fuzzy Extension of SWRL. In ICANN 2005, volume 3697 of LNCS, pages 829-834. SpringerVerlag.
  24. Parry, D. (2004). A fuzzy ontology for medical document retrieval. In Proceedings of The Australian Workshop on DataMining and Web Intelligence (DMWI2004), pages 121-126, Dunedin.
  25. Quan, T., Hui, S., and Cao, T. (2004). FOGA: A Fuzzy Ontology Generation Framework for Scholarly Semantic Web. In Knowledge Discovery and Ontologies (KDO2004). Workshop at ECML/PKDD.
  26. RDFS (2004). Resource Description Framework Schema (RDFS).
  27. Singh, S., Dey, L., and Abulaish, M. (2004). A Framework for Extending Fuzzy Description Logic to Ontology based Document Processing. In Proceedings of AWIC 2004, volume 3034 of LNAI, pages 95-104. SpringerVerlag.
  28. Soo, V. W. and Lin, C. Y. (2001). Ontology-based information retrieval in a multi-agent system for digital library. In 6th Conference on Artificial Intelligence and Applications, pages 241-246.
  29. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J. Z., and Horrocks, I. (2005). Fuzzy OWL: Uncertainty and the Semantic Web. In International Workshop of OWL: Experiences and Directions (OWL-ED2005), Galway, Ireland.
  30. Stojanovic, L., Schneider, J., Maedche, A., Libischer, S., Studer, R., Lumpp, T., Abecker, A., Breiter, G., and Dinger, J. (2004). The role of ontologies in autonomic computing systems. IBM Systems Journal, 43:598- 616.
  31. Straccia, U. (2005). Towards a Fuzzy Description Logic for the Semantic Web Preliminary Report. In ESWC 2005, volume 3532 of LNCS, pages 167-181. Springer-Verlag.
  32. Zadeh, L. A. (1965). Fuzzy sets. Inform. and Control, 8:338-353.
  33. Zadeh, L. A. (1972). A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of Cybernetics, 2:4-34.

Paper Citation

in Harvard Style

Calegari S. and Ciucci D. (2006). INTEGRATING FUZZY LOGIC IN ONTOLOGIES . In Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-972-8865-42-9, pages 66-73. DOI: 10.5220/0002496100660073

in Bibtex Style

author={Silvia Calegari and Davide Ciucci},
booktitle={Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},

in EndNote Style

JO - Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
SN - 978-972-8865-42-9
AU - Calegari S.
AU - Ciucci D.
PY - 2006
SP - 66
EP - 73
DO - 10.5220/0002496100660073