
DEONTIC PROTOCOL MODELLING
Modelling Business Rules with State Machines

Ashley McNeile, Nicholas Simons
Metamaxim Ltd., 48 Brunswick Gardens, London W8 4AN, United Kngdom

Keywords: Behavioural Modelling, Protocols, State Machines, Business Rules, Executable Modelling.

Abstract: State machines can be used as a means of specifying the behaviour of objects in a system by describing their
event protocols, this being the relationships between the states that the object may adopt and the ability of
the object to respond to events of different types presented to it. We describe an extension to this approach
whereby different machines in the composition of a single object have different deontic semantics; covering
necessary behaviour, encouraged behaviour and discouraged behaviour. This provides a language that has
the expressive power to model the way software interacts with the domain in which it is embedded to
encourage or discourage behaviours of the domain.

1 INTRODUCTION

Our interest is in building tools that allow
behavioural models to be executed and tested early
in the development lifecycle, so that the risk that
severe behavioural problems are found at late stages
of testing, when rectification can be very expensive,
is significantly reduced.

Often, subtleties in behavioural requirements
specifications concern the nature of the behavioural
interaction between the systems and the domain in
which it is embedded. For instance, should a system
prevent a particular undesirable event from taking
place, or only discourage it? If an undesirable event
is allowed, how does the system ensure or encourage
correction of the resultant state?

This paper describes a technique for modelling
event-driven object behaviour that allows different
types of behaviour rule to be expressed in a common
modelling language. The ideas in this paper build on
the concept of “protocol machines” described by the
authors (McNeile and Simons, 2006). In that paper,
we described how protocol machines are used to
describe the essential, domain determined, behaviour
of objects. The key observation of this paper is that
protocol machines can also be used to express not
only what is essential, but also what is allowed
and/or desired. This extension to the semantics of
protocol machines yields a behaviour modelling
language that has the expressive power to address
the subtleties in requirements referred to above.

2 DEONTIC MODELLING

2.1 Indicative and Optative
Descriptions

When modelling, it is possible to distinguish
between two types of description: those that refer to
the application domain independently of the
existence of the system, and those that pertain to the
role of the system in its interaction with the domain.
The motivation for this distinction has been made,
for instance by Jackson and Zave (Jackson and
Zave, 1995) and by Parnas and Madey (Parnas and
Madey, 1995). Jackson and Zave use the word
indicative to refer to descriptions of the domain, and
optative to refer to descriptions pertaining to the role
of the system, and we will follow this convention.

In general, both kinds of description are
necessary when developing a system. The reason for
making indicative descriptions is that a system
tracks the states of an external reality, in the sense
that a project administration system tracks projects
and people, a stock control system tracks stock
levels, and an air traffic control system tracks
aircraft. The system is then able to provide its users
with information about the reality:

• To which project is Jim assigned?
• How many widgets do we have?
• Where is flight XX123?

489
McNeile A. and Simons N. (2006).
DEONTIC PROTOCOL MODELLING - Modelling Business Rules with State Machines.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 489-492
DOI: 10.5220/0002491804890492
Copyright c© SciTePress

When designing a system it is necessary to
understand what states are possible in the domain
because the system, in order to track the reality,
must be able to mirror these states. Indicative
models describe these states and the events that
cause state change. The behavioural constraints,
specifying what events are possible in each state,
inherent in indicative models must be obeyed if the
state changes of the system are to correspond to
meaningful state changes in the domain being
modelled. These constraints are properties of the
domain and system must ensure that violation of
these constraints is prevented.

However a system will also enforce, or help to
enforce, user defined rules or policies:

• If the project budget is greater than £x it must

should be approved by a director.
• The number of widgets should not fall below

the safety stock level.
• Two aircraft should not approach within a

minimum distance of each other.

These reflect requirements of the system, as they

describe what we want to be true when the domain
and the system interact, and are the subject matter of
optative descriptions.

Violation of the constraints contained in optative
descriptions is both meaningful and possible, the
degree of actual compliance depending on the nature
of the interaction between the system and the
domain.

2.2 Optative Protocol Machines

In the context of indicative descriptions, refusal of
an event by a protocol machine denotes that the
machine is unable to ascribe a meaning to the event
and is therefore unable to adopt a new state. In this
paper we extend the use of protocol machines to
optative descriptions. Here the semantics of
“acceptance” and “refusal” have to be different, as it
both possible and meaningful for events to take
place that violate the rules of optative descriptions.

Instead of causing the event to be rejected as
unprocessable, acceptance or refusal by machines
with optative semantics causes feedback to the
source of the event (a user, or possibly another
system) on the event’s appropriateness, but does not
prevent the event from being processed. The form of
such feedback is discussed later, in Section 4.

There are two types of optative machine
semantics, corresponding to whether feedback is
triggered by acceptance or refusal of the event. This
is shown in Table 1. The second column of the table
indicates which disposition (accepted or refused) of

an event by a machine causes feedback to be
returned to the source of the event. The third column
maps the two types of machine to natural meanings,
which we refer to as deontic semantics as they
correspond roughly to the ideas of “obligatory” and
“forbidden” (or “encouraged” and “discouraged”) in
deontic logic systems, as discussed for instance in
(Hilpinen and Føllesdal, 1971).

Table 1: Types of Optative Machine.

Type Significant
Event

Disposition

Semantics

D Acceptance An accepted event is Desired.
Example: Replenishing stock that
has fallen below the safety stock
level.

A Refusal A refused event is not Allowed.
Example: Borrowing a reference
book.

Together with machines that describe indicative

behaviour (which we refer to as Type E, for
“Essential”) we now have a scheme of three deontic
types of machine (E, D and A) which can be used in
combination to describe an object’s behaviour.

2.3 Syntax for Optative Machines

Our general goal is to use the same syntax, described
in (McNeile and Simons, 2006), for protocol
machines of all deontic types. However the different
nature of optative machines (Types D and A) means
that they are subject to special rules of form and
syntax, which we now describe.

Suppose that an object o is described by a
heterogeneous set of machines of all three deontic
types. Without loss of generality, we can take it that
o is described by exactly three machines (mE, mD
and mA), one of each type. This is because:

• We allow multiple machines of a given deontic

type to be composed, using the composition
rules described in (McNeile and Simons, 2006),
to yield a single machine of the same type.

• If o has no machine of a particular type, we can
add a machine with an empty repertoire, which
will ignore all events presented to it, to establish
the complete complement of three types.

The two rules that must be observed if the model

of o is to be well formed are:

λ(mD) U λ(mA) ⊆ λ(mE)

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

490

σ(mD) U σ(mA) = {}
where λ(m) denotes the repertoire of a machine m
and σ(m) denotes its local state.

The first of these rules states that the repertoire
of the optative machines is a subset of the repertoire
of the indicative machine. In other words, the
optative machines mD and mA do not introduce any
new repertoire (event-types) for the object o, but
only qualify the event behaviour already defined in
mE through the feedback they provide.

The second rule says that the optative machines
have no local state. This is because indicative
machines, including their local state, are “analogic
models” of the domain, in the described by Jackson
in his work on “Problem Frames” (Jackson, 2001);
however, optative machines are only advisory, and
have no analogic relationship to the domain.

3 EXAMPLE

3.1 Base Example

To illustrate the ideas described in this paper we will
use a simple example Project Administration System
which tracks projects, their budgets, and who is
assigned to work on them. A base protocol machine
model is shown in Figure 1.

Figure 1: Model for a Project Administration System.

This model uses three indicative (Type E)
machines: two to define the behaviour of the Project
object and one to define the behaviour of the Person
object. Note the following:

• The fact that the Assign event appears in both

Project and Person machines means that an
Assign event cannot take place unless the
Project involved in the event is in the state
“Active” and the Person involved is in the state
“Available”.

• The second (lower) machine for Project
specifies that, once started, a project budget
may be approved. Approval may or may not
happen, but can only happen once.

As it stands, this model is purely indicative. We

now proceed to extend this base model to illustrate
the use of optative machines.

3.2 Addition of a Type D Machine

Figure 2 shows a further, optative, machine with
deontic type D for the Project object.

Figure 2: Type D machine for Project.

This new machine specifies that approval of a
project is desired if the Project is currently
unapproved and the budget exceeds £5000. This
machine has deontic type D. The new machine will
not (and cannot) force approval, but will provide
feedback if the budget of a Project exceeds £5000
and it is currently unapproved, to encourage
approval to take place.

With the addition of this machine the Project
object, which already had 2 machines in Figure 1,
now has 3 machines: two Type E and one Type D.

3.3 Addition of a Type A Machine

Now we suppose that the Project object has a
method:

 self.estimated_cost()

that calculates the estimated cost of the project

based on its duration and the people assigned to
work on it. (This requires some extra attributes, e.g.,
duration for Project and daily rate for Person, which
we have not shown but which are simple to add to
the model.)

Figure 3 shows a further machine for Project,
determining when it is allowed to add resources to a
Project, with deontic type A. The rule described by
this machine is that assignment of a Person to a
Project is not allowed unless the estimated cost of
the project both before and after the assignment is
less than the budget. This machine has deontic type

AssignedAvailable

Left

Leave

Assign

Release

Join

Assigned_to :=
Assign.project

Assigned_to
:= null

Person

Start
Active Done

Finish

Adjust

Assign

Budget :=
Budget +

Adjust.amount

Budget :=
Start.budget

Start

Unapproved Approved

Approve

Type E

Project

Type E

Type E

AssignedAvailable

LeftLeft

Leave

Assign

Release

Join

Assigned_to :=
Assign.project

Assigned_to
:= null

Person

Start
Active Done

Finish

Adjust

Assign

Budget :=
Budget +

Adjust.amount

Budget :=
Start.budget

Start

Unapproved Approved

Approve

Type E

Project

Type E

Type E

Project
(Additional machine)

State Function:
If Budget > £5000 && Unapproved
Return “Approval Needed”
Else return “No Approval Needed”

Approve

Approval
Needed

Type D

Project
(Additional machine)

State Function:
If Budget > £5000 && Unapproved
Return “Approval Needed”
Else return “No Approval Needed”

State Function:
If Budget > £5000 && Unapproved
Return “Approval Needed”
Else return “No Approval Needed”

Approve

Approval
Needed Approve

Approval
Needed

Type D

DEONTIC PROTOCOL MODELLING - Modelling Business Rules with State Machines

491

A. This machine will not prevent an assignment, but
will provide feedback if a Project is in a state in
which assignment would violate this rule.

Figure 3: Type A machine for Project.

The definition of the Project object now

comprises 5 machines, 3 of Type E and one each of
Type D and Type A.

4 TOOL SUPPORT

4.1 Purpose of Tool Support

Our interest is in using behavioural models to
explore requirements early in the systems
development process, using tools that allow
behavioural models to be directly executed. This
helps reduce the risk that severe behavioural
problems are found at late stages of testing, when
rectification can be very expensive.

The executable models can be viewed as a form
of prototype, and the testing and exploration of such
prototypes provides a vehicle for users and other
stakeholders to engage in the modelling process,
even if they have no understanding of the notations
and concepts used to build the model.

4.2 Illustration

Figure 4 shows the appearance that the user interface
might take when executing the Project
Administration model.

Figure 4: User interface during model execution.

The boxes on the left hand side allow the user to
browse the contents of the model. The user selects

an Object Type (Project in this case) whereupon a
list of instances is displayed below.

On selecting an instance in list on the lower left
side, the attributes of that instance are shown to the
right along with a list of the events that are available
on that instance. The list of available events is
generated from the model, and a simple coding
scheme is used to indicate the constraints imposed
on the event by the current state of the model, as
follows:

• If the event is not possible according to the

Type E machines of the object, it is struck-
through (= disabled). Example: Start

• If it is possible but not allowed by the Type A
machines of the object it is in parentheses.
Example: (Assign)

• If it is possible and desired by the Type D
machines of the object has an asterisk against it.
Example: *Approve

• Otherwise it is shown without any adornment.
Examples: Finish, Adjust

Events that are shown as struck-through are

disabled, so selecting one of these has no effect.
Selecting an event that is not struck-through causes
controls to be displayed that allow the attributes of
the event to be entered and the event submitted for
processing.

In Figure 4, the project “Decipher Linear A”
cannot be started as it has already started. Approval
is desired as it is unapproved and has a budget of
over £5000. Assigning additional people is not
allowed as the estimated cost currently exceeds the
budget.

REFERENCES

Hilpinen, R., Føllesdal D., (1971) Deontic Logic: An
Introduction. Deontic Logic: Introductory and
Systematic Readings, D. Reidel, Dordrecht 1971,
pages 1-35.

Jackson, M., and Zave, P., (1995) Deriving Specifications
from Requirements: An Example. ICSE17, vol. 1995,
pages 15-24.

Jackson, M., (2001) Problem Frames. Addison-Wesley,
2001.

McNeile, A., and Simons, N., (2006) Protocol Modelling.
The Journal on Software and System Modeling. To
appear February 2006. Available on-line at
http://springerlink.metapress.com.

Parnas, D., and Madey, J., (1995) Functional
Documentation for Computer Systems Engineering.
Science of Computer Programming (Elsevier) 25(1),
Oct 1995, pages 41-61.

Object Types

Project
Person

Instances

(New)
Decipher Linear A
Locate Holy Grail

Decipher Linear A
Unapproved
£6,000
£1,500,000

Events

Adjust
Approve
(Assign)
Finish
Start

Name:
Status:

Budget:
Estimated Cost:

*

Object Types

Project
Person

Instances

(New)
Decipher Linear A
Locate Holy Grail

Decipher Linear A
Unapproved
£6,000
£1,500,000

Events

Adjust
Approve
(Assign)
Finish
Start

Name:
Status:

Budget:
Estimated Cost:

*

State Function:
If self.estimated_cost() > Budget return “Over Budget”
Else return “Within Budget”

Within
Budget

Assign

Project
(Additional machine)

Type A

State Function:
If self.estimated_cost() > Budget return “Over Budget”
Else return “Within Budget”

State Function:
If self.estimated_cost() > Budget return “Over Budget”
Else return “Within Budget”

Within
Budget
Within
Budget

Assign

Project
(Additional machine)

Type A

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

492

