
Applying MUPE Context Producers in Developing
Location and Context Aware Applications

Kimmo Koskinen1, Kari Heikkinen1 and Jouni Ikonen1

1 Lappeenranta, University of Technology, Laboratory of Communications
P.O.Box 21, FIN 53850

Abstract. Location based services (LBS) and applications have recently
emerged as a significant application area. However, location based services and
application could also benefit of the dimensions of the contextual data. Multi-
User Publishing Environment (MUPE) has a built-in context mediation capabil-
ity that allows the application developer to concentrate on using contextual data
and thus enabling rapid prototyping of location and context aware applications.
In this paper MUPE context producers are applied so that the applications can
exploit the different available context in a manner suitable to their logic. This
paper purposes to demonstrate that context mediation is a powerful tool to
speed up the prototyping process and to enable an efficient application devel-
opment.

1 Introduction

Mobile devices have changed the way people use their time. These devices and the
applications within them can react to various contexts with built-in sensors and con-
texts received through communication links. Thus, mobile devices are ideal terminals
for e.g. location and context-aware services and applications due to possibilities they
offer. However, applications development can be very time-consuming, as a lot of
time is needed building the infrastructural support for the application and testing the
application in real live test bed. This paper focuses on how the MUPE helps the de-
veloper in context mediation.
During the past few years, context and context awareness has raised a lot of research
interest, especially within the Ubicomp (http://www.ubicomp.org) and Pervasive
(http://www.pervasive.org) conferences The different dimensions of the context have
been quite extensively studied, e.g. in [1-3]. A good description of context computing
and different layers of it is presented in [1]: context computing focuses both on iden-
tifying/collecting the context and using the collected contextual information. In [2, 3],
support for context provisioning on mobile devices is discussed. It is being suggested
that the mobile devices would collect the context, but that can be highly resource
consuming and thus context provisioning is highly important. However, context pro-
duction relevant to the application logic is quite often omitted in these approaches.
Furthermore, most of the approaches concentrate on the semantics and ontology for

Koskinen K., Heikkinen K. and Ikonen J. (2006).
Applying MUPE Context Producers in Developing Location and Context Aware Applications.
In Proceedings of the 5th International Workshop on Wireless Information Systems, pages 3-11
Copyright c© SciTePress

different contextual raw data. In [4], guidelines for mediation of context-aware appli-
cations are presented. These guidelines are redundant mediation technologies to sup-
port more natural and smooth interactions, facilitators to support user input and feed-
back, defaults contexts to minimize user mediation and ambiguity should be retained
until mediation is necessary. As [4] also points out, mainly time and location are
widely used on context awareness studies. Applications could benefit more, if con-
texts could be added or mediated to the application logic. In [5], a context toolkit for
aiding the development of context-enabled application is presented. In [6], a context
broker is introduced that is able to mediate between different context sources, has
built-in semantics etc. Such a task, semantically bullet proof, can be very ambiguous
task.
Location is possibly the most common context used. Location information is used in
games [e.g. 7], GIS Applications and systems [e.g. 8], location dependant applica-
tions in sensor networks [e.g. 9], a model for ambient intelligence [e.g. 10], in guid-
ing systems [e.g. 11]. The Pervasive conference has an annual workshop dedicated to
Location and Context Awareness, e.g. in 2005 http://loca2005.context-aware.org.
Thus, we have concentrated on applying a solid middleware framework (MUPE [12],
Multi-User Publishing Environment) to ease the development of location and context-
aware applications. MUPE contains an interface for context producers that are the
most important components for the purpose of this paper. MUPE context producers
provide an easy way to add contexts to application logic as context producers act as
mediator of contextual raw data. Any single context producer can provide context
information to any MUPE application.
This paper is further structured so that Chapter II will present the characteristics of
the context sources and context mediation in more detail. The approach is demon-
strated with a location and context-aware application (TRIX) in Chapter III. TRIX
(Tribal Exchange) is a game that uses variation of contexts in the game play. Final
chapter (Chapter V) will conclude the paper.

2 Producing and Mediating Context

Applying external context in applications can be complicated. Many different infor-
mation sources can produce information that could be used as contextual information
both in applications and in information systems. We examine few contextual informa-
tion producers that relay the information to a MUPE application. For application
development, five different context producers were implemented; 3 (three) different
location information producers (LIS, Ekahau and RFID-tag), weather information
(environmental context) and recumbent exercise device (physiological context).
These context producers fetch the information from the following information sys-
tems and information sources (see table 1 for further details how the context informa-
tion is fetched):

• LIS (Location Information System) is an information system that is a mid-
dleware platform built to collect and deliver positioning information in a
wireless local area networks (WLANs).

4

• Ekahau Positioning Engine is a commercial product that can provide co-
ordinate based location information.

• RFID (Radio Frequency IDentification) is a RFID-tag that were put in
several places

• FMI.FI is on-line weather information maintained by the Finnish mete-
orological institute that can provide environmental context such as tem-
perature, air humidity, wind speed etc.

• Recumbent exercise bike is an exercise bike that can provide physiologi-
cal context such as heart rate and cycling speed

Table 1. More detailed information about the Context Producers.

Context
Source

How the context is fetched? Communication
/Interface/Protocol

LIS Location information is based on a cell-id of
an access point. The context producer (CP) is
configured to follow selected hardware ad-
dresses of wireless network cards in use. The
CP queries frequently the positions

Communication is done
through the SOAP inter-
face.

EPE EPE requires radio finger printing of the used
area. The context provider acts as a client for
EPE. Coordinate, floor, area and probability of
a user being on that location area are recorded
from the location observations provided by
EPE. CEP atoms are formed from the received
information and updated to MUPE applica-
tions on selected intervals.

The information is
fetched through Java
RMI interface in two
second intervals

RFID The ID of a passive RFID tag is read by a
RFID reader. After the tag is detected, desig-
nated software reads the content of a passive
RFID tag and acts as a TCP server for applica-
tions. The CP gets the information about the
detection and changes the relevant CEP atom.

The reader had a serial
interface which is used
to inform that a tag is
detected. TCP is used as
a protocol to carry the
context information.

FMI.FI The weather context provider fetches informa-
tion (once in hour) from the web pages and
parses selected weather parameters from the
page. The parsed results are sent to the MUPE
application in a CEP atom format.

HTTP is used to obtain
the information from the
web pages.

Recumbent A software component was implemented for
reading exercise data form the bike and serv-
ing data over a TCP connection. A protocol
for transferring exercise data over a TCP
connection was also designed. This protocol
enabled a client to request data from the re-
cumbent. The context producer gets the exer-
cise data via TCP and converts it to a CEP
atom format.

This information is read
via a serial interface in a
format which is defined
by the manufacturer.
The exercise data is
transferred via TCP to
the context producer.

Figure 1 show how contextual information is processed for a MUPE application. The
context information is fetched from various sources by the context producer compo-
nents. They relay the source specific context data to the context manager middleware

5

component. This component stores the context data and maps the context source
object id to a application specific object id. The most important functionalities are
conditionally (if-then-else) structured XML scripts that can be used to make Java
method calls in the MUPE server. The MUPE server is contained in the MUPE World
Manager component. This component contains the Context manager object. This
object contains methods for processing the received contextual information. Context
information is given in the parameters of the method of the object.

Fig. 1. Context Originating systems and MUPE context processing.

Let us examine one context information source (LIS) and the context processing in
more detail; Figure 2 presents a message scheme how location information is trans-
ferred from LIS to a MUPE application by using LIS context producer and MUPE
context manager. First, a request (see Listing 1) by LIS Location Context Producer to
the LIS system is made (the scheme also shows used parameters both for request and
answer messages). Secondly, LIS answers to the request. See Table 2 for examples of
implemented SOAP request methods and triggers. Other implemented SOAP requests
were GetLocationInfo (about a specific cell id), GetLocationList (lists all cell ids).
Other implemented SOAP triggers were DeleteTrigger (deletes the trigger) and Fire-
Trigger (follows the user/device within LIS).

Fig. 2. Context Mediation sample from the Location Information System to the Application.

6

Table 2. Two Implemented SOAP methods and triggers.

Method Description Parameters
GetUserLoca-
tion

A SOAP request that
obtains the last known
location of a given
MAC address.

target: target of a request
caller: caller of a request
service: the service that requests
password: service password
ttype: type of a target (e.g. mac-addr)
returnvalue: GetUserLo-
cationResponse, that contains cell-id and
the timestamp

SetTrigger A SOAP trigger that
assigns the given trigger
to a specific user.

target: the user to be followed
service: the service that requests
password: service password
uri: namespace for the trigger
proxy: URL address of the method
returnvalue: trigger ID-number

Listing 1 shows (below) an example of data that is received from the LIS and further
converted into XML for CEP-protocol. A CEP-message informs that user defined
with hardware address 00:08:02:F6:01:7F is located in a cell defined as LTY_6609.
In addition the message includes the timestamps of the observation and the descrip-
tion of the cell.

<atom name='LISLocation'
 timestamp='2005-9-5 1:23:26,00 +1'
 source='http://gamesrv.wlpr.net:1234'
 userId='00:08:02:F6:01:7F'>
<string name='timestamp'>2005-10-04 19:15:35… </string>
<string name='location'>LTY_6609 </string>
<string name='description'>…building, 6th fl. </string>
</atom>

Listing 1. Cell information in CEP-XML format.

Thirdly, after getting the cell-id on a given time the context producers transforms the
information into a CEP atom form and gives it to a MUPE context manager. The
context manager can carry out actions based on the received information. Any appli-
cation can use the same logic and so each application does not need a component of
its own. Inside the MUPE context manager there is three phases; first the CEP atom
object is converted into an ID identifiable by an application (see listing 2).

<addUserMap>
 <userMap>
 <contextProducerName>Wlan-positioningsystem
 </contextProducerName>
 <contextProducerId>00:08:02:F6:01:7F
 </ contextProducerId>
 <serverId>Brian
 </serverId>
 </userMap>
</addUserMap>

7

Listing 2. Conversion of a CEP atom.

This converted information is stored and a script engine component is informed about
an arrival of a new context. This script engine component contains the if-then-else
conditional functionalities These conditions can reference the stored information
inside the MUPE context manager. If these conditions are met, the actions can be
carried out in the MUPE application (server). The MUPE middleware platform con-
tains tools for making such scripts. Listing 3 shows an example script of a method call
named clientSetLocation.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<script id='lis' <-- namespace addresses (see list 4)
<if> <atomChanged>
 <atomRef userId='*' name='LISlocation'> </atomRef>
 </atomChanged>
<actions> <mupeCall>
 <![CDATA[2::clientSetLocation {${userId}}
 {$LISLocation::location}}]]>
 </mupeCall>
 <actions>
 </if>
 </script>

Listing 3. Example of a triggered script.

The context sources were not optimal in many manners:
• Weather information can be updated more frequently than an hour to the

MUPE server, but this is redundant as our context source (FMI.FI) up-
dates the information only in hourly base. We could have different sen-
sors of our own to provide similar and more frequent data.

• For production system, it would definitely be more efficient to make the
recumbent reader programs to output CEP atoms directly. The server part
for recumbent and context producer is not directly embedded to our sys-
tem currently. In the next stage context producer should do this job di-
rectly. However, a separate context producer can handle a bigger load
than the reader program (which could reside on a less powerful com-
puter). Similar approach should be taken with RFID-information also.

• The Mobile Phone can also act as a reader by using NFC (Near Field
Communication) shells inserted into a mobile phone. However, for the
moment there is not open source software available for this purpose.

2.1 MUPE Analysis

This short subchapter purposes to compare the MUPE approach in both addressing
context information (e.g. location) and technical details. This analysis is partially
based on Korpipaa Ph.D. thesis (Blackboard-based software framework and tool for
mobile device context awareness). Korpipaa introduces the definitions for context and
context awareness (mostly Dey´s definitions) and furthermore, offers critique related
to the context awareness research. Korpipaa lists three major areas:

8

• Determination of an appropriate set of canonical contextual states may be
difficult or impossible. In MUPE use of context is application oriented, and
thus this dynamic aspect of context can be overlooked as the handling of the
collected context does not vary in the application logic unless the developer
has designed it so.

• Determination of what information is necessary to infer a contextual state
may be difficult. In MUPE this aspect is the same. However, yet again, it is
up to developer to decide the level and the use of collected context. In the
beginning, MUPE was built for mobile games, and thus the approximation
of real context is enough. However, we can argue that MUPE is not an opti-
mal solution for ‘real’ applications.

• Determination of an appropriate action from a given action may be difficult.
In MUPE this is the Java action call. Dedication to Java may be in some
cases a clear bonus, but for some application areas a disadvantage.

Korpipaa also compares different context frameworks (e.g. Dey’s context toolkit).
Context toolkit consists of components that provide for applications the functional-
ities for handling the context. Korpipaa also lists a number of client-to-server models,
blackboard-based context architecture models and models that are somewhat related
to the context management. MUPE is listed in the last category. Comparing MUPE to
other alternatives some aspects can be pointed out:

• MUPE has a networked blackboard-based context engine with some similar
features to Korpipaa solution (e.g. support for context requests)

• MUPE context engine is designed differently, as the contexts come from
outbound entities and thus MUPE does not need context to operate. How-
ever, the applications can directly benefit from various contexts

• The response times in MUPE are lower as the applications are in the server
side (not in the client). However, the protocol support and security issues in
MUPE need to much better, e.g. due to privacy reasons

• Context handling is different, as MUPE handles context in compound struc-
tures. However, sensors could send a lot of information and is not feasible to
do all processing (and consume the battery) in the mobile device .

• MUPE does not directly support any databases. LIS system in this paper
contains databases, but MUPE does not directly access those databases.

• MUPE does not address context recognition, customization of contextual in-
formaton and context relevant application control

3 How Applications Benefit of Context Mediation

Applications may have very different type of use for context data. Still there are com-
mon operations that the context aware applications have to handle. When a new con-
text data arrives from the context source, actions need to be done based on the data.
To demonstrate the possibilities of a context use, a mobile game named Tribal Ex-
change (TRIX) was implemented. TRIX is a game, which combines virtual world and
physical game environment together. Game world is constructed from a map, where

9

each tribe (player) has multiple houses. One of the houses acts as headquarters (vil-
lage) and the other houses are housing quarters. Idea of the game is to protect houses
from different nature catastrophes. Houses are protected by building walls around the
houses. The game is divided into phases. If a tribe has successfully protected all their
buildings in the end of the phase, they will get another building. Otherwise unpro-
tected buildings are removed from the map. A wall can be built only on a flat ground.
Rocks, forest and water prevents building.

Building of a wall requires tribes to collect codes from the game environment. Codes
are free form text strings. Codes map to the utilities in the virtual word. These utilities
can be pieces of wall or tools to remove obstacles like rocks. Wall pieces are owned
by tribes and exchanging building blocks with other tribes plays an important part in
the game. These game pieces can be searched by using location information. Code
pieces have a location, which is available from the location context produced from
LIS. The players define their device address and after that they can request codes in
their location. A player can use only one code at a time, even if the current location
would contain more codes. Another context used in TRIX is weather-related contex-
tual data. These are temperature, humidity and wind speed. New weather input
changes durability of different wall pieces. Example of a weather effect is that walls
built of ice start melting if temperature rises above zero. When the durability points of
a wall piece are used up, the wall breaks and must be replaced with a new wall piece.
The durability changes are defined with context manager scripts. The rules (e.g.
<![CDATA[2::clientDoDamage {${userId}} {128} {-2}]]>) have different if condi-
tions; in the sample above, if the value of humidity is between 80 and 100, the client-
DoDamage function triggers an event in the game that decreases the properties of an
wall piece (in this case, a straw, identified by the number 128) by two (which in a
game logic decreases the durability of a straw by two). Other weather rules were
temperature, air pressure, wind speed, wind direction and cloudiness. Furthermore,
events (in the area) such as lightning strike(s), forest fire, earthquakes, flood, tsunami,
meteorite rain etc. have their own rules. Mostly, the effects were scaled down, be-
cause some events (e.g. earthquakes in Finland need only 2.0 Richters) do not take
place frequently.

4 Conclusions

This paper presented how MUPE application platform can be applied in developing
location and context-aware applications. As the context production resides on the
server side, the mobile terminal resources are not exhaustively consumed and leaving
the scarce resources for the mobile device. The paper presented several context pro-
ducer implementations that are an integral part of the application logic. The context
production is implemented by creating special context producer components, which
provide a uniform access to context data. This set-up allows the developer to concen-
trate on the application and content design. The applications can benefit from the
context mediation because the trigger scripts can be reusable and can be part of any
application logic.

10

References

1. A.Ferscha, C.Holzmann and S.Oppl, Context Awareness for Group Interaction Support,
Proceedings of MobiWac 2004 Conference.

2. J.I.Hong and J.A.Landay, An Infrastructure Approach to Context-Aware Computing, Hu-
man Computing Interaction (HCI) Journal 16, 2-4 (2001), pp. 287-303.

3. R. Mayrhofer, An Architecture for Context Prediction, Advances in Pervasive Computing,
DC in Pervasive 2004 Conference, vol. 176, April 2004, pp. 65-72.

4. A.K.Dey and J.Mankoff, Designing Mediation for Context-Aware Applications, ACM
Transactions on Computer-Human Interaction, Vol. 12, No.1, March 2005, pp. 53-80.

5. D.Salber, A.K.Dey and D.Abowd, The Context Toolkit: Aiding the Development of Con-
text-Enabled Applications, Proceedings of CHI´99.

6. H.Chen, T.Finin and A.Joshi, An Intelligent Broker for Context-Aware System, Proceed-
ingns of Ubicomp 2003 conference.

7. O.Rashid, I. Mullins, P.Coulton and R.Edwards, Games: Extending cyberspace: location
based games using cellular phones, Computers in Entertainment (CIE), Volume 4 Issue 1,
January 2006.

8. C.Wang, X.Xie, L.Wang and W-Y.Ma , Components of GIR: Detecting geographic loca-
tions from web resources, Proceedings of the 2005 workshop on Geographic information
retrieval GIR '05, November 2005.

9. T.He, C.Huang, B.M.Blum, J.A.Stankovic and T.F.Abdelzaher, Range-free localization
and its impact on large scale sensor networks, ACM Transactions on Embedded Computing
Systems (TECS), Volume 4 Issue 4, November 2005.

10. I.Saitoh, Reconflgurability and location-based services: A location model for ambient
intelligence, Proceedings of the Smart objects and ambient intelligence: innovative context-
aware services (sOc-EUSAI '05), October 2005.

11. W.Yue, S.Mu, H.Wang and G.Wang, Guiding and navigating: TGH: a case study of de-
signing natural interaction for mobile guide systems, Proceedings of the 7th international
conference on Human computer interaction with mobile devices & services MobileHCI '05,
September 2005.

12. MUPE portal, http://www.mupe.net.
13. P.Korpipää, Blackboard-based software framework and tool for mobile device context

awareness, Ph. D. Dissertation, University of Oulu, Finland.

11

