Modeling ODP Correspondences using QVT

Jo< Radll Romerd, Nathalie Morenéand Antonio Vallecilld

L Universidad de 6rdoba (Spain)
2 University of Malaga (Spain)

Abstract. Viewpoint modeling is currently seen as an effective technique for
specifying complex software systems. However, having a set of independent view-
points on a system is not enough. These viewpoints should be related, and these
relationships made explicit in order to count with a set of complete and consistent
specifications. RM-ODP defines five complementary viewpoints for the specifica-
tion of open distributed systems, and establishes correspondences between view-
point elements. ODP correspondences provide statements that relate the various
different viewpoint specifications, expressing their semantic relationships. How-
ever, ODP does not provide an exhaustive set of correspondences between view-
points, nor defines any language or notation to represent such correspondences.
In this paper we informally explore the use of MOF QVT for representing ODP
correspondences in the context of ISO/IEC 19793, i.e., when the ODP viewpoint
specifications of a system are represented as UML models. We initially show that
QVT can be expressive enough to represent them, and discuss some of the issues
that we have found when modeling ODP correspondences with QVT relations.

1 Introduction

Viewpoint modeling is gaining recognition as an effective approach for dealing with
the inherent complexity of the design of large distributed systems. It comprises two
major elements: model-driven development (MDD) on the one hand, and viewpoints
on the other. The first one uses models as the key elements to direct the course of
understanding, design, construction, deployment, operation, maintenance and evolution
of systems. Models allow to state features and properties of systems accurately, at the
right level of abstraction, and without delving into the implementation details—or even
without giving a solution of how these properties can be achieved [1]. Viewpoints divide
the system design according to several areas of concerns, and have been adopted by the
majority of current software architectural practices, as described in IEEE Std. 1471 [2].

The Reference Model of Open Distributed Processing (RM-ODP) framework [3]
provides five generic and complementary viewpoints on the system and its environment:
enterprise, information, computational, engineering andtechnology viewpoints. They
allow different stakeholders to observe the system from different perspectives [4]. In
addition, five viewpoint languages define the concepts and rules for specifying ODP
systems from these viewpoints.

ODP viewpoint languages are abstract, in the sense that the RM-ODP defines their
concepts and structuring rules, but independently from any notation or concrete syntax
to represent them. This allows focusing on the modeling concepts themselves rather

Raul Romero J., Moreno N. and Vallecillo A. (2006).

Modeling ODP Correspondences using QVT.

In Proceedings of the 2nd International Workshop on Model-Driven Enterprise Information Systems, pages 15-26
DOI: 10.5220/0002486000150026

Copyright © SciTePress



16

than on notational issues, and also allows the use of differetations, depending on
the particular needs and on the appropriateness of thefispsatation, e.g., Z for the
information viewpoint, or Lotos for the computational viesint. The RM-ODP archi-
tectural semantics [5] deals with the representation of @Dicepts in different lan-
guages. However, this notation-independence may alsg biong some limitations,
e.g., it may hinder the development of ODP tools. The needtaicwith precise nota-
tions for expressing ODP specifications, and to develop QDR tmotivated ISO/IEC
and ITU-T to launch a joint project in 2004 which aims to defihe use of UML for
ODP system specifications [6]. This new initiative (heréisacalled UML4ODP) is
expected to allow the development of tools for writing andlgning ODP specifica-
tions, and to make use of the latest MDD practices for desggand implementing ODP
systems. UML4ODP defines a set of UML Profiles for represecth @&the viewpoint
languages. In this way, the ODP viewpoint specificationeapeessed as a set of UML
models of the system. This initiative introduces very iasting benefits: ODP mod-
elers can use the UML notation for expressing their ODP §ipatibns in a standard
graphical way, while UML modelers can use the RM-ODP core@ptd mechanisms
to structure their UML system specifications.

So far, most of the ODP community efforts have focused on dfiaition of the five
viewpoints and their corresponding viewpoint languagesvéler, having a set of in-
dependent viewpoints on a system is not enough. These viatspsihould be somehow
related, and these relationships made explicit in orderdwige acomplete andcon-
sistent specification of the system. The questions are: how can isggrad that indeed
one system is specified? And, how can it be assured that no viewssencontradic-
tory requirements? The first problem concerns the conckiptiggration of viewpoints,
while the second one concerns ttunisistency of the viewpoints.

RM-ODP tries to address these issues by establishing pamdences between
viewpoint elements. ODP correspondences do not form parybne of the five view-
points, but provide statements that relate the variousrifft viewpoint specifications—
expressing their semantic relationships. Hence, a propér §ystem specification con-
sists of a set of viewpoint specifications, together withtaseorrespondences between
them. ODP does not provide however an exhaustive set of spmnelences between
viewpoints (ODP is silent about many of them), nor defineslanguage or notation to
represent correspondences. But without explicitly regméeg them we cannot reason
about them, nor properly tackle the integration and coesstissues mentioned above.

In this paper we explore the use of MOF QVT [7] for represep@DP correspon-
dences in the context of UML4ODP, i.e., when the ODP viewpspecifications of
a system are represented as UML models. We show that QVT dedmesexpressive
enough to represent them, and discuss some of the issueseahave found when
modeling ODP correspondences with QVT.

The structure of this paper is as follows. First, Sectiond®otes a brief introduction
to ODP, and also discusses some previous proposals forsespiteg ODP correspon-
dences. Section 3 provides a short introduction to QVT. Tis&ttion 4 presents our
initial proposal, describing how to represent ODP corresiences with QVT. Section 5
discusses some the issues that we have found during our Riagdly, Section 6 draws
some conclusions and outlines some future research sivit



17

2 ODP

RM-ODP is a reference model that aims at integrating a widgeaf present and fu-
ture ODP standards for distributed systems, maintainimgistency among them. The
reference model provides the coordination framework forPOflandards, and offers
a conceptual framework and an architecture that integegpects related to the dis-
tribution, interoperation and portability of software ®ms—in such a way that hard-
ware heterogeneity, operating systems, networks, pragiaglanguages, databases
and management systems are transparent to the user. letisis, RM-ODP manages
complexity through a “separation of concerns”, addresspegific problems from dif-
ferent points of view.

In ODP terms, aiewpoint (on a system) is an abstraction that yields a specification
of the whole system related to a particular set of concerbs? @efines five viewpoints,
covering all the domains of architectural design. Theseviie@apoints are:

— the enterprise viewpoint (EV), which is concerned with the purpose, scopé a
policies governing the activities of the specified systenhinithe organization of
which it is a part;

— theinformation viewpoint (IV), which is concerned with the kinds of infortian
handled by the system and the constraints on the use angreti&ion of that
information;

— thecomputational viewpoint (CV), which is concerned with the functional deto
position of the system into a set of objects that interactelt-defined interfaces;

— the engineering viewpoint (NV), which is concerned with the infrastructues
quired to support distribution;

— thetechnologyviewpoint (TV), which is concerned with the choice of teclogy
used to implement the system and to connect it with its enuirent.

These viewpoints are of course mutually related, but no teadrder of their de-
velopment is implied. They are (at least in theory) sepératgecified, and sufficiently
independent to simplify reasoning about the complete sysggecification.

2.1 ODP Correspondences

ODRP clearly states that a set of viewpoint specificationsnoD®P system written in
different viewpoint languages should not make mutuallytaatictory statements i.e.,
they should be mutually consistent.

The key to consistency is the idea of correspondences betdifferent viewpoint
specifications, i.e., a statement that some terms or stescin one specification corre-
spond to other terms and structures in a second specification

The requirement for consistency between viewpoint spetifins implies that what
is specified in one viewpoint specification about an entitgdseto be consistent with
what is said about the same entity in any other viewpointifipation. This includes
the consistency of that entity’s properties, structure agttavior.

The specifications produced in different ODP viewpointseaeh complete state-
ments in their respective viewpoint languages, with thein tocally significant names,



18

possibly with different granularity, and so cannot be eatvithout additional infor-
mation in the form ofcorrespondence statementshat make clear how elements of
different viewpoints are related, and how constraints fobiffierent viewpoints apply to
particular elements of a single system to determine itsatMeehavior.

Correspondence statements relate the various differewpdint specifications, but
do not form part of any one of the five viewpoints. They falbitivo categories [8]:

— Some correspondences are required in all ODP specifisatioese are calle-
quired correspondences If the correspondence is not valid in all instances in
which the concepts related occur, the specification is natlial WDP specifica-
tion.

— Inother cases, there is a requirement that the specifieide®a list of items in two
specifications that correspond, but the content of thiddishe result of a design
choice; these are calledquired correspondence statements

RM-ODP only provides required correspondences betweendimputational and
engineering viewpoints, and between the engineering amdetthnology viewpoints.
For the rest of the viewpoints, RM-ODP only states that elemef every viewpoint
should be consistent with the specification of the corredpmnelements in the rest of
the viewpoints, and with the restrictions that apply to th&or instance, the elements
of the information viewpoint should conform to the polic@she enterprise viewpoint
and, likewise, all enterprise policies should be constsiéth the static, dynamic, and
invariant schemata defined by the information specification

For illustration purposes let us include here some exampieédDP correspon-
dences, as described in Part 3 of RM-ODP [8], the Enterprasgglage [9], and in
UML4ODRP [6].

EC-1 Where there is a correspondence between enterprise and tadiopal elements,
the specifier has to provide, for each enterprise objecteretiterprise specifica-
tion, that configuration of computational objects (if anyattrealizes the required
behavior, and for each interaction in the enterprise speatifin, a list of those
computational interfaces and operations or streams (if vt correspond to the
enterprise interaction, together with a statement of wdrethis correspondence
applies to all occurrences of the interaction, or is qualibg a predicate.

CN-1 Each computational object that is not a binding object apoads to a set of one
or more basic engineering objects (and any channels whichem them). All the
basic engineering objects in the set correspond only tactiraputational object.

CN-3 Where transparencies that replicate objects are invohaedh eomputational in-
terface of the objects being replicated corresponds toaf segineering interfaces,
one for each of the basic engineering objects resulting fteerreplication. Each
of these engineering interfaces corresponds only to thggnaicomputational in-
terface.

NT-1 Each engineering object corresponds to a set of one or mcradéogy objects.
The implementable standards for each technology objeefisiblent on the choice
of technology.



19

2.2 Expressing Correspondences

Different authors have dealt with the problem of defining amgressing correspon-
dences between viewpoints, mainly when trying to addresgstue of viewpoint con-
sistency checking. Some of the proposals, e.g., [10, 1hligigt the need to explicitly
define and establish these correspondences but do noteepteem as independent
entities. Rather, they form part of the logical frameworkytidefine for checking the
consistency of viewpoint specifications.

Other authors explicitly represent the correspondengessially when viewpoint
specifications are expressed as UML models, using diffeattetnatives. One inter-
esting possibility is the use of OCL to define relationshiptneen the metamodel
elements that represent the appropriate modeling con@pwiggested by, e.g., [11].
This approach works very well when the correspondencesedieed between all the
instances of certain modeling concepts, e.g., when evenpatational interface corre-
sponds exactly to one engineering interface (correspamden-2). However, there are
cases in which correspondences need to be establisheddogparticular objects of an
specification. The problem is that it is not possible at théamegel to determine which
particular objects should be related. Therefore, it is irtgptt that correspondences can
be established between specific model elements, too.

UML 2.0 abstraction dependencies, possibly constrained by OCL statements, are
the natural mechanism provided by UML to represent a ralatigp that relates two
elements or sets of elements that represent the same catddifferent levels of ab-
straction or from different viewpoints. Thus, ODP corresgpences between viewpoint
specifications (for example, between enterprise objeasrdormation objects, or be-
tween enterprise policies and information schemata) caxpeessed as UML abstrac-
tion dependencies between the corresponding UML modelezitsn

However, as suggested by [12, 13], viewpoint corresporeenan also be used for
other purposes, e.g., change management in multi-viewersgstChange management
implies consistent evolution of system specifications:\ifeav is modified for any rea-
son (e.g., change of some business rules or some QoS regquit®rseveral changes
may need to be performed in other views in order to maintarotlerall viewpoint con-
sistency. In this context, correspondences act as “birtta’link together the related
elements, transforming them if a change in one of them o¢@uexs propagating the
changes to maintain consistency.

UML abstraction dependencies show to be insufficient fosétmurposes. The main
reasons are that they cannot store all the required infesmabout the correspondence
they represent, and because they can be used to expresnesistf the correspon-
dence but not to enforce it. Therefore, Yahiaoui et al. dedimew viewpoint, théink
viewpoint, whose elements are “links” that establish bibdsveen elements in differ-
ent viewpoints. These links explicitly represent the ODrespondences, and store
the relevant information about the relationships betwéen/tews and the information
related to each one (as attributes of the class that regsegenlink), thus guarantee-
ing traceability. A (change manager) tool has been develégradefining and enforcing
these links, thus providing automated support for changgagement and propagation.

We do not think that such correspondences constitute an@ibe viewpoint. ODP
explicitly states that correspondences do not form partngfiaewpoint. In addition,



20

ODP defines the concept of viewpoiah a system, whilst correspondences are de-
fined between two viewpoints. However, we do agree that correspondences should be
represented by something more powerful than UML abstraadi&pendencies for the
reasons stated above: correspondences may require tonsboeeinformation than a
single UML abstraction dependency can convey, and they reaseguired for other
purposes—e.g., for enforcing and propagating changes fraview to another.

The fact that change propagations can be considered garto@ses of model trans-
formations suggests the use of QVT as the perfect solutidghegroblem of repre-
senting ODP correspondences. The use of relations waallyitidicated by [14] for
relating concepts from different viewpoint at the metaldte not explored any further
for relating instances, which is essential for establightroper correspondences.

RM-ODP itself explicitly states that correspondences camsed to define trans-
formations between viewpoint elements to implement céeisey checks: “One form
of consistency involves a set of correspondence rules & stéransformation from
one language to another. Thus given a specificatipin viewpoint languagd.,; and
specificationS, in viewpoint languagd ., whereS; andS, both specify the same sys-
tem, a transformatioff’ can be applied t&; resulting in a new specificatidfi(.S;) in
viewpoint languagd., which can be compared directly % to check, for example,
for behavioral compatibility between allegedly equivalehjects or configurations of
objects.” [8]

3 QVT

3.1 QVT Relations

MOF QVT (Query/View/Transformation) [7] is the OMG's staard for specifying

MOF model queries, views and transformations. It is exgbtbeplay a central role
in the Model Driven Architecture [15]. QVT defines three diént (but closely re-
lated) languages for specifying transformations usindadative and imperative styles.
Black-box implementations of operations can also be usedld@ reuse of existing
algorithms or domain specific libraries in certain modehsfarmations.

QVT Relations is a language to write declarative specificetiof the relationships
between MOF models. The QVT Relations language supporésbpattern matching,
and implicitly creates trace classes and their instancesciord what occurred during
a transformation execution. Relations can assert that ogfetions also hold between
particular model elements matched by their patterns.

QVT Relations allow for the following execution scenari@§ [

Check-only transformations to verify that models areteslan a specified way.
Single direction and bi-directional transformations.

The ability to establish relationships between pre-exgstnodels, whether devel-
oped manually, or through some other tool or mechanism.

Incremental updates (in any direction) when one relatedakis changed after an
initial execution.

The ability to create as well as delete objects and valub#ewlso being able to
specify which objects and values must not be modified.



21

3.2 QVT Transformations

In the relations language, a transformation between catelichodels is specified as
a set of relations that must hold for the transformation tsbecessful. Acandidate
model is any model that conforms toraodel type, which is a specification of what kind
of model elements any conforming model can have. An examsple i

modeltype EL uses “odp.UML4ODP.EL_UMLProfile”
modeltype IL uses “odp.UML4ODP.IL_UMLProfile”
transformation EVtolV (ev: EL, iv : IL) {

top relation EVrole2IVobjectType {...}

top relation EVobject2IVobject {...}

Relations in a transformation declare constraints thatt inesatisfied by the ele-
ments of the candidate models, and specify a relationshipntiust hold between the
elements of the candidate models. Top level relations argetthat need to hold for a
transformation to be successfully executed.

A relation is defined by two or more domains and a pair of whethwahere pred-
icates. For instance, the following relati@&Vrole2IVobjectType establishes a rela-
tionship between roles in the EV specification and objecesyip the IV specification,
whereby every enterprise role is related to one informatibject type with the same
name (but not necessarily vice-versa, i.e., not every inédion object type should cor-
respond to an enterprise role).

relation EVrole2lVobjectType { /* maps e-roles to i-objectTypes */
domain ev er:Class {name=r}
domain iv iot:Class {name=r}
when { er.stereotypedBy("EV_Role”) }
where { er.stereotypedBy("EV_Role”) and iot.stereotypedBy("IV_ObjectType”) }

More precisely, relatioiVrole2IVobjectType checks that for each role in the EV
specification (i.e., a class stereotyded_Role) there is an object type with the same
name in the IV specification (i.e., a class stereotyfye®bjectType).

A transformation can be invoked either to check two modelsémsistency or to
modify one model to enforce consistency. In the first case titinsformation checks
whether the relations hold in all directions, and reporbexwhen they do not hold.
In case of enforcement, one model acts as source and theasthemget; the execution
of the transformation proceeds by first checking whetherréh&tions hold, and for
relations for which the check fails, attempting to make thlations hold by creating,
deleting or modifying only the target model, thus enfording relationship.

QVT transformations can also be used for propagating clafigem one model to
other. As mentioned in the QVT standard [7], “the effect afgagating a change from
a source model to a target model is semantically equivabesecuting the entire trans-



22

formation afresh in the direction of the target model. Theaetics of object creation

and deletion guarantee that only the required parts of tigetanodel are affected by

the change. Firstly, the semantics of check-before-eafensures that target model el-
ements that satisfy the relations are not touched. Secokelybased object selection
ensures that existing objects are updated where applicEhielly, deletion semantics

ensures that an object is deleted only when no other ruléresgjitito exist.”

4 Modeling ODP Correspondences

We have seen how QVT transformations can be specified to dgdimeral relationships
between elements of two ODP viewpoint specifications (esgyvben enterprise roles
and information object types, or between enterprise objact information objects).
However, these kinds of correspondences are not very conmribie specification of
any ODP system. Usually, correspondences are defined betveetcular elements of
the specification (e.g., between particular objects, tyfgesplates, or actions).

For instance, suppose that we have an ODP specification ohkifgasystem, in
which bank accounts are modeled in the computational viewas objects that sup-
port a couple of interfaces for accessing their serviceshénengineering viewpoint
specification, we want each of these computational objectotrespond exactly to
two basic engineering objects that support the same icesféplus possibly other in-
terfaces only relevant to the engineering objects conc@rifdne specification of such
part of the system at the object template level, and usingJtie profiles defined in
UML4ODP, is shown in Figure 1.

In order to represent such a correspondence, we could usefl#dL abstraction
dependencies between the related elements. However,ahid be done in a more
precise and effective way using QVT.

At the object level, we need to define a relation that estiatisa correspondence
between a computational object which is an instance oAesount object template,
and two engineering objects that represent it in the engimgspecification:

relation cv-account2twonv-accounts {
domain cv a:InstanceSpecification {name=n, classifier = “Account”}
domain nv al:InstanceSpecification {name=n + '1’, classifier = “Account1”}
domain nv a2:InstanceSpecification {name=n + '2’, classifier = “Account2”}
when { a.stereotypedBy("CV_Object”) }
where { a.stereotypedBy("CV_Object”) and al.stereotypedBy("NV_BEQO”) and
a2.stereotypedBy("NV_BEQ”) and DuplTemplates(a.classifier,al.classifier,a2.classifier)

}
}

We can see how it establishes that if there exists a UML lest8pecification
stereotypedCV_Object, whose classifier is aiccount, then there should be two UML
InstanceSpecifications stereotyged_BEO, whose classifiers arccountl andAc-
count2, respectively. In addition, a relation call&lplTemplates should also hold
between the classifiers of all these instance specificattiunsh a QVT relation is pre-



23

==Computational_Specs== A
Bank-CV

=<CY_ObjectTermplate== o] ==CY_OperstioninterfaceSignature=»
Account ~ " BasicServices
e
“hasic
Taclfin —

"N #
==Y _OperationlnterfaceSignatures==
AdminServices

==Engineering_Spec== A
Bank-NV
==MY_OhjectTemplate== E] A A ==hY_OhjectTemplate== E]
Account! - BasicIervices’™. . = Account2
- — .
hasic MO
admin._ o i acmin
1 ~ o 1
Lt L
replicateh | AdminServices replicl;a‘tec
-

==iV_Checkpainting=:=

ReplicateMaster ==N%_Checkpoirting==

ReplicateCopy

Fig. 1. Bank Account comp. objects and interfaces should be related to thesponrding eng.
objects and interfaces.

cisely the one that establishes the correspondence betWeappropriate computa-
tional object templates (Fig. 1):

relation DuplTemplates{

domain cv a:Component {name=n}

domain nv al:Component {name=n +'1'}

domain nv a2:Component {name=n + 2’}

when { a.stereotypedBy("CV_ObjectTemplate”) }

where { a.stereotypedBy("CV_ObjectTemplate”) and
al.stereotypedBy("NV_ObjectTemplate”) and
a2.stereotypedBy("NV_ObjectTemplate”) and
sameODPInterfaces(a,al) and sameODPInterfaces(a,a2)

}
}

This relation establishes that a given computational aligroplate should be re-
lated to two engineering object templates (whose nameddiheuthe same, but suf-
fixed with ‘1" and ‘2"), and that the ODP interfaces of the cantgtional object tem-



24

plate should be supported by the corresponding interfatéiseocengineering object
templates—as stated by the ODP required correspondeNe& This required corre-
spondence is expressed usingsheneODPInterfaces relation, that checks that every
interface defined for a computational object template igetied by an interface of
a given engineering object template. In the UML4ODP conptbath computational
and engineering object templates are modeled using UML ocoemts, and both com-
putational and engineering interfaces are representedNbly pbrts. Thus, the QVT
relation checks that every port of the UML component représg the computational
object template has an associated port with the same narhe giien UML compo-
nent representing the basic engineering object templattheat the set of provided and
required interfaces of each port are the same in the twofig@ns.

relation sameODPInterfaces {
domain cv cot:Component {}
domain nv eot:Component {}
when {
cot.stereotypedBy("CV_ObjectTemplate”) and eot.stereotypedBy("NV_ObjectTemplate”)
}
where { eot.ownedPort.name- >includes(cot.ownedPort.name)
and cot.ownedPort- >forAll(p | p.required =
eot.ownedPort- >select(hname=p.name).required)
and cot.ownedPort- >forAll(p | p.provided =
eot.ownedPort- >select(name=p.name).provided)

This last relation can be reused as-is in other QVT relationforce the required
correspondencé&N-3, in other ODP correspondence statements.

5 lIssues for Discussion

Once we have briefly seen how QVT could be used to represemt®oP correspon-
dence statements and ODP required correspondences, Istusgin this section some
issues that may require further investigation.

5.1 Bi-directionality and Cardinality of Correspondences

The RM-ODP is silent about the possible bi-directionaliftyh@ ODP correspondences.
However, we believe such correspondences must be bidinattso it is possible to
navigate from any of the two views to the other. The idea istaltle to trace elements,
i.e., given an element of a viewpoint, find all the elementtharest of the viewpoints
which are related to it (objects, policies, rules, actiats,).

In addition, RM-ODP seems to define correspondences jusleet pairs of view-
points. However, sometimes correspondences between dimaane viewpoints might
be required, i.e., between one element in one viewpoint eneral elements in other



25

viewpoints. Defining this kind of 1-M correspondences issilole with QVT relation-
ships, although something not defined in RM-ODP.

5.2 Transitivity of Correspondences

The QVT relations presented here can be used for changegatipa. This occurs
when a change happens in one of the viewpoint specificatioiisye want to propagate
the change to all related elements in the rest of the vievippiecifications. In this case
we can consider QVT relations as model transformationgreinfy the relationships
on the target models as mentioned earlier. However, thisraiag some redundancy or
duplication issues due to transitivity of the relations.

Suppose elements, 5 and~y in viewpoints A, B and C respectively, related as
follows: « is related with3 and-y, andg is related withy. How to deal with the poten-
tial redundancy that may happen when a change in elem@&propagated te both
directly froma to «, and indirectly through$? There are cases where this does not im-
ply any problem, as it happens when the relations just cHeatkthe elements have the
same name, and we change the name.dfiowever, what happens when the relations
add something to the elements’ structure or behavior? giigpose they add a suffix to
the name of the element? Will we end up with a duplicated sirfftke name ofy?

Please notice how this is an example that could justify thedrfer establishing
N-M correspondences between viewpoints.

5.3 Full Consistency of Specifications

In order to check the consistency of the specifications, weusa the ODP correspon-
dences if we consider them as model transformations, asionedtin the RM-ODP
standards. However, complete consistency between viewppeécifications cannot be
guaranteed by ODP correspondences only. Analysis of densig depends on the ap-
plication of specific consistency techniques, most of whach based on checks for
particular kinds of inconsistency, and thus cannot provemlete consistency.

This latter issue has been addressed by several peopledfffement perspectives.
The interested reader can consult, e.g., the works by eBiowman et al. [10], the
interesting book [1], and also the recent and complete worledy Remco Dijkman in
his PhD thesis [11]. How to combine the use of model-drivemmégues and QVT in
those contexts is something we would like to explore furtieepart of future research.

6 Conclusions

In this paper we have sketched how QVT relations can be usegptesent ODP cor-
respondences in the context of the UML4ODP project, in atiainattempt to show
that this approach is feasible. QVT relations provide maegrful mechanisms than
those provided by plain OCL or UML abstraction dependenftiegelating elements in
different ODP viewpoints, can be modularly and indeperigesgtecified, be reused to
build more powerful QVT transformations, and serve bothcteecking the correspon-
dences and for enforcing them.



26

There are still several issues open for investigation. Afpam the questions men-
tioned above, it is not clear whether this method is betterobthan the other ones dis-
cussed here, e.g., the one proposed by Remco Dijkman [1h}; Wahiaoui et al. [12,
13]. Furthermore, apart from specifying the correspondencan the QVT relations
provide any other advantages? Can they be used, for inst@nesason about the sys-
tem specifications and their consistency? And if so, howdhisbe achieved? Which is
the underlying logic in which the reasoning can be done? t¥pam consistency, what
other properties can be proved from the QVT specificationthefcorrespondences?
These are interesting questions, some of them we plan tessldr a near future.

Acknowledgements

The authors would like to thank the anonymous referees &r tlonstructive comments
and suggestions. This work has been partially supportedolaniSh Research Project
TIN2005-09405-C02-01.

References

1. GroRRe-Rhode, M.: Semantic Integration of Heterogeneous Seft@@ecifications.
Springer-Verlag, Berlin (2004)
2. |IEEE Std. 1471: Recommened Practice for Architectural Descripfi@oftware-Intensive
Systems. |IEEE Standards Association. (2000)
3. ISO/IEC 10746-1 to 10746-4, ITU-T X.901 to X.904: RM-ODP. &eihce Model for Open
Distributed Processing. ISO & ITU-T. (1997)
4. Linington, P.. RM-ODP: The architecture. In Milosevic, K., Armsigor.., eds.: Open
Distributed Processing Il, Chapman & Hall (1995) 15-33
5. ISO/IEC 10746-4, ITU-T Rec. X.904: Information technology -e@plistributed processing
— Reference model: Architectural Semantics. ISO & ITU-T. (1998)
6. ISO/IEC CD 19793, ITU-T Rec. X.906: Information technology -e@pulistributed process-
ing — Use of UML for ODP system specifications. 1SO & ITU-T. (2005)
7. OMG: MOF QVT Final Adopted Specification. Object Management @r¢2005) OMG
doc. ptc/05-11-01.
8. ISO/IEC 10746-3, ITU-T Rec. X.903: Information technology -e@plistributed processing
— Reference model: Architecture. 1SO & ITU-T. (1996)
9. ISO/IEC 15414, ITU-T Rec. X.911: Information technology — Opiestributed processing
— Reference model — Enterprise language. 1SO & ITU-T. (2006)
10. Boiten, E.A., Bowman, H., Derrick, J., Linington, P., Steen, M.Viewpoint consistency in
ODP. Computer Network34 (2000) 503-537
11. Dijkman, R.: Consistency in Multi-Viewpoint Architectural Design. Pthesis, University
of Twente (2006)
12. Yahiaoui, N., Traverson, B., Levy, N.: Adaptation managenrentulti-view systems. In:
Proc. of WCAT'05, Glasgow, Scotland, UK (2005) 99-105
13. Yahiaoui, N., Traverson, B., Levy, N.: A new viewpoint for obga management in RM-ODP
systems. In: Proc. of WODPEC 2005, Enschede, The Netherlaf5)2—6
14. Akehurst, D.H.: Proposal for a model driven approach tatarg a tool to support the RM-
ODP. In: Proc. of WODPEC 2004, Monterey, California (2004) 65—68
15. OMG: Model Driven Architecture. A Technical Perspective. @bjanagement Group.
(2001) OMG doc. ab/2001-01-01.



