
Modeling ODP Correspondences using QVT

Jośe Rául Romero1, Nathalie Moreno2and Antonio Vallecillo2

1 Universidad de Ćordoba (Spain)
2 University of Málaga (Spain)

Abstract. Viewpoint modeling is currently seen as an effective technique for
specifying complex software systems. However, having a set of independent view-
points on a system is not enough. These viewpoints should be related, and these
relationships made explicit in order to count with a set of complete and consistent
specifications. RM-ODP defines five complementary viewpoints for the specifica-
tion of open distributed systems, and establishes correspondences between view-
point elements. ODP correspondences provide statements that relate the various
different viewpoint specifications, expressing their semantic relationships. How-
ever, ODP does not provide an exhaustive set of correspondences between view-
points, nor defines any language or notation to represent such correspondences.
In this paper we informally explore the use of MOF QVT for representing ODP
correspondences in the context of ISO/IEC 19793, i.e., when the ODP viewpoint
specifications of a system are represented as UML models. We initially show that
QVT can be expressive enough to represent them, and discuss some of the issues
that we have found when modeling ODP correspondences with QVT relations.

1 Introduction

Viewpoint modeling is gaining recognition as an effective approach for dealing with
the inherent complexity of the design of large distributed systems. It comprises two
major elements: model-driven development (MDD) on the one hand, and viewpoints
on the other. The first one uses models as the key elements to direct the course of
understanding, design, construction, deployment, operation, maintenance and evolution
of systems. Models allow to state features and properties of systems accurately, at the
right level of abstraction, and without delving into the implementation details—or even
without giving a solution of how these properties can be achieved [1]. Viewpoints divide
the system design according to several areas of concerns, and have been adopted by the
majority of current software architectural practices, as described in IEEE Std. 1471 [2].

The Reference Model of Open Distributed Processing (RM-ODP) framework [3]
provides five generic and complementary viewpoints on the system and its environment:
enterprise, information, computational, engineering and technology viewpoints. They
allow different stakeholders to observe the system from different perspectives [4]. In
addition, five viewpoint languages define the concepts and rules for specifying ODP
systems from these viewpoints.

ODP viewpoint languages are abstract, in the sense that the RM-ODP defines their
concepts and structuring rules, but independently from any notation or concrete syntax
to represent them. This allows focusing on the modeling concepts themselves rather

Raúl Romero J., Moreno N. and Vallecillo A. (2006).
Modeling ODP Correspondences using QVT.
In Proceedings of the 2nd International Workshop on Model-Driven Enterprise Information Systems, pages 15-26
DOI: 10.5220/0002486000150026
Copyright c© SciTePress



than on notational issues, and also allows the use of different notations, depending on
the particular needs and on the appropriateness of the specific notation, e.g., Z for the
information viewpoint, or Lotos for the computational viewpoint. The RM-ODP archi-
tectural semantics [5] deals with the representation of ODPconcepts in different lan-
guages. However, this notation-independence may also bring along some limitations,
e.g., it may hinder the development of ODP tools. The need to count with precise nota-
tions for expressing ODP specifications, and to develop ODP tools, motivated ISO/IEC
and ITU-T to launch a joint project in 2004 which aims to definethe use of UML for
ODP system specifications [6]. This new initiative (hereinafter called UML4ODP) is
expected to allow the development of tools for writing and analyzing ODP specifica-
tions, and to make use of the latest MDD practices for designing and implementing ODP
systems. UML4ODP defines a set of UML Profiles for represent each of the viewpoint
languages. In this way, the ODP viewpoint specifications areexpressed as a set of UML
models of the system. This initiative introduces very interesting benefits: ODP mod-
elers can use the UML notation for expressing their ODP specifications in a standard
graphical way, while UML modelers can use the RM-ODP concepts and mechanisms
to structure their UML system specifications.

So far, most of the ODP community efforts have focused on the definition of the five
viewpoints and their corresponding viewpoint languages. However, having a set of in-
dependent viewpoints on a system is not enough. These viewpoints should be somehow
related, and these relationships made explicit in order to provide acomplete andcon-
sistent specification of the system. The questions are: how can it be assured that indeed
one system is specified? And, how can it be assured that no views impose contradic-
tory requirements? The first problem concerns the conceptual integration of viewpoints,
while the second one concerns theconsistency of the viewpoints.

RM-ODP tries to address these issues by establishing correspondences between
viewpoint elements. ODP correspondences do not form part ofany one of the five view-
points, but provide statements that relate the various different viewpoint specifications—
expressing their semantic relationships. Hence, a proper ODP system specification con-
sists of a set of viewpoint specifications, together with a set of correspondences between
them. ODP does not provide however an exhaustive set of correspondences between
viewpoints (ODP is silent about many of them), nor defines anylanguage or notation to
represent correspondences. But without explicitly representing them we cannot reason
about them, nor properly tackle the integration and consistency issues mentioned above.

In this paper we explore the use of MOF QVT [7] for representing ODP correspon-
dences in the context of UML4ODP, i.e., when the ODP viewpoint specifications of
a system are represented as UML models. We show that QVT seemsto be expressive
enough to represent them, and discuss some of the issues thatwe have found when
modeling ODP correspondences with QVT.

The structure of this paper is as follows. First, Section 2 provides a brief introduction
to ODP, and also discusses some previous proposals for representing ODP correspon-
dences. Section 3 provides a short introduction to QVT. Then, Section 4 presents our
initial proposal, describing how to represent ODP correspondences with QVT. Section 5
discusses some the issues that we have found during our work.Finally, Section 6 draws
some conclusions and outlines some future research activities.

16



2 ODP

RM-ODP is a reference model that aims at integrating a wide range of present and fu-
ture ODP standards for distributed systems, maintaining consistency among them. The
reference model provides the coordination framework for ODP standards, and offers
a conceptual framework and an architecture that integratesaspects related to the dis-
tribution, interoperation and portability of software systems—in such a way that hard-
ware heterogeneity, operating systems, networks, programming languages, databases
and management systems are transparent to the user. In this sense, RM-ODP manages
complexity through a “separation of concerns”, addressingspecific problems from dif-
ferent points of view.

In ODP terms, aviewpoint (on a system) is an abstraction that yields a specification
of the whole system related to a particular set of concerns. ODP defines five viewpoints,
covering all the domains of architectural design. These fiveviewpoints are:

– theenterprise viewpoint (EV), which is concerned with the purpose, scope and
policies governing the activities of the specified system within the organization of
which it is a part;

– theinformation viewpoint (IV), which is concerned with the kinds of information
handled by the system and the constraints on the use and interpretation of that
information;

– thecomputational viewpoint (CV), which is concerned with the functional decom-
position of the system into a set of objects that interact at well-defined interfaces;

– the engineering viewpoint (NV), which is concerned with the infrastructurere-
quired to support distribution;

– thetechnologyviewpoint (TV), which is concerned with the choice of technology
used to implement the system and to connect it with its environment.

These viewpoints are of course mutually related, but no temporal order of their de-
velopment is implied. They are (at least in theory) separately specified, and sufficiently
independent to simplify reasoning about the complete system specification.

2.1 ODP Correspondences

ODP clearly states that a set of viewpoint specifications of an ODP system written in
different viewpoint languages should not make mutually contradictory statements i.e.,
they should be mutually consistent.

The key to consistency is the idea of correspondences between different viewpoint
specifications, i.e., a statement that some terms or structures in one specification corre-
spond to other terms and structures in a second specification.

The requirement for consistency between viewpoint specifications implies that what
is specified in one viewpoint specification about an entity needs to be consistent with
what is said about the same entity in any other viewpoint specification. This includes
the consistency of that entity’s properties, structure andbehavior.

The specifications produced in different ODP viewpoints areeach complete state-
ments in their respective viewpoint languages, with their own locally significant names,

17



possibly with different granularity, and so cannot be related without additional infor-
mation in the form ofcorrespondence statementsthat make clear how elements of
different viewpoints are related, and how constraints fromdifferent viewpoints apply to
particular elements of a single system to determine its overall behavior.

Correspondence statements relate the various different viewpoint specifications, but
do not form part of any one of the five viewpoints. They fall into two categories [8]:

– Some correspondences are required in all ODP specifications; these are calledre-
quired correspondences. If the correspondence is not valid in all instances in
which the concepts related occur, the specification is not a valid ODP specifica-
tion.

– In other cases, there is a requirement that the specifier provides a list of items in two
specifications that correspond, but the content of this listis the result of a design
choice; these are calledrequired correspondence statements.

RM-ODP only provides required correspondences between thecomputational and
engineering viewpoints, and between the engineering and the technology viewpoints.
For the rest of the viewpoints, RM-ODP only states that elements of every viewpoint
should be consistent with the specification of the corresponding elements in the rest of
the viewpoints, and with the restrictions that apply to them. For instance, the elements
of the information viewpoint should conform to the policiesof the enterprise viewpoint
and, likewise, all enterprise policies should be consistent with the static, dynamic, and
invariant schemata defined by the information specification.

For illustration purposes let us include here some examplesof ODP correspon-
dences, as described in Part 3 of RM-ODP [8], the Enterprise Language [9], and in
UML4ODP [6].

EC-1 Where there is a correspondence between enterprise and computational elements,
the specifier has to provide, for each enterprise object in the enterprise specifica-
tion, that configuration of computational objects (if any) that realizes the required
behavior, and for each interaction in the enterprise specification, a list of those
computational interfaces and operations or streams (if any) that correspond to the
enterprise interaction, together with a statement of whether this correspondence
applies to all occurrences of the interaction, or is qualified by a predicate.

CN-1 Each computational object that is not a binding object corresponds to a set of one
or more basic engineering objects (and any channels which connect them). All the
basic engineering objects in the set correspond only to thatcomputational object.

CN-3 Where transparencies that replicate objects are involved, each computational in-
terface of the objects being replicated corresponds to a setof engineering interfaces,
one for each of the basic engineering objects resulting fromthe replication. Each
of these engineering interfaces corresponds only to the original computational in-
terface.

NT-1 Each engineering object corresponds to a set of one or more technology objects.
The implementable standards for each technology object is dependent on the choice
of technology.

18



2.2 Expressing Correspondences

Different authors have dealt with the problem of defining andexpressing correspon-
dences between viewpoints, mainly when trying to address the issue of viewpoint con-
sistency checking. Some of the proposals, e.g., [10, 1], highlight the need to explicitly
define and establish these correspondences but do not represent them as independent
entities. Rather, they form part of the logical framework they define for checking the
consistency of viewpoint specifications.

Other authors explicitly represent the correspondences, specially when viewpoint
specifications are expressed as UML models, using differentalternatives. One inter-
esting possibility is the use of OCL to define relationships between the metamodel
elements that represent the appropriate modeling concepts, as suggested by, e.g., [11].
This approach works very well when the correspondences are defined between all the
instances of certain modeling concepts, e.g., when every computational interface corre-
sponds exactly to one engineering interface (correspondence CN-2). However, there are
cases in which correspondences need to be established between particular objects of an
specification. The problem is that it is not possible at the metalevel to determine which
particular objects should be related. Therefore, it is important that correspondences can
be established between specific model elements, too.

UML 2.0 abstraction dependencies, possibly constrained by OCL statements, are
the natural mechanism provided by UML to represent a relationship that relates two
elements or sets of elements that represent the same conceptat different levels of ab-
straction or from different viewpoints. Thus, ODP correspondences between viewpoint
specifications (for example, between enterprise objects and information objects, or be-
tween enterprise policies and information schemata) can beexpressed as UML abstrac-
tion dependencies between the corresponding UML model elements.

However, as suggested by [12, 13], viewpoint correspondences can also be used for
other purposes, e.g., change management in multi-view systems. Change management
implies consistent evolution of system specifications: if aview is modified for any rea-
son (e.g., change of some business rules or some QoS requirements), several changes
may need to be performed in other views in order to maintain the overall viewpoint con-
sistency. In this context, correspondences act as “binds” that link together the related
elements, transforming them if a change in one of them occurs, i.e., propagating the
changes to maintain consistency.

UML abstraction dependencies show to be insufficient for these purposes. The main
reasons are that they cannot store all the required information about the correspondence
they represent, and because they can be used to express existence of the correspon-
dence but not to enforce it. Therefore, Yahiaoui et al. definea new viewpoint, thelink
viewpoint, whose elements are “links” that establish bindsbetween elements in differ-
ent viewpoints. These links explicitly represent the ODP correspondences, and store
the relevant information about the relationships between the views and the information
related to each one (as attributes of the class that represents the link), thus guarantee-
ing traceability. A (change manager) tool has been developed for defining and enforcing
these links, thus providing automated support for change management and propagation.

We do not think that such correspondences constitute another ODP viewpoint. ODP
explicitly states that correspondences do not form part of any viewpoint. In addition,

19



ODP defines the concept of viewpointon a system, whilst correspondences are de-
fined between two viewpoints. However, we do agree that correspondences should be
represented by something more powerful than UML abstraction dependencies for the
reasons stated above: correspondences may require to storemore information than a
single UML abstraction dependency can convey, and they may be required for other
purposes—e.g., for enforcing and propagating changes from one view to another.

The fact that change propagations can be considered particular cases of model trans-
formations suggests the use of QVT as the perfect solution tothe problem of repre-
senting ODP correspondences. The use of relations was initially indicated by [14] for
relating concepts from different viewpoint at the metalevel but not explored any further
for relating instances, which is essential for establishing proper correspondences.

RM-ODP itself explicitly states that correspondences can be used to define trans-
formations between viewpoint elements to implement consistency checks: “One form
of consistency involves a set of correspondence rules to steer a transformation from
one language to another. Thus given a specificationS1 in viewpoint languageL1 and
specificationS2 in viewpoint languageL2, whereS1 andS2 both specify the same sys-
tem, a transformationT can be applied toS1 resulting in a new specificationT (S1) in
viewpoint languageL2 which can be compared directly toS2 to check, for example,
for behavioral compatibility between allegedly equivalent objects or configurations of
objects.” [8]

3 QVT

3.1 QVT Relations

MOF QVT (Query/View/Transformation) [7] is the OMG’s standard for specifying
MOF model queries, views and transformations. It is expected to play a central role
in the Model Driven Architecture [15]. QVT defines three different (but closely re-
lated) languages for specifying transformations using declarative and imperative styles.
Black-box implementations of operations can also be used toallow reuse of existing
algorithms or domain specific libraries in certain model transformations.

QVT Relations is a language to write declarative specifications of the relationships
between MOF models. The QVT Relations language supports object pattern matching,
and implicitly creates trace classes and their instances torecord what occurred during
a transformation execution. Relations can assert that other relations also hold between
particular model elements matched by their patterns.

QVT Relations allow for the following execution scenarios [7]:

– Check-only transformations to verify that models are related in a specified way.
– Single direction and bi-directional transformations.
– The ability to establish relationships between pre-existing models, whether devel-

oped manually, or through some other tool or mechanism.
– Incremental updates (in any direction) when one related model is changed after an

initial execution.
– The ability to create as well as delete objects and values, while also being able to

specify which objects and values must not be modified.

20



3.2 QVT Transformations

In the relations language, a transformation between candidate models is specified as
a set of relations that must hold for the transformation to besuccessful. Acandidate
model is any model that conforms to amodel type, which is a specification of what kind
of model elements any conforming model can have. An example is:

modeltype EL uses “odp.UML4ODP.EL UMLProfile”
modeltype IL uses “odp.UML4ODP.IL UMLProfile”
transformation EVtoIV (ev : EL, iv : IL) {

top relation EVrole2IVobjectType {...}
top relation EVobject2IVobject {...}
...

}

Relations in a transformation declare constraints that must be satisfied by the ele-
ments of the candidate models, and specify a relationship that must hold between the
elements of the candidate models. Top level relations are those that need to hold for a
transformation to be successfully executed.

A relation is defined by two or more domains and a pair of when and where pred-
icates. For instance, the following relationEVrole2IVobjectType establishes a rela-
tionship between roles in the EV specification and object types in the IV specification,
whereby every enterprise role is related to one informationobject type with the same
name (but not necessarily vice-versa, i.e., not every information object type should cor-
respond to an enterprise role).

relation EVrole2IVobjectType { /* maps e-roles to i-objectTypes */
domain ev er:Class {name=r}
domain iv iot:Class {name=r}
when { er.stereotypedBy(”EV Role”) }
where { er.stereotypedBy(”EV Role”) and iot.stereotypedBy(”IV ObjectType”) }

}

More precisely, relationEVrole2IVobjectType checks that for each role in the EV
specification (i.e., a class stereotypedEV Role) there is an object type with the same
name in the IV specification (i.e., a class stereotypedIV ObjectType).

A transformation can be invoked either to check two models for consistency or to
modify one model to enforce consistency. In the first case, the transformation checks
whether the relations hold in all directions, and report errors when they do not hold.
In case of enforcement, one model acts as source and the otheras target; the execution
of the transformation proceeds by first checking whether therelations hold, and for
relations for which the check fails, attempting to make the relations hold by creating,
deleting or modifying only the target model, thus enforcingthe relationship.

QVT transformations can also be used for propagating changes from one model to
other. As mentioned in the QVT standard [7], “the effect of propagating a change from
a source model to a target model is semantically equivalent to executing the entire trans-

21



formation afresh in the direction of the target model. The semantics of object creation
and deletion guarantee that only the required parts of the target model are affected by
the change. Firstly, the semantics of check-before-enforce ensures that target model el-
ements that satisfy the relations are not touched. Secondly, key-based object selection
ensures that existing objects are updated where applicable. Thirdly, deletion semantics
ensures that an object is deleted only when no other rule requires it to exist.”

4 Modeling ODP Correspondences

We have seen how QVT transformations can be specified to definegeneral relationships
between elements of two ODP viewpoint specifications (e.g, between enterprise roles
and information object types, or between enterprise objects and information objects).
However, these kinds of correspondences are not very commonin the specification of
any ODP system. Usually, correspondences are defined between particular elements of
the specification (e.g., between particular objects, types, templates, or actions).

For instance, suppose that we have an ODP specification of a Banking system, in
which bank accounts are modeled in the computational viewpoint as objects that sup-
port a couple of interfaces for accessing their services. Inthe engineering viewpoint
specification, we want each of these computational objects to correspond exactly to
two basic engineering objects that support the same interfaces (plus possibly other in-
terfaces only relevant to the engineering objects concerned). The specification of such
part of the system at the object template level, and using theUML profiles defined in
UML4ODP, is shown in Figure 1.

In order to represent such a correspondence, we could use a set of UML abstraction
dependencies between the related elements. However, this could be done in a more
precise and effective way using QVT.

At the object level, we need to define a relation that establishes a correspondence
between a computational object which is an instance of anAccount object template,
and two engineering objects that represent it in the engineering specification:

relation cv-account2twonv-accounts {

domain cv a:InstanceSpecification {name=n, classifier = “Account”}
domain nv a1:InstanceSpecification {name=n + ’1’, classifier = “Account1”}
domain nv a2:InstanceSpecification {name=n + ’2’, classifier = “Account2”}
when { a.stereotypedBy(”CV Object”) }
where { a.stereotypedBy(”CV Object”) and a1.stereotypedBy(”NV BEO”) and
a2.stereotypedBy(”NV BEO”) and DuplTemplates(a.classifier,a1.classifier,a2.classifier)

}

}

We can see how it establishes that if there exists a UML InstanceSpecification
stereotypedCV Object, whose classifier is anAccount, then there should be two UML
InstanceSpecifications stereotypedNV BEO, whose classifiers areAccount1 andAc-
count2, respectively. In addition, a relation calledDuplTemplates should also hold
between the classifiers of all these instance specifications. Such a QVT relation is pre-

22



Fig. 1. Bank Account comp. objects and interfaces should be related to the corresponding eng.
objects and interfaces.

cisely the one that establishes the correspondence betweenthe appropriate computa-
tional object templates (Fig. 1):

relation DuplTemplates{
domain cv a:Component {name=n}
domain nv a1:Component {name=n + ’1’}
domain nv a2:Component {name=n + ’2’}
when { a.stereotypedBy(”CV ObjectTemplate”) }
where { a.stereotypedBy(”CV ObjectTemplate”) and

a1.stereotypedBy(”NV ObjectTemplate”) and
a2.stereotypedBy(”NV ObjectTemplate”) and
sameODPInterfaces(a,a1) and sameODPInterfaces(a,a2)

}

}

This relation establishes that a given computational object template should be re-
lated to two engineering object templates (whose names should be the same, but suf-
fixed with ‘1’ and ‘2’), and that the ODP interfaces of the computational object tem-

23



plate should be supported by the corresponding interfaces of the engineering object
templates—as stated by the ODP required correspondenceCN-3. This required corre-
spondence is expressed using thesameODPInterfaces relation, that checks that every
interface defined for a computational object template is supported by an interface of
a given engineering object template. In the UML4ODP context, both computational
and engineering object templates are modeled using UML components, and both com-
putational and engineering interfaces are represented by UML ports. Thus, the QVT
relation checks that every port of the UML component representing the computational
object template has an associated port with the same name in the given UML compo-
nent representing the basic engineering object template, and that the set of provided and
required interfaces of each port are the same in the two specifications.

relation sameODPInterfaces {

domain cv cot:Component {}
domain nv eot:Component {}
when {

cot.stereotypedBy(”CV ObjectTemplate”) and eot.stereotypedBy(”NV ObjectTemplate”)
}

where { eot.ownedPort.name->includes(cot.ownedPort.name)
and cot.ownedPort->forAll(p | p.required =

eot.ownedPort->select(name=p.name).required)
and cot.ownedPort->forAll(p | p.provided =

eot.ownedPort->select(name=p.name).provided)
}

}

This last relation can be reused as-is in other QVT relationsto enforce the required
correspondence,CN-3, in other ODP correspondence statements.

5 Issues for Discussion

Once we have briefly seen how QVT could be used to represent both ODP correspon-
dence statements and ODP required correspondences, let us discuss in this section some
issues that may require further investigation.

5.1 Bi-directionality and Cardinality of Correspondences

The RM-ODP is silent about the possible bi-directionality of the ODP correspondences.
However, we believe such correspondences must be bidirectional so it is possible to
navigate from any of the two views to the other. The idea is to be able to trace elements,
i.e., given an element of a viewpoint, find all the elements inthe rest of the viewpoints
which are related to it (objects, policies, rules, actions,etc.).

In addition, RM-ODP seems to define correspondences just between pairs of view-
points. However, sometimes correspondences between one and more viewpoints might
be required, i.e., between one element in one viewpoint and several elements in other

24



viewpoints. Defining this kind of 1-M correspondences is possible with QVT relation-
ships, although something not defined in RM-ODP.

5.2 Transitivity of Correspondences

The QVT relations presented here can be used for change propagation. This occurs
when a change happens in one of the viewpoint specifications,and we want to propagate
the change to all related elements in the rest of the viewpoint specifications. In this case
we can consider QVT relations as model transformations, enforcing the relationships
on the target models as mentioned earlier. However, this mayraise some redundancy or
duplication issues due to transitivity of the relations.

Suppose elementsα, β andγ in viewpointsA, B andC respectively, related as
follows: α is related withβ andγ, andβ is related withγ. How to deal with the poten-
tial redundancy that may happen when a change in elementα is propagated toγ both
directly fromα to γ, and indirectly throughβ? There are cases where this does not im-
ply any problem, as it happens when the relations just check that the elements have the
same name, and we change the name ofα. However, what happens when the relations
add something to the elements’ structure or behavior? E.g.,suppose they add a suffix to
the name of the element? Will we end up with a duplicated suffixin the name ofγ?

Please notice how this is an example that could justify the need for establishing
N-M correspondences between viewpoints.

5.3 Full Consistency of Specifications

In order to check the consistency of the specifications, we can use the ODP correspon-
dences if we consider them as model transformations, as mentioned in the RM-ODP
standards. However, complete consistency between viewpoint specifications cannot be
guaranteed by ODP correspondences only. Analysis of consistency depends on the ap-
plication of specific consistency techniques, most of whichare based on checks for
particular kinds of inconsistency, and thus cannot prove complete consistency.

This latter issue has been addressed by several people, fromdifferent perspectives.
The interested reader can consult, e.g., the works by Derrick, Bowman et al. [10], the
interesting book [1], and also the recent and complete work done by Remco Dijkman in
his PhD thesis [11]. How to combine the use of model-driven techniques and QVT in
those contexts is something we would like to explore furtheras part of future research.

6 Conclusions

In this paper we have sketched how QVT relations can be used torepresent ODP cor-
respondences in the context of the UML4ODP project, in an initial attempt to show
that this approach is feasible. QVT relations provide more powerful mechanisms than
those provided by plain OCL or UML abstraction dependenciesfor relating elements in
different ODP viewpoints, can be modularly and independently specified, be reused to
build more powerful QVT transformations, and serve both forchecking the correspon-
dences and for enforcing them.

25



There are still several issues open for investigation. Apart from the questions men-
tioned above, it is not clear whether this method is better ornot than the other ones dis-
cussed here, e.g., the one proposed by Remco Dijkman [11], orby Yahiaoui et al. [12,
13]. Furthermore, apart from specifying the correspondences, can the QVT relations
provide any other advantages? Can they be used, for instance, to reason about the sys-
tem specifications and their consistency? And if so, how thiscan be achieved? Which is
the underlying logic in which the reasoning can be done? Apart from consistency, what
other properties can be proved from the QVT specifications ofthe correspondences?
These are interesting questions, some of them we plan to address in a near future.

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments
and suggestions. This work has been partially supported by Spanish Research Project
TIN2005-09405-C02-01.

References

1. Große-Rhode, M.: Semantic Integration of Heterogeneous Software Specifications.
Springer-Verlag, Berlin (2004)

2. IEEE Std. 1471: Recommened Practice for Architectural Descriptionof Software-Intensive
Systems. IEEE Standards Association. (2000)

3. ISO/IEC 10746-1 to 10746-4, ITU-T X.901 to X.904: RM-ODP. Reference Model for Open
Distributed Processing. ISO & ITU-T. (1997)

4. Linington, P.: RM-ODP: The architecture. In Milosevic, K., Armstrong, L., eds.: Open
Distributed Processing II, Chapman & Hall (1995) 15–33

5. ISO/IEC 10746-4, ITU-T Rec. X.904: Information technology – Open distributed processing
– Reference model: Architectural Semantics. ISO & ITU-T. (1998)

6. ISO/IEC CD 19793, ITU-T Rec. X.906: Information technology – Open distributed process-
ing – Use of UML for ODP system specifications. ISO & ITU-T. (2005)

7. OMG: MOF QVT Final Adopted Specification. Object Management Group. (2005) OMG
doc. ptc/05-11-01.

8. ISO/IEC 10746-3, ITU-T Rec. X.903: Information technology – Open distributed processing
– Reference model: Architecture. ISO & ITU-T. (1996)

9. ISO/IEC 15414, ITU-T Rec. X.911: Information technology – Opendistributed processing
– Reference model – Enterprise language. ISO & ITU-T. (2006)

10. Boiten, E.A., Bowman, H., Derrick, J., Linington, P., Steen, M.W.: Viewpoint consistency in
ODP. Computer Networks34 (2000) 503–537

11. Dijkman, R.: Consistency in Multi-Viewpoint Architectural Design. PhDthesis, University
of Twente (2006)

12. Yahiaoui, N., Traverson, B., Levy, N.: Adaptation managementin multi-view systems. In:
Proc. of WCAT’05, Glasgow, Scotland, UK (2005) 99–105

13. Yahiaoui, N., Traverson, B., Levy, N.: A new viewpoint for change management in RM-ODP
systems. In: Proc. of WODPEC 2005, Enschede, The Netherlands (2005) 1–6

14. Akehurst, D.H.: Proposal for a model driven approach to creating a tool to support the RM-
ODP. In: Proc. of WODPEC 2004, Monterey, California (2004) 65–68

15. OMG: Model Driven Architecture. A Technical Perspective. Object Management Group.
(2001) OMG doc. ab/2001-01-01.

26


