Semantic Web Services Composition for the Mass
Customization Paradigm

Yacine Sam, Omar Boucelmaand Mohand-Sa Hacid?

L |SIS-CNRS, Universé Aix-Marseille 3, Domaine Universitaire de Sai@dme.
Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

2 Universié Claude Bernard Lyon 1.
43, boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France

Abstract. In order to fulfill current customers requirements, companies and ser-
vice providers need to supply a large panel of their products and services. Re-
cently, this situation has led to the Mass Customizing Paradigm, meaning that
products and services should be designed in such a way that makes it possi-
ble to deliver and adapt different configurations. The increasing number of ser-
vices available on the Web, together with the heterogeneity of Web audiences,
are among the main reasons that motivate the adoption of this paradigm to Web
services technology.

In this paper we describe an approach that allows automatic customization of
Web services: a supplier configuration, published in a services repository, is auto-
matically translated into another configuration that is better suitable for fulfilling
customers’ needs.

1 Introduction

The Web is not only an enormous warehouse of text and images, its evolution made
it also a services provider [14]. TH&keb serviceoncept refers to an application ad-
vertised over the Internet and made accessible to services requesters through standard
Internet protocols. Currently available examples of Web services are weather forecast-
ing, online tickets reservation, banking services, etc. Roughly speaking, Web services
are defined awell defined, loosely coupled software componants constitute there-

fore a new paradigm for applications integration [5].

Web services are currently implemented through three standard technologies: WSDL
[21], UDDI [19] and SOAP [17]. These standards provide only syntactical interop-
erability that prevents agents for automating services discovery, selection and com-
position tasks. The semantic Web provides standards for representing and processing
computer-interpretable information [1, 6]. Semantic Web services are then a synthesis
of these two standards and constitute therefore a good proposal for the automation of
the various tasks of Web services life cycle.

Semantic Web services descriptions relay on Web services annotations with terms
having a formal description in structured dictionaries called ontologies. DAML+OIL [7]
is a logic-based language intended to the description of Web services. Itis used directly

Sam Y., Boucelma O. and Hacid M. (2006).

Semantic Web Services Composition for the Mass Customization Paradigm.

In Proceedings of the 1st International Workshop on Technologies for Collaborative Business Process Management, pages 52-61
Copyright © SciTePress

or through DAML-S [2]. DAML-S is a DAML+OIL concepts ontolggdescribing the
technical aspects of a Web service (Inputs/Outputs pammetata types, etc). OWL
[15], an evolution of DAML+OIL, was recently standardized the W3C [20]. OWL
is now the main standard language for Web ontologies desmripnd OWL-S is the
corresponding evolution of DAML-S.

Other languages represent interesting solutions for aatiortvWeb services discov-
ery, selection and composition. One can quote GOLOG [10)arKks (Language for
Advertising and Requesting for Knowledge Sharing) [18]e Tatter is a frame based
language for semantic Web services discovery and seledtfmnformer is a Situation
Calculus Language and was adapted in [13] for Web serviaapasition.

In this paper, we build on ARKS to elaborate a Web services customization frame-
work. Mass Customization Paradigm [9] is a principle whidmsiders that products
must be conceived in such a way that makes it possible tdysatisous needs. Expo-
nential proliferation of services provided through the Vi@l the cosmopolitan aspect
of Web users justify the Mass Customization Paradigm for ¥éabices.

We propose a framework that allows the automatic custoiizatf \Web services.
The basic idea is to automatically transform services gtblil in the services directo-
ries in order to generate suitable configurations for ansgenient needs. The goal of
the automatic transformation, based mainly on the dynamsposition of Web ser-
vices, is twofold. On one hand, the construction task of amgiservice becomes easier
for the providers. On the other hand, the requesters wilbteta obtain services in the
alternatives that can satisfy their preferences, evereif tre not explicitly present in
the services directory. Thus, service providers publidi one explicit configuration of
a given service, the others are dynamically and autombticdéered from the services
directory.

The rest of this paper is organized as follows: we provid&ention 2, a motivating
example that illustrates customer requirements for cuigtlote Web services. Section
3 presents LRKS and its use for advertising and requesting for Web servinegsection
4, we develop our approach to Web Services customizationfirdfepropose a new
structure for semantic Web services that allows, in cohtas ARKS, customization
of services customization. We then describe the matchrggkiocess, and finally the
automatic Web services customization algorithm. We calein Section 5.

2 Motivating Example

Each year, "La Ete de la lun@re” (Light Celebrates) is the most important traditional
popular celebration in Lyon (a French city). Before tramglio Lyon, a Japanese tourist
wants to obtain information about the available Hotels inyand their fees. Thus, he
sends his request to a Web directory which stores this irdtiom in the form of Web
services, expecting to find a Web service execution that aasfgthe request.

After the request processing, the services directory seerbe unable to satisfy
the information required by the japanese customer. Indéedservices turned over
describe Hotels in French with their fees in Euro. This matkesn useless for the
customer, which understands only the Japanese languageasdhe local currency :

Yen. This scenario shows that the request cannot be satittfimagh the Web service
exists in the directory, but in an incompatible configunatio

The framework we propose allows transformation of Web ses/iThe basic princi-
ple of the Web service transformation consists in dynanyicallling two intermediate
Web services. The first will translate the Hotels descrigtirom French to Japanese
and the second will transform the fees from Euro to Yen. Thewan to the request
will then be built by the coordination of these two interregdiservices and the service
initially available in the directory.

3 Larks Language

LARKS is an advertising and requesting language for Web servit@s [n LARKS,
services and requests are both specified in the form of a frahreeframe’s attributes
are described hereafter:

— Context: it represents a keyword describing what the service does.

— Types: definition of the abstract data types used in the specificati

— Input/Output : declaration of the Input/Output variables of the service.
ContextandInput/Outputattributes can be annotated by machine-interpretable con-
cepts stored in the attribu@oncDescription

— InConstraints/OutConstraints : logical constraints on the Inputs/Outputs. These
constraints can be restrictions on the Inputs/Outputsegabr logical constraints
between the service Inputs/Outputs.

— ConcDescripton: formal description of the concepts being used for the séiman
annotation of the context and the Inputs/Outputs of theisesy The association of
a concepC to a word (Context or Input/Outpu is notedw*C, which means that
the concepC is the formal description of the wond. The use of formal ontologies
in LARKS makes it possible to semantically describe Web serviceml@yies can
be described formally with concept languages like ITL [4AR@QM [12] or KIF [3].

— TextDescription : textual description of the service requester needs or wisat-
vice provider can offer.

In LARKS, the constraints are used to restrict the values of an 1@ptplt. How-
ever, the assignment of a measuring unit to an Input/Outpatonly be specified by
semantic annotations using extensional formal conceptengional concepts are sets
of instances (objects) used, in this case, to capture thaf éeput/Output’s measuring
units. During the Web Services matchmaking processaRi{s, the comparison of the
two different concepts RO and YEN (See Figure 2) will fail. Indeed, no knowledge
is available to capture the fact that these two concepts eandrle comparable (pro-
viding a conversion). Consequently, no Web services toansdtion is possible in this
language.

In the following we propose a new Web services structure kvicionstitutes the
foundation for the customization process. It allows a serdirectory to detect, during
the matchmaking process, that two concepts (measuring)wé@h be convertible by
another service. Doing so, we avoid immediate failure of tfechmaking process.
From now, the term service is used to refer to a service affbyea service provider,
and the term request refers to a service requested by a.client

4 \Web Services Customization

This section introduces a new semantic Web services spficstructure, the match-
making process associated to it and the Web services custtiom.

4.1 A New Structure for Web Services

The structure we propose in this paper is used to specify thathservices and the
requests. It is made up of two subsystems : the StructurdaéBysnd the Constraints
System.

The Structural System §S. The SSis defined by the tripled, Z, O). C is the context

of the specification, it is defined by a keyword related to thectfied serviceZ and

O are respectively the description of the Input/Output J@lda and their abstract data
types in a service or in arequest. In Figure 1, the abstraatiglpe of the attributerice,

that represents the price of a bookRealin the Output of the service specification.
The keywords of the tripled; Z, ©) can be annotated by formal concepts defined in an
ontology, which we consider to be shared between all thesufea specific domain.

Example 1 Figure 1 illustrates the SS of a books-sale service. It idesd by its
context "Book” and its Inputs/Outputs "your-book”/("Prie”, "presentation”). The
Output parameters "Price” and "Presentation” are annotateby the conceptBrice
and Descriptionrespectively.

C |Book
7 | Your-Book:String
O|Price*Price:Real, Presentatioi¥escription:String

Fig. 1. A Structural System Example.

The formal concept®rice and Description — see Figure 2 — are used to assign
types to the Web service Inputs/Outputs Price and Pregemtaspectively. By the
Inputs/Outputs’ types we do not mean the abstract data {ypegier, Real, etc), but the
measuring units used to express the values of the Inpuisd@.Lih the domain ontology.
In Figure 1, the measuring unit of the Output Price is defingdhe concepfPrice
which corresponds to a set of currencies : Dollar(USD), BEeidR) and Yen(YEN) in
the ontology.

Note that the fact that the concdptice contains several measuring units can seem
inconsistent since an attribute value can only have oneumiegsunit at time. However,
the annotation with this kind of concepts (sets of measuuinits) is used only for one
partial service matchmaking that determinates the ses\ikely able to satisfy the
request. There is a second service matchmaking stage whigr¢he services being,
effectively, able to satisfy it will be selected.

Price = Money

Money = (and Real (all in-currency aset(USD, EUR, YEN)))
Euro = (and Real (all in-currency aset(EUR)))

Yen = (and Real (all in-currency aset(YEN)))

Dollar = (and Real (all in-currency aset(USD)))

Description = Language

Language= (and String (all in-currency aset(English, French, Japanese)))
Japanese= (and String (all in-currency aset(japanese)
French = (and String (all in-currency aset(French)

Fig. 2. Examples of formal concepts defined in ITL language.

The Constraints System CS). The CSallows the specification of two kinds of con-
straints : constraints on the values of the Inputs/Outpatscanstraints on their type-
sin the domain ontology (typing constraints). The CS is d@efiby the quadruplet
(Zet, Oct, Iery, Oppy) Where the elements are sets of constraints on the Inpus tgheput
types, Input values and Output values respectively.

In this paper, we focus on typing constraints that allow tec#y the measuring
units of Input/Output values in the the specifications ofees. The typing constraints
can be regarded as the specialization of the concepts usked titne of semantic an-
notation level of theSS The role of the typing constraints is to specify by exactie o
type (measuring unit) each Input/Output. The followingreyée illustrates this issue.

According to Figure 2, the conceptice is equivalent to the conceptoney which
is an extensional concept containing sets of currenciebelfuser (service provider)
wants her/his service fees in a particular currency unidudlitional knowledge must
be added to the service specification. Thus, she/lhe mustaartbe service in thES
with a more specialized concept thBrice. It can be, for example, the conceygn if
the user wants the fees in Yen (or the cond&yo if the provider can offer the service
in Euro).

ContextHotel

Z |Location : String

O |PricerPrice : Real,
PresentatiorDescription : String
Tt |Price=Euro

IC’U

Fig. 3. Typing Constraints. Oc; _|Description=French
OC’U

price = EURO
Description = French

Fig.4. A motivating example in our new
structure for Web services.

Figure 3 shows two typing constraints corresponding toSB@ Figure 1 that a
requester/provider can specify in tB& With such constraints, the requester/provider
can offer the necessary details on the values of the sempgd/Outputs, i.e., in only

one measuring unit. Figure 4 shows a fragment of a servicgigéen corresponding to
our motivating example. It is specified using our structam/f/eb services description.

4.2 Web Services Matchmaking Process

In our service structure, the Web services matchmakinggaomvolves two steps and
consists in determining if the customer’s request can hisfteat by the services ad-
vertised in a services directory. During the first step, timponent of the directory in
charge of the matchmaking process performs a syntactic @aosam of the keywords
describing the request triple€ (Z, O) with the triplets €', Z’, O’), of each available
service in the directory, and performs semantic compamsadhne associated concepts.

A service is considered as an answer to a request if its coatekinputs/Outputs
are similar to those of the request with a similarity thrddhbat can be defined within
the directory. At the end of this step, a set of servillesly to be able to satisfy the
customer request is selected.

The second step dependents on the success of the matchmab@egs during the
first step, i.e., the first step must return at least one seimiorder to pass to the sec-
ond step of the matchmaking process. This second step tomsithe comparison of
the CS of the request and th€S of the selected services in the first step. This step
also comprises two stages : (1) the comparison of the Inptl@ typing constraints,
and (2) the comparison of their (value) constraints. We ililstrate in what follows
the matchmaking process of Inputs/Outputs typing comgsairhe matchmaking of
Inputs/Outputs value constraints can be performed by cainssatisfaction algorithms
[11].

If all the Inputs/Outputs types of the request and those adraice have similar
measuring units, then there is no conflict and the matchmgkiocess continuous with
their Input/Output values constraints. If at least an IiPutput has two different mea-
suring units in the request and in a service, then a typindlicoappears. The typing
conflict between a request’s Input/Output and a servicgdsiti®utput means that the
service cannot (a priori) satisfy the request. Howeves, doies not draw aside this ser-
vice definitively since it may happen that the conflict can dleex.

Definition 1 (Cover axiom)Let Ay, A, ..., A,, be a set of formal concepts. A cover
axiom is an assertion of the formd := A; Vv A3 V ... V A,,, which means that the
conceptsdy, A, ..., A, are all sub-concepts of the concept A.

The cover axiom represents knowledge allowing the distndbetween the con-
cepts being able to lead to typing conflicts and the other.ofiesaxiom is associ-
ated with each extensional concept being able to cause aatamflne domain ontol-
ogy. In the example of Figure 1, the conc@&pice (equivalent to the conceploney)
can constitute the head of one cover axiom, because the giriaeproduct can be
specified in several different currencies. Thus, we will hdlve axiomMoney :=
FEUROVYENV ... V DOLLAR.

Definition 2 (Typing conflict) Let C be a set of concepts described in an ontology,
x, v, z three extensional concepts defined’jrand the two constraints:

x = y (Request typing constraint)
x = z (Service typing constraint)

Ify#zA(3ceC | yEcAzL ¢), and if there is a cover axiom:=y V... Vz
then there is a conflict due to the difference between the umiegsunits of the
Input/Outputz in the request and in the service.

When conflicts between a request and a service are reveatepldbess of retriev-
ing some services able to solve them starts. The semantigzsconflict resolution is
the transformation of the Web service configuration avéglab the directory into the
configuration required by the service requester.

4.3 Web Services Customization Process

The matchmaking process between a request and a serviceweal several typing
conflicts between their Inputs/Outputs. We use Ykieb services compositioras a
mean for conflict resolution. In other words, we propose alraeism that allows to
transform advertised services in order to be compatiblé wie requirements of the
service requester.

Our approach exploits services able to solve only one canfiticorder to obtain
the context (keyword) for the conflict resolution service, @efine a set of rules called
Context Association Ruleghus, for each domain ontology, a set of rules is defined and
stored in the services directory — one rule for each condggitdan generate a typing
conflict.

Definition 3 (Context Association RuleA Context Association Rule is a binary pred-
icate ConflictResolutionConcept, Context "Concept” is a variable representing ex-
tensional concepts defined in a domain ontology and belonigetdvead of one cover
axiom. "Context” is a variable intended to receive the codtgkeyword) of the conflict
resolution service.

A typing conflictis induced by the difference between twoaspts, both subsumed
by the same concept appearing in the first argument ofGomdlictResolutionpredi-
cate. The two conflicting concepts are recovered from thetation concepts of the
same Input/Output in a request and in a service.

Example 2 Figure 5 shows two context association rules in relationtte bntology
of Figure 2. The first rule associates the concbfiiney to the keyword (context) of
the currency conflict resolution service : ConversionMoridye second associates the
conceptanguageto the keyword of presentation language conflict resoluservice:
Translation.

The context of the service to call in order to solve an Inputfidt typing conflict
is extracted by exploring the context association ruledeéu, the predicat&onflic-
tResolution”having as first argument the concept causing the conflict arsbeond
argument a variable indicating the name of the conflict ragm service, will be sent
to the set of context association rules. The context of tmlicoresolution service is

ConflictResolution(Money, ConversionMong
ConflictResolution(Language, Translation

Fig. 5. Context Association rules.

determined by the substitution of the variaBBlentextby a keyword (context) appearing
in one of the context association rules (see Figure 5). Ehdone through the terms
unification algorithm [16].

The Inputs/Outputs of the conflict resolution services dmioned following two
cases, whether the conflict relates to an Input or to an Outghen a conflict occurs
between the Input of a request and the Input of a servjdbe Input of the conflict
resolution service is the Inputs of the servigeand its Output is the Inputs of the
request. If the conflict is caused by the Output of a requestiaa Output of a service
s, the Input of the service to be called takes the Outputseo$dinvices, and its Output
takes the Outputs of the request.

The service to be called will convert the values of the Infidigputs of the orig-
inal service in order to make them comparable with those efréguest. The values
of the Inputs/Outputs to convert will be passed to the casfliesolution services in
the service invocation phase. Then, the values of the Ifputputs of the request and
those of the service are made comparable (based on a samerimgasit). This al-
lows to pursue the matchmaking process with the verificaticthe non-contradiction
of the Input/Output value constraints of the request andéneice causing the conflict.
The Input/Output value constraints matchmaking makes ssiote to select the ser-
vices able to answer the request. All these matchmaking steyp allow Web services
customization by dynamic composition of other serviceslargtrated in Algorithm 1.

5 Conclusion

In order to be able to provide products in a more and more ¢iolaaket, companies
must vary their products according to the customers remérgs. To achieve this, they
must change their paradigm from products intended to a kudence of customers to
customizable products. This new paradigm is caNiss Customizing Paradig(B].
We adapted this paradigm to Web services in order to providenaework allowing to
automatically satisfy the customer requirements in terhesistomizable Web services,
while avoiding to the service providers the heavy task ofding specific configuration
for each customer.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, editdle Semantic WeMay, 2001.

3 Concept for the semantic annotation of request Input
4 Concept for the semantic annotation of service Input
5 Concept for the semantic annotation of request Output
6 Concept for the semantic annotation of service Output

Hw

10.

11.

12.
13.

14.

15.
16.

17.
18.

19.
20.
21.

M. H. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, D. V. McDetim&. A. Mcllraith,
S. Narayanan, M. Paolucci, T. R. Payne, and K. P. Sycara. Dawils:service description
for the semantic web. In Horrocks and Hendler [6], pages 348-363.

. M. R. Genesereth. Knowledge interchange formakKmRypages 599-600, 1991.
. N. Guarino. A concise presentation of itl. DK, pages 141-160, 1991.
. G. Hohpe Web services: Pathway to a Service Oriented Architectlirought Works, Inc.,

2002.

. |. Horrocks and J. A. Hendler, editor§he Semantic Web - ISWC 2002, First International

Semantic Web Conference, Sardinia, Italy, June 9-12, 2002, Prioggsesiolume 2342 of
Lecture Notes in Computer Scien&pringer, 2002.

. . Horrocks, P. F. Patel-Schneider, and F. van Harmelen. RigeWe design of daml+oil:

An ontology language for the semantic web.AAAI/IAAI pages 792—-797, 2002.

. B.J. P. Il and S. DavisMass Customization: The New Frontier in Business Competition

Harvard Business School Press.

. J. Kovse, T. Harder, and N. Ritter. Supporting mass customomizatigenerating adjusted

repositories for product configuration. @AD, pages 17-26, 2002.

H. J. Levesque, R. Reiter, Y. Légpnce, F. Lin, and R. B. Scherl. Golog: A logic program-
ming language for dynamic domaink.Log. Program.31(1-3):59-83, 1997.

C. Liu and I. T. Foster. A constraint language approach to matdhmaln RIDE, pages
7-14, 2004.

R. M. MacGregor. Inside the loom description classis#@GART Bulletin2(3):88-92, 1991.
S. A. Mcllraith and T. C. Son. Adapting golog for composition of seticaveb services. In
KR, pages 482-496, 2002.

S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic web serviEEEE Intelligent Systems
16(2):46-53, 2001.

OWL. http://www.w3.org/TR/owl-features/.

J. A. Robinson. A machine oriented logic based on the resolution principlé. ACM,
12(1):23-41, 1965.

SOAP. http://www.w3.org/TR/soap/.

K. P. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamitchmaking among het-
erogeneous software agents in cyberspatetonomous Agents and Multi-Agent Systems
5(2):173-203, 2002.

UDDI. http://uddi.org/pubs/uddi3.htm.

W3C. http://www.w3.org/.

WSDL. http://www.w3.org/TR/wsdl/.

Algorithm 1 Web Services Customization.
Step 1 : Structural Systems matchmaking

1. Seek a sef of services whose context and Inputs/Outputs are similar to those tédqbestO.
2. If the setS is empty then the matchmaking process fails, and no result can be turned oves fegtlest. Else
pass to step 2.

Step 2 :Constraints Systems matchmaking
For each service s in the s§tdo:

A. Detect the Inputs/Outputs whose types are in conflict with the Inputglts of the request. If no conflict is
detected then pass to step C, else pass to step B.

B. Seek a conflict resolution service for each typing conflict of an Input/Outpatrequest and a service specifica-
tions. Two cases are to be distinguished, according to whether the confliesrlan Input or to an Output.

a. If (ConceptAnnotatel g)3=C1
A ConceptAnnotatel .)* = C2 // C1# C2
A(3C|C1EC CAC2LC C)ll C:immediate subsumer of C1 and C2
A C:=Cq1V CzV..)Il Cover Axiom
then Find the service whose structure is :

Contex{ ConflictResolution(C, context)
7T |Zs
O |Ig
Lot |ZLet(s)
Oct [Zet(@)

b. If(ConceptAnnotat@)q)° = C1
A ConceptAnnotat@) ..)= C2 I/ C1+# C2
A (3C|C1LC CAC2LC C)ll C:immediate subsumer of C1 and C2
A C:=Cy V CqyV..)Il Cover Axiom
Then Find the service whose structure is :

Contex{ ConflictResolution(C, context)
I |0
O |0q
Zet [Oci(s)
Oct |Oct(@)

C. Evaluate the Inputs/Outputs values constraints. If they are not imactiction then the service can answer the
request, else the service is not suitable like response to the request.

