
Testing of Semantic Properties in XML Documents

Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche

telecommunications, networks& securityResearch Group
Department of Computer Science, University of Fribourg

Boulevard de Ṕerolles 90, 1700 Fribourg, Switzerland

Abstract. XML is a markup language with a clear hierarchical structure. Vali-
dating an XML document against a schema document is an important part in the
work flow incorporating XML documents. Most approaches use grammar based
schema languages. Grammar based schemas are well suited for the syntax defi-
nition of an XML document, but come to their limits when semantic properties
are to be defined. This paper presents a rule based, first order schema language,
complementary to grammar based schema languages, demonstrating its strength
in defining semantic properties for an XML document.

1 Introduction

XML [9] [4] is an easily extensible markup language with a hierarchical structure, read-
able by computers as well as by humans. Own sub languages, can be defined with a so
called schema. A schema defines the languages syntax and semantics. Syntax means
the hierarchy of the XML elements. The term semantics depends on the expressiveness
of the chosen schema language.

Own sub languages with syntax and semantics defined in a schema can be used as
an exchange or serialisation format for data used in an application. In many cases, XML
data gets from a producer to a consumer, which treats the received XML documents. It is
important to define clearly the languages syntax and semantics, similar to the definition
of public methods or functions in libraries, so that the producer and consumer of XML
documents have the same understanding of the document. Different grammar based
languages exist to create these definitions. DTD (Document Type defintion) [2] was a
first attempt for a grammar based schema language. DTD is itself not written in XML,
name spaces are not supported and certain syntactical aspects cannot be expressed.
These points turned out to be a too big disadvantage. W3C designed XML schema [12]
[14] as alternative to DTD and is now widely used to define the syntax of XML sub
languages. W3C XML schema as well as Relax NG [15] are grammar based schema
languages written in XML itself. The purpose of grammar based schema languages is
mainly to define a document’s syntax.

The paper is organised as follows. Section 2 shows the limits of grammar based
schema languages justifying why it is necessary to introduce a new kind of schema lan-
guages. One of these new kind and more powerful languages, CLiXML, is introduced
and explained more detailed in Section 3 using an example. Section 4 shows some al-
ternatives to CLiXML and finally Section 5 concludes this paper.

Jungo D., Buchmann D. and Ultes-Nitsche U. (2006).
Testing of Semantic Properties in XML Documents.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 38-46
DOI: 10.5220/0002484500380046
Copyright c© SciTePress

2 Limits of Grammar Based Schema Languages

Grammar based languages are well suited for a languages syntax definition, but reach
quickly their limits when they are used to define semantic properties of an XML doc-
ument. In the case of grammar based schema languages, semantics means specifying
data types of attribute values. W3C XML schema knows simple and complex data types.
Elements, Comments and Text belong to complex data type. Attribute values, compa-
rable to simple data types, such as integers or strings, in programming languages, are
simple data types. Complex data types can be extended using choices and sequences.
Simple types can be adapted using restrictions, enumerations and regular expressions.
This approach lets one define only a very limited set of semantics properties.

Let us illustrate the restricted schema capabilities with an example. Listing 1 shows
an XML representation of an oriented labeled loop free graphrespecting referential
integrity. Referential integrity means that each edge is connected to an existing vertex.
The graph consists of a list of vertices. Each vertex has a label (identifier, attributeid)
and a list of edges from the vertex to other vertices, defined by the to attribute in the
edge element. These syntactical properties can be easily defined by a grammar based
schema.

<graph>
<vertex id="0">

<edge to="5"/>
<edge to="6"/>

</vertex>
<vertex id="5"/>
<vertex id="6"/>
...

</graph>

Listing 1. An XML representation of an oriented labeled loop free graph.

Consider the case of writing an application which expects asinput an oriented loop
free connex graph respecting referential integrity, in XMLformat, from an external
source. We cannot trust this external source to deliver graphs as expected. Our applica-
tion that treats these documents only works fine if the input document meets the given
requirements. Hence we have to test the XML documents if theyrepresent a graph that
is oriented, loop free, connex and respecting referential integrity prior to the treatment
within the application. This can happen using either the host language, the language
in which the XML treating application is written, or using a schema document and a
schema validator which checks whether the document meets all requisites specified in
the schema document. Using a schema has the advantage that itcan be negotiated be-
tween the document provider and the user before writing any applications. The schema
document acts as an interface descriptor or contract between provider and consumer.
Both parties, the provider and the consumer, can check the XML documents against the
same schema.

Properties being well formed and having a valid semantics can be tested using gram-
mar based schema. The documents correct structure, i.e. whether the labels are integer

39

and unique values, whether the graph element contains only vertex elements, the vertex
elements contain only edges an so on, can be verified with an XML schema. Semantic
properties, like testing whether the graph is connex, loop free and is respecting refer-
ential integrity cannot be tested using W3C XML schemas. W3C XML schemas are
missing powerful constructs letting define required relationships between any compo-
nents within the XML document. Roberts [10] describes it as missingcross-field checks
such as ”if element x contains value y then element z should bemandatory”. W3C
schema grammars allows only to define which element x can appear as child of element
z, but any other conditions than parent-child relationshipcannot be expressed. Hence a
new kind of not grammar based schema has to be introduced. Thesolution therefore are
rule based schemas. Section 3 gives a short introduction to the most outstanding rule
based schema language: Constraint Language in XML (CLiXML). Unlike grammar
based schema languages, rule based schema languages have a much simpler structure.
A rule based schema consists of a list of rules. Each rule has an output part which will
be outputted by the schema validator when the rule succeeds,respectively fails and the
rule itself, which contains constraints and restrictions of the XML document, and its
content, i.e. required relationships between its content.

3 Testing of Semantical Properties in XML Documents

W3C XML schema cover basically syntactical properties. So only semantical proper-
ties have to be tested by the newly introduced language, since it does not assert it’s
claim to be an all-in-one language suitable for every purpose, doing work already done
by W3C XML schema. All grammar based rules show that their template-like structure
is cumbersome and hindering to describe semantical properties. They let only define a
parent child relationship. In the language described here,CLiXML, another approach is
used. Nodes (elements, attributes, text, comments) are selected by an XPath [3] expres-
sion and constraints are set up on, respectively between theselected nodes. XPath is the
language defined by W3C to select nodes of an XML document. Selections are made
using a regular expression inspired language, adopted for XML’s tree structure. XPath
requests result in lists. Hence using first order logic expressions seems to be quite a
natural approach.

Quantifiersforall and existscontain a predicate variable (variable name and an
XPath expression to select a list of nodes). The quantifier contains a further quantifier, a
logical predicator (equal, less, bigger...) or a logical operator (and, or, not, ...). Predica-
tors are binary. This means that predicator elements contain two attributesop1andop2,
which are both related together by the predicator. Logical operators are elements that
group operators, predicators or quantifiers. Nested quantifiers and predicators can use
the preliminarily defined variable to specify the needed relationships between the se-
lected nodes; i.e. inner quantifiers can define XPath expressions relative to the selected
node or comparators can use the selected node and compare it with another one. The
quantifiers act like iterators when being evaluated. In eachiteration step, the predicate
variable takes one value from the list. A forall test succeeds only if the nested test suc-
ceeds for all iteration steps. Exists succeeds if the nestedtest succeeds for at least one
iteration step.

40

CLiXML was specified by Systemwire [1]. Systemwire integrated their implemen-
tation of CLiXML into a commercial product but published thelanguages XML schema
on their website. An open source version [7] of CLiXML, corresponding to the XML
schema, is being implemented by one of the authors of this paper. The open source
implementation is also used in the VeriNeC project [13] [8] [6].

Let us illustrate the language’s power using our example from Listing 1. Among
others, we required that the graph fulfills referential integrity. I.e. each edge leads to an
existing vertex. In other words, for all edge destination id’s there must exist a vertex
such that the edge destination id is the same as the vertex id.Or mathematically:
∀e ∈ ′/graph/vertex/edge′,∃v ∈ ′/graph/vertex′: $e/@to = $v/@id.
This can be translated into the CLiXML rule illustrated in Listing 2.

<rule id="valid_edges">
<report>edge leads to non existing vertex</report>
<forall var="edge" in="/graph/vertex/edge">

<exists var="vertex" in="/graph/vertex">
<equal op1="$vertex/@id" op2="$edge/@to" />

</exists>
</forall>

</rule>

Listing 2. An referential integrity CLiXML rule.

One could argue that theid andidref types from XML schema are able to describe
exactly this scenario. But when using different elements with id attributes, XML schema
can only test if the referenced ids exist, but not if they exist where they are expected.
Listing 3 shows a graph with labeled edges, where the edge labels are also id attributes.
In this case schema is not able to make a difference between ids of a vertex and ids of an
edge. So it would be possible to define an edge connected to another edge if we would
just rely on W3C schema.

<graph>
<vertex id="0">

<edge id="e1" to="5"/>
<edge id="e2" to="6"/>

</vertex>
<vertex id="5"/>
<vertex id="6"/>
...

</graph>

Listing 3. An XML representation of an oriented labeled loop free graph with labeled edges.

Testing whether the graph is loop free can be done using the label property in an
oriented graph. For all verticessrcV and for all edges within the vertexsrcV, named
dst, it must hold that the id of the source VertexsrcV is strictly smaller than the “to”
attribute of the destination vertexdst.

41

Or mathematically:
∀srcV ∈ ′/graph/vertex′,∀dst ∈ ′$srcV/edge′: $srcV/@id < dst/@to
Listing 4 shows the CliXML rule which tests whether the graphis loop free or not.

<rule id="loop_free">
<report>graph is cyclic</report>
<forall var="srcV" in="/graph/vertex">

<forall var="dst" in="$srcV/edge">
<less op1="$srcV/@id" op2="$dst/@to" />

</forall>
</forall>

</rule>

Listing 4. An CLiXML rule that checks for loop freeness.

Finally, checking whether the graph is connex can be done checking whether all vertices
are reachable, except the vertex with the smallest id. In words, for all vertices, there exist
an edge leading to it, or the vertice is the first.
∀v ∈ ′/graph/vertex′,∃e ∈ ′/vertex/edge′: $v/@id = min(/vertex/@id) ∨

$v/@id = $e/@to

<rule id="connex">
<report>graph is not connex</report>
<forall var="v" in="/graph/vertex">

<exists var="e" in="/graph/vertex/edge">
<or>

<equal op1="$v/@id" op2="min(/graph/vertex/@id)"/>
<equal op1="$v/@id" op2="$e/@to"/>

</or>
</exists>

</forall>
</rule>

Listing 5. Listing: An CLiXML rule that checks whether the graph is connex.

Listing 5 shows the rule that checks whether the graph is connex.

3.1 Macros

CLiXML offers the possibility to write own macros. A macro isa template like struc-
ture. A macro is defined by a name, contains a list of parameters and a macro body. A
macro can be called with a macro call element, containing a list of parameters. When
a macro is called, the caller element is replaced by the definition body, with the vari-
ables replaced by it’s parameters within the macro body. Macros can contain calls to
other macros or to themselves. On a macro call, macro’s are always evaluated by one
level. Only when coming to the evaluation of a macro call in the body of the previously
replaced macro, the macro is replaced by the next level. Thislevel by level evaluation
allows to write recursive macros.

42

3.2 User Defined Functions

Where CLiXML predicates, quantifiers and macros are not enough, one can introduce
own validator functions. Therefore the validator has to be extended and these functions
are only usable in the validator they were written for. Open CLiXML offers an interface
which functions must implement. But these functions cannotbe used on other imple-
mentations using another mechanism for user defined functions.

A function contains a name which is passed by an attribute andfunction parameters
by a list of elements. Implementing own functions should be avoided, wherever pos-
sible, since own function implementations depend on validators implementation and
cannot be passed as easily as the schema document. Using the example graphs, lets
choose colored graphs and decide whether the number of used colors equals the graphs
chromatic number. This would be a candidate to be expressed in a user defined func-
tion since macros are not adapted to do things that are that complex as determining the
chromatic number.

4 Alternatives to CliXML

This section gives a short overview of alternatives for CLiXML allowing to define se-
mantic properties.

4.1 Using a Host Language

One alternative to check the XML Document’s semantical validity is surely doing this
by own written functions in the host language of the application, using or building up
the XML document. By doing so, one loses the independence of host systems. XML’s
strength is its independence from programming languages and systems, and it is not in
XML’s sense to hard code a semantics validator. Creator and consumer have to agree
on the same validating function. When one side uses another host language, they have
to write their own validator and it is not guaranteed that it behaves as the other side’s
validator. Another consequence using the host language instead of a schema document
is, that one is losing the schema as contract document. One should be discouraged from
hard coding the document’s semantics in a host language language.

4.2 Schematron

As alternative to CLiXML, there exists Schematron [5]. Schematron is a rule based
schema language also using XPath expressions, very similarto CLiXML. Reference
implementation is written in XSLT. This is a very interesting concept, since it can be
employed wherever an XSLT processor exists. Schematron’s drawback is that it is not
very strongly structured. Instead of splitting up rules into hierarchically nested ele-
ments, it uses a flat structure. The whole complexity of a rulelies within a single at-
tribute containing an own language paired with XPath. Hencerecursive definitions are
not possible. It is proposed to use javascript or any other wrapper language1 to elim-
inate this drawback. Schematron’s drawbacks rise from a toosimple and flat language
structure, but allow an XSLT implementation.

1 language which calls the validator

43

4.3 OASIS Content Assembly Mechanism

Content Assembly Mechanism (CAM) [11] was specified by the OASIS group. It aims
to be a system to define, validate and compose XML documents. Unlike CLiXML, it
is quite complex since it was designed for more tasks than CLiXML. CAM contains a
part with rule based schemas. In CAM they are called businessrules. The business rules
are similar flat structured as rules in schematron with the same drawbacks. Recursive
structures are missing. This makes CAM less powerful in expressing semantic rules than
CLiXML. Constraint actions (see Listing 6) catches the readers eyes, when browsing
the CAM tutorials.

<constraint action="functionName(xpath)"/>

Listing 6. A CAM constraint action.

The action attribute contains a java or c like function call with an XPath parame-
ter. Such structured, nested content within one attribute is an indicator for improper
language design. Having a closer look at the schema definition of CAM makes our
skepticism stronger. The action attribute is declared as anunstructured string, but in the
tutorials described as a c-like function call. Listing 7 shows a proper suggestion split-
ting up function name and XPath parameter into own attributes for improvement. The
function like structure from Listing 6 has been apparently chosen, to keep the defini-
tion part simple and the language easily readable by humans.But this introduction of
unstructured data makes it more difficult to be treated by an application. CAM offers a
much longer list of useful predicates than CLiXML or Schematron do. CAM is used by
a community, including people from industry.

<constraint action="functionName" parameter="xpath"/>

Listing 7. A proposal for a proper CAM constraint action.

5 Conclusion

CLiXML has been used by the autor of this paper to define acceptable event series in
simulation log files [8]. By using CLiXML we experienced thatCLiXML is working
fine for strongly nested documents, but is rather clumsy for flat structure XML files.

Coming back to our graph example, using a structure as in Listing 8 complicates
things a lot. We have to use recursive macros and things gets unnecessarily compli-
cated, when a flat structure is chosen. Taking a well adapted XML structure reduces
complexity for the schema as well as for the application treating the data.

44

<graph>
<vertex id="0"/>
<vertex id="1"/>
<vertex id="2"/>
...
<edge from="0" to="1"/>
<edge from="0" to="2"/>
<edge from="1" to="2"/>
...

</graph>

Listing 8. An alternative XML representation of a graph.

CLiXML specifications are not everywhere as precise as they should. This impre-
cise specification let the risk of not being compatible with the original CLiXML im-
plementation. Details about how a macro is called are missing and the report output
is completely open too. The macro calls are made from the Macro namespace. But a
schema belonging to this namespace is missing. An own schemahas been introduced
there. The CLiXML schema itself was in some minor points not W3C schema compli-
ant and needed adjustment. As a help to understand why a test failed, the open source
implementation of CLiXML offers the possibility to add a stack trace to the report,
showing which part of the rules failed and which succeeded. Quantifiers show in the
stack trace which values a variable has taken during testinga document. Stack traces
including variables has turned out to be useful.

This paper presented the relevance of schema documents in the work flow process
where XML data is used. The limited capabilities for describing semantics using a
schema document were explained using the graph example. Finally the rule based
schema language, CLiXML was explained and compared to otherrule based languages.

References

1. Clixml specification. Technical report, Systemwire.com, http://www.clixml.org/spec.html,
2003.

2. Jon Bosak, Tim Bray, Dan Connolly, Eve Maler, Gavin Nicol, C. Michael Sperberg-
McQueen, Lauren Wood, and James Clark. Guide to the w3c xml specification (xmlspec)
dtd, version 2.1. Technical report, W3C, http://www.w3.org/XML/1998/06/xmlspec-report.

3. James Clark and Steve DeRose. Xml path language (xpath). Technical report, W3C,
http://www.w3.org/TR/xpath, 1999.

4. Elliotte Rusty Harold and W. Scott Means.XML in a Nutshell. O’Reilly, Sebastopol, 3rd
edition, 2004.

5. Rick Jelliffe. An xml structure validation language using patterns in trees. Technical report,
Academia Sinica Computing Centre, http://xml.ascc.net/resource/schematron, 2005.

6. Dominik Jungo. The role of simulation in a network configuration engineering approach.
In ICICT 2004, Multimedia Services and Underlying Network Infrastructure, Cairo, Egypt,
2004. Information Technology Institute.

7. Dominik Jungo. Open clixml. Technical report, University of Fribourg,
http://clixml.sourceforge.net/, 2005.

8. Dominik Jungo, David Buchmann, and Ulrich Ultes-Nitsche. A unit testingframework for
network configurations. InProceedings of the 3rd International Workshop on Modelling,

45

Simulation, Verification, and Validation of Enterprise Information Systems (MSVVEIS 2005),
Miami, Florida, USA, 2005. INSTICC Press.

9. Liam Quin et al. Extensible markup language (xml). Technical report,W3C,
http://www.w3.org/XML/, 1996-2003.

10. Martin Roberts. jcam. Technical report, CAM, http://jcam.org.uk/, 2006.
11. OASIS CAM TC. Oasis content assembly mechanism (cam) tc. Technical report, OASIS,

http://www.oasis-open.org/committees/tchome.php?wgabbrev=cam, 2004.
12. Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. Xml schema.

Technical report, W3C, http://www.w3.org/TR/xmlschema-1/, 2004.
13. Ulrich Ultes-Nitsche, Dominik Jungo, and David Buchmann. Verified network configu-

ration. Technical report, University of Fribourg, http://diuf.unifr.ch/tns/projects/verinec/,
2004–2005.

14. Eric van der Vlist.XML Schema. O’Reilly Media, Inc., 2002.
15. Eric van der Vlist.RELAX NG. O’Reilly Media, Inc., 2003.

46

