
PiXL: Applying XML Standards to Support the
Integration of Analysis Tools for Protocols

Maŕıa del Mar Gallardo1, Jeśus Mart́ınez1, Pedro Merino1, Pablo Nũnez2 and
Ernesto Pimentel1

1 Departamento de Lenguajes y Ciencias de la Computación
University of Málaga, Spain

2 NibiSoft S.L., Málaga, Spain

Abstract. This paper presents our experiences on usingXML [1] technologies
and standards for the integration of analysis tools for protocols. The core pro-
posal consists in the design of a newXML -based language namedPiXL (Proto-
col Interchange usingXML Languages), responsible for interchanging the whole
specification of the protocol (data and control) among different existing tools. The
structure and flexibility ofXML has proven to be very useful when implementing
new tools such as abstract model checkers. In addition, the suitability of the pro-
posal has been applied to achieve a new kind of analysis, wherePiXL and new
MDA [2] methodologies have been proposed to build integrated environments for
reliability and performance analysis of Active Network protocols.3

1 Introduction

Protocols are of critical importance for the reliability of Distributed Enterprise Infor-
mation Systems. The application of formal methods during the Protocol Engineering
process is well-known and has proven to be very useful because the elevated cost and
consequences of failures among these concurrent and distributed systems are usually
unacceptable. However, there is no common standard methodology to apply formal
methods in the design and implementation of protocols, in contrast to those usually
applied in other engineering fields.

One of the most important drawbacks when using formal methods for the analy-
sis of protocols is the management of different system descriptions (models) for each
tool employed: one specification for reliability analysis, another one for performance
analysis, templates for code generation or documentation profiles, among others.

In this sense, the use of a single common formal description having all the features
required by different analysis tools would maintain all the aspects to be analyzed in
a consistent way. Unfortunately, this approach presents two main difficulties. First of
all, it would be quite expensive to adapt the existing algorithms and tools to that new
common notation and, on the other, non-expert users would have to learn how to manage
it.

3 Work partially supported by projects TIN2004-7943-C04 and TIN2005-09405-C0201

del Mar Gallardo M., Martínez J., Merino P., Nuñez P. and Pimentel E. (2006).
PiXL: Applying XM L Standards to Support the Integration of Analysis Tools for Protocols.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 57-66
DOI: 10.5220/0002479300570066
Copyright c© SciTePress



An alternative approach to avoid the construction of new algorithms or the intro-
duction of new (and complex) language features consists of so-calledtool integration,
which has been developed mainly in two directions: one of them relies on the construc-
tion of integrated environments to manage a group of possible analysis, using internal
translators between two tools (source and destination). The ETI [3] platform follows
this scheme. In ETI, the coordination among tools is obtained through the definition of
functionality taxonomies that each tool exports when it is integrated into the platform.
Thus, the environment is able to recognize common or compatible functionalities.

The second direction consists of the definition ofintermediate languages, which
usually constitute new formal methods grouping common features used by the tools to
be integrated. This kind of intermediate format allows the interchange of models among
usual code generators and verification or static analysis tools.

Some of these languages are not user-oriented, and are directly oriented to parsers
and algorithms of tools like CADP [4] or Bandera [5]. By contrast, IF [6] and Veritech
[7] approaches have created their own formal description technique for users, which
also acts as an intermediate language.

Traditionally, one of the main disadvantages of the second approach has been the
difficulty of extending the intermediate formats, because the expressivity of these lan-
guages is clearly coupled with the features of the tools to beintegrated originally. There-
fore, it is not trivial to incorporate a new tool in order to take advantage of its comple-
mentary new features. This paper deals with this problem. Wefocus on the design of
a new intermediate format for analysis tools that is flexibleenough to allow its manip-
ulation and extension, so that the integration of tools can be understood as a seamless
process. That is, initially there will be no limits for features to be incorporated, allowing
future extensions for new tools.

In order to achieve these objectives, we have used standard tools to define the new
language. Our previous experiences in integrating tools and XML [8–10] have motivated
the definition and implementation of an intermediate interchange language calledPiXL
(Protocol Interchange usingXML Languages), which is designed to represent protocols
considering the extended communicating finite-state machine (ECFSM) model.PiXL
constitutes a new language based on a previousXML format used to perform abstract
model checking withSPIN [11]. We have also incorporated some guidelines of recent
Model Driven Engineering, such asMDA [2], to manage the integration of complemen-
tary analysis tools [10]. WithPiXL we benefit from a common set ofXML elements
representing the usual ECFSM features, which can be easily extended and automati-
cally parsed with existingXML technologies. These extensions allow the representation
of formalisms such asPROMELA for SPIN, StateCharts orSDL.

The paper is organized as follows. Section 2 introduces thePiXL language, describ-
ing its main features and extension capabilities. The language constitutes the basis for
the implementation and integration of the tools described in Section 3. Finally, Section
4 presents our conclusions and lines of future work onPiXL.

58



Fig. 1.Traditional APIs for extensions vs. anXML -based approach.

2 The PiXL Language

2.1 Justification

XML is been widely used as a language to interchange data. Nevertheless, its features
have not been exploited within the domain of analysis tools.Transition-based for-
malisms likeSDL, PROMELA, or variants of ECFSMs are commonly used to describe
and analyze critical systems and communication protocols.These formalisms focus on
describing the behavior of such systems, including concurrency, non-determinism, com-
munication channels or dynamic creation of different entities, among others. Modelling
languages share common characteristics; however, it is noteasy to integrate tools that
use such notations. This section describes the use ofXML to represent all functional
aspects of a complex system from the analysis point of view inorder to facilitate its
combined use by different (and complementary) analysis tools.

Fig. 1 presents the layered architecture of a typical analysis tool. Basically, the fig-
ure depicts the different stages through which data pass before being processed by al-
gorithms. The upper layer consists of the graphical editor that helps users to define
analysis models using some formal notation (for instanceSDL or PROMELA). The in-
termediate layer (“data structs” in the figure) represents the most particular feature for
each tool, because it defines the way in which model data are stored. Note that from
this intermediate level to the bottom, fig. 1 has been dividedinto two columns. The left
one shows the classical way of manipulating data using programming libraries (APIs).
With this strategy, it is necessary to translate model data into an internal structure, like
an Abstract Syntax Tree (AST). In the best case, the designerof the tool provides an
open API with some limited extension capabilities. Using this API (and some technical
assistance), it would be possible to access the AST to updatethe tool with new capa-
bilities. However, even considering this method as successful, it is not clear whether
extensions developed in this way could be partially reused with other existing or new
emerging analysis tools.

59



Fig. 2. Layered architecture ofPiXL XML -Schemas.

Alternatively, we propose the use ofXML to represent the original description of the
model, which additionally allows us to use powerful associated tools and APIs, such as
XPath andXSLT (to navigate and transformXML documents, respectively) orSAX and
DOM APIs (for parsing). With this approach (shown in the right hand column of fig. 1),
the AST is now represented as anXML document which can be managed by external
developers in a more flexible way. The rest of the section summarizes theXML and
PiXL features, along with extension capabilities of the language and associated tools
for processingPiXL.

2.2 XML Technologies to DesignPiXL

The first version ofPiXL [12] was developed to describePROMELA models inXML

using aDTD (document type definition). AlthoughDTDs are not as expressive as they
should be to describe the complexity of a modelling language, we applied some strict
semantic rules that were embedded into ourXML translator toPROMELA. We also found
some problems in dealing with extensions or modifications ofpreviously declaredXML

elements. Alternatively, theXML Schema recommendation improves the way in which
XML structures are created. It constitutes a fullXML language, allowing directXML

tool support. The current version ofPiXL is based onXML Schema layers, a feature
which allows modularization and extensions, being more expressive to describe not
only PROMELA models but also other transition-based formalisms.

Extension mechanisms provided withXML Schemas make it simple to redefine or
add new contents to existing language elements. Fig. 2 showsthe architecture of dif-
ferent Schemas that are part of our proposal. ThePiXL core is composed of three basic
XML Schemas (defining types, expressions and actions asXML elements). Creating new
modelling components is done by reusing those provided in the core. The figure shows
how upper Schemas rely on functionality previously defined in other Schemas. For in-
stance, the C language subset Schema defines elements for C code, which reuse other
elements existing in thePiXL core, by including its Schemas. We also provide Schemas
describing common reliability or performance features useful for analysis tools. Dotted
boxes constitute work in progress at the moment, oriented tobuilding a new version of
the abstract model checkerαSPIN, introduced in Section 3.1, to be compatible with the
new version ofPROMELA [11].

Each of ourPiXL Schemas benefits from usingXML namespaces to differentiate el-
ements; that is, inPiXL it is possible to define twoXML elements with the same name,

60



Fig. 3.Some elements of aPiXL model: structural elements (left) and actions (right).

if they are used within a different context (its namespace).This feature is specially in-
teresting to build parsers that will manage only thoseXML elements that are interesting
for a specific tool. ThePiXL core also defines complex types which constitute the base
of everyXML element of the same type, as commented below.

2.3 Language Deatures

A PiXL model is composed of global resources and modules (fig. 3, left). Global re-
sources describe variables, arrays, user defined types or communication channels avail-
able for all the modules in the protocol model. As shown in fig.3, PiXL provides the
<moduleType> type to define parameterized modules. Fig. 3 makes use of thiscomplex
type to create the abstract<moduleDecl> element. This is the base type to derive the
concretePiXL modules<functionDecl> (function declaration) and<processDecl>

(process declaration), it being possible to include any of the concrete elements in-
side a<modules> element. Models may also contain requirements in the form of
<specifications> . Currently,PiXL provides the<never> element to model a B̈uchi
automaton. This kind of automaton is used by model checking algorithms [13] to de-
scribe and analyze functional properties of protocols.

PiXL language includes support for expressions, statements anddata types. For ex-
ample, binary and unary operations are available expressions, along with data chan-
nel queries, function calls, constants or references to variables.PiXL statements rep-
resent actions, as shown in fig. 3 (right). The base type<statement> is redefined
to create typical actions to be included in the<body> part of thePiXL modules: as-
signments, assertions or flow control structures. Regarding flow control, PiXL pro-
vides the<randomChoice> element to define non-deterministic choices. The optional

61



<model>
...

<configuration>
<systemInit>

<declaration name="myChannel">
<channel size="1"><integer/><byte/></channel>

</declaration>
...
<codeBlock executionMode="strict-atomic">

<stmtExpr>
<run name="myProcess">

<refAsExpr>
<varReference name="myChannel"/>

</refAsExpr>
</run>

</stmtExpr>
...

</codeBlock>
<send mode="fifo">

<varReference name="myChannel"/>
<args><const value="1"/><const value="0"/></args>

</send>
</systemInit>

</configuration>
</model>

Fig. 4. Some excerpts of aPiXL model.

<otherwise> element shown as a dotted box in fig. 3 (right), allows executing this
branch only when the other options cannot be selected (this is determined by checking
the guard element). Finally, data types inPiXL follow a similar hierarchy of prede-
fined types available inXML Schemas, allowing extensions. ThePiXL core provides
the primitive and complex types available in thePROMELA language.

A PiXL model optionally contains a system configuration to initialize global re-
sources, to determine which processes are started at the beginning, or to define schedul-
ing parameters such as priority semantics for process scheduling. Fig. 4 shows part of
an example for aPiXL model that defines a system configuration: the declaration and
use of themyChannel channel variable and the start of a process instance (myProcess )
havingmyChannel as a parameter. For a complete reference of all the elements avail-
able in thePiXL language along with some examples, see [14].

2.4 Extension Capabilities

Regarding structuring capabilities ofXML Schemas, they allow the introduction of up-
per layers to reuse previousPiXL core elements, creating new ones or redefining other
existing ones. Therefore, the introduction of new elementsis done without interfering
with the way in which existing tools work, sinceXML technologies help to deal with

62



unknown syntax elements for a given model. At the moment, thePiXL core elements
allow the description of transition-based notations likePROMELA, or StateCharts di-
agrams, along with a subset ofSDL. Some extensions to create suitable elements for
usual imperative languages like C and Tcl are now in progress.

2.5 ProcessingPiXL

PiXL models benefit from using standard tools to manage their structure. Therefore,
it is possible to parse such a structure in order to perform static analysis, usingXML

parsers and query languages likeXSL. Another interesting feature of theXML parsing
tools is the support to build code generators, which can be considered as one of the most
important tasks in the tool integration approach.

Static analysis PiXL models may be analyzed with static analysis techniques, where
algorithms can be coded using typical programming languages (Java, C++),XSLT tem-
plates or a combination of both of them. Abstract interpretation for model checking
(described in the next section), constitutes a clear example of static analysis. Due to the
complexity of the method,XML DOM is used to manipulate the representation of the
PiXL model as a tree in Java.

Code generators Although the use ofXSL to generate code fromXML documents
is frequent, there are cases in which the complexity of the associatedXML Schema
requires another kind of strategy. WithPiXL we follow the Java architecture forXML

binding (JAXB) [15], a specification that associatesXML Schema components with their
equivalents in form of Java objects. Therefore, using a JAXBtool we can automatically
obtain Java source code (an API) corresponding to every element defined inPiXL. This
API allows us to manage anyPiXL model. Furthermore, it has been extended with our
code in order to generate input formats for different analysis tools.

3 Applications of PiXL

This section summarizes our previous experiences usingPiXL to integrate analysis
tools. The first experience was the development of an abstract model checker named
αSPIN, and more recently we have been working on an integrated environment to ana-
lyze active network protocols.

3.1 Abstraction and Model Checking

Model checking is effective when dealing with a useful version (a model) of the protocol
to be verified. Byuseful we mean that the model should contain only those aspects
necessary to analyze the critical properties of the protocol. Abstract interpretation [16]
is one of the most successful techniques utilized to reduce the size of models [17, 18]
and, therefore, to avoid the so-called state explosion problem.

63



Fig. 5.A framework to perform abstraction inXML models.

For the effective application of this new technique, a complete support for the
automatic abstraction of models and properties is needed. In [8] we presented the
αSPIN tool, a distribution that integrates the functionality provided in theSPIN model
checker with abstraction capabilities.αSPIN performs a source-to-source transforma-
tion of PROMELA models andLTL properties. This approach benefits from completely
reusing theSPIN algorithms to verify the resulting abstract model.

In order to perform the syntactic transformation of the model in a flexible way, the
abstraction module (a Java application) is independent of theSPIN tool [12]. Both tools
interchange models usingPiXL as the integration language which has full support to
representPROMELA. From the implementation point of view,αSPIN is the first abstrac-
tion tool based onXML standards able to perform automatic abstractions inPROMELA.

The abstraction GUI consecutively selects variables to be abstracted from a list sup-
plied by the user. For each variable, the (concrete) operations in which it appears are
analyzed and substituted by their corresponding abstract versions extracted from a pre-
defined library. The abstraction engine makes use of a standard XML API to parse a
PiXL model, transform it and generate its corresponding abstract version to be veri-
fied with SPIN. The abstraction engine is composed of specialized data structures (Java
objects) to manage suitable references ofPiXL variables and expressions. It has also
containers to deal with an abstraction library; that is, a collection of abstract operations
to replace the original ones after the abstraction process.The abstraction library is also
stored inXML format, according to an extension of thePiXL grammar. All the syntac-
tic transformations are made within thePiXL document tree in memory, using XPath
queries.

In order to manage not only data abstractions but also event abstractions, the ab-
straction API ofαSPINwas completely redefined in [9]. The new objective was to apply
the same concepts to abstractUML StateCharts behavior diagrams [19], since currently
commercial tools likeSTATEMATE are also offering model checking capabilities. The
final version of the current abstraction API is partially depicted in fig. 5, wherePiXL
elements may be embedded into existingXML representations of aUML StateChart.

64



3.2 Reliability and Performance Analysis

In [10] we proposed the use ofMDA andXML as a way to integrate existing tools for
the analysis of new emerging telecommunication services. In the paper we presented a
methodology to obtain suitable input for the tools to be integrated, avoiding the need
for several hand-made specifications. We suggested the use of intermediate representa-
tion languages withXML support for the development of parsers and code generators.
In order to test the viability of our approach, we chose the domain of telecommunica-
tion services, particularly the Active Network paradigm [20], which offers flexibility
to develop new telecommunication services without the slowstandardization process
usually required by international institutions (ITU, IETF, IEEE or ANSI).

Following our proposal in [10] we are now usingPiXL models to represent ac-
tive code and consideringMDA guidelines to build platform-independent models and
platform-specific ones [2]. The former models are generalPiXL models that represent
the expected behavior of active code. The latter are modifiedPiXL models which in-
corporate those features needed by specific destination platforms (analysis tools). We
are working on generating inputs for reliability and performance tools (as described in
[10]).

4 Conclusions and Future Work

Intermediate languages are usually employed to integrate tools within the context of
protocol analysis. However, such formats (formal methods)are prepared to deal exclu-
sively with specific tools. Thus, it is difficult to integratea new one without making
significant modifications of the language and associated APIs.

This paper has introducedPiXL, a domain-specific language to connect analysis
tools for protocols.PiXL is anXML language that exploits all the benefits of this ma-
ture technology: open tools and widely accepted standards.The main features of the
language allow the extension of new expressions, statements (actions) and types, using
the characteristics and possibilities available with theXML Schema. Up to now,PiXL
has been applied to the development of abstract model checkers and integrated environ-
ments to perform different analysis of communication protocols. The novelty in using
XML andMDA within the Protocol Engineering domain greatly facilitates the evolution
of tools and the development of new extensions. It is also worth noting that the use of
XML (andPiXL) technologies may support the introduction of formal techniques within
the Software Engineering community.

Our future work is focused on introducing more flexible ways to define and em-
bed properties inPiXL models. Currently, we have support to define Büchi automata
but having other logical formalisms inXML would be of great interest. Moreover, the
right combination of models, properties and analysis reports inside a singleXML docu-
ment will ensure consistency among tools and a way of keepinganalysis as unified as
possible.

65



References

1. W3Consortium: Extensible Markup Language (XML) 1.0 (Second Edition). Available at
http://www.w3.org/XML/ (2000)

2. Object Management Group: MDA guide version 1.0.1. omg/2003-06-01 (2003)
3. ETI: The ETI Platform. Available at http://eti.cs.uni-dormund.de (2004)
4. Fernandez, J., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighireanu, M.: CADP:

A Protocol Validation and Verification Toolbox. In Springer, ed.: Proceedings of the 8th
Conference on Computer-Aided Verification. Volume 1102. (1996) 437–440

5. Hatcliff, J., Dwyer, M., Pasareanu, C., Robby: Foundations of the bandera abstraction tools.
In: The Essence of Compution. Number 2566, Springer Verlag (2003) 172–203

6. Bozga, M., Fernandez, J., Ghirvu, L., Graf, S., Krimm, J., Mounier, L.: IF: A Validation
Environment for Timed Asynchronous Systems. In Springer-Verlag, ed.: Proceedings of
CAV’00. Volume 1855 of Lecture Notes in Computer Science. (2000) 543–547

7. Katz, S.: Faithful Translations among Models and Specifications. In:Proc. of Formal Meth-
ods Europe. (2001)

8. Gallardo, M., Martinez, J., Merino, P., Pimentel, E.: A Tool for Abstraction in Model Check-
ing. Software Tools for Technology Transfer5 (2004) 165–184

9. Gallardo, M., Martinez, J., Merino, P., Pimentel, E.: Abstracting UMLbehavioral diagrams
for verification. Chapter in In Hongji Yang. In Publishing, I.G., ed.: Software Evolution with
UML and XML. (2004)

10. Gallardo, M.M., Mart́ınez, J., Merino, P., Rodriguez, G.: Integration of Reliability and Per-
formance Analyses for Active Network Services. Volume 133 of Electronic Notes in Theo-
retical Computer Science. (2005) 217–236

11. Holzmann, G.: The SPIN Model Checker. Primer and ReferenceManual. Addison Wesley
(2003)

12. Gallardo, M., Martinez, J., Merino, P., Rosales, E.: Using XML to implement Abstraction for
Model Checking. In: Proc. of ACM Symposium on Applied Computing. (2002) 1021–1025

13. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
14. University of Ḿalaga: The PiXL Project Web Page. Available at

http://www.lcc.uma.es/˜gisum/fmse/pixl (2006)
15. Sun-MicroSystems: Java Architecture for XML Binding (JAXB). Available at

http://java.sun.com/webservices/jaxb/ (2006)
16. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: ACM Symp.on Principles of
Programming Languages. (1977) 238–252

17. Havelund, K., Visser, W.: Program model checking as a new trend. In: Software Tools for
Technology Transfer (STTT). Volume 2. (2002) 8–20

18. Dams, D., ed.: Abstraction in Software Model Checking: Principlesand Practice. Num-
ber 2318 in Lecture Notes in Computer Science, 9th Int. SPIN Workshop.Model Checking
Software (2002)

19. Harel, D., Pnueli, A., Schmidt, J., Sherman, R.: On the formal semantics of statecharts. In:
Proccedings of the 2nd IEEE Symposium on Logic in Computer Science, New York, IEEE
Press (1987) 54–64

20. Calvert, K.L., Bhattacharjee, S., Zegura, E., Sterbenz, J.: Directions in Active Network
Research. IEEE Communications Magazine36 (1998) 72–78

66


