
The Place and Role of Security Patterns
in Software Development Process

Oleksiy Mazhelis and Anton Naumenko

University of Jyv̈askyl̈a
Information Technology Research Institute
P.O.Box35, FIN-40014, Jyväskyl̈a, Finland,

Abstract. Security is one of the key quality attributes for many contemporary
software products. Designing, developing, and maintaining such software neces-
sitates the use of a secure-software development process which specifies how
achieving this quality goal can be supported throughout the development life-
cycle. In addition to satisfying the explicitly-stated functional security require-
ments, such process is aimed at minimising the number of vulnerabilities in the
design and the implementation of the software. The secure software development
is a challenging task spanning various stages of the development process. This
inherent difficulty may be to some extent alleviated by the use of the so-called
security patterns, which encapsulate knowledge about successful solutions to re-
curring security problems. The paper provides an overview of the state of the art
in the secure software development processes and describes the role and place of
security patterns in these processes. The current usage of patterns in the secure
software development is analysed, taking into account both the role of patterns in
the development processes, and the limitations of the security patterns available.

1 Introduction

Nowadays, security is one of the key quality attributes that many software products
should possess. Development of such secure software necessitates both the implemen-
tation of appropriate security mechanisms, such as authentication and access control,
and robust design and implementation of the software making it resistant to attacks [1].

The process of secure software development is highly complex, due to the need
to take into account a variety of security-related aspects at different stages of the de-
velopment process. For instance, possible threats should be identified and evaluated at
the requirement phase; appropriate security mechanisms (controls) should be defined at
the design phase, etc. With the aim to facilitate this process, so called security patterns
are introduced [2, 3] that encapsulate knowledge about successful solutions to recurring
security problems.

In our research project on mobile design patterns and architectures1, we work in
collaboration with software houses. The development of software in these organisa-
tions usually follows a specific method, derived from generic software development

1 MODPA project, http://titu.jyu.fi/modpa/

Mazhelis O. and Naumenko A. (2006).
The Place and Role of Security Patterns in Software Development Process.
In Proceedings of the 4th International Workshop on Security in Information Systems, pages 91-100
Copyright c© SciTePress



process models, such as the incremental or the spiral model [4]. These models histor-
ically were of little practical use for the security teams, because security aspects were
not covered in them. Instead, a security team could follow a separate security-specific
process model, such as the security waterfall lifecycle [5]. Thus, the security design
was isolated from the functional design; furthermore, the security design implied the
pre-existence of the functional design. As a result, conflicts arose between these two
designs and between the responsible designers. Only relatively recently, efforts have
started incorporating security into the software development process. However, the use
of security patterns appears to be mostly ignored in these models except few recent
works within the security patterns community [6, 7].

This paper aims at specifying the role of security patterns in the process of secure
software development taking place in the companies. Havingoverviewed the available
models for secure software development processes, the place of security patterns in
these models is identified, and the function of the patterns is analysed. The paper is
organised as follows. The next Section introduces softwarepatterns in general and se-
curity patterns in particular. Section 3 reviews secure software development processes.
After that, Section 4 describes the use of security patternsat different stages of a se-
cure software development process. Finally, Section 5 summarises the benefits of the
involvement of security patterns and indicates the areas where current work is limited.

2 Software Patterns

A pattern describes a solution to a specific type of problems recurring in a particular
context. The idea of identifying patterns in design is generally attributed to the building
architect Christopher Alexander and colleagues, who gave the following definition of
patterns [8]:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over,without ever
doing it the same way twice.

In the domain of software engineering, patterns became known mainly after Gamma,
Helm, Johnson, and Vlissides (Gang of Four, or GoF) published their seminal book on
design patterns for object-oriented software [9]. Patterns in object-oriented software
“identify participating classes and instances, their roles and collaborations, and the dis-
tribution of responsibilities” [9, p. 3]. The description of the pattern specifies among
other things the context in which the use of a pattern is appropriate as well as the conse-
quences of pattern’s use. As a result, the use of patterns supports producing architectural
solutions with desired properties.

Patterns can be divided into several categories according to the level of abstraction
at which they operate. Buschmann et al. identified architectural patterns, design pat-
terns, and idioms [10] in decreasing order of abstraction level. Different stages of the
development process can employ patterns of different abstraction levels:

– Architectural patterns are used to produce a high-level conceptual software archi-
tecture;

92



– Design patterns facilitate the creation of a more detailed concrete architecture;
– Idioms are of practical use at the implementation stage to address the peculiarities

of a particular language or platform.

After the work of GoF, a number of other pattern catalogues, systems, and languages
have appeared [10–12], addressing different problem areas(e.g. distributed computing,
resource management, etc.), as well as different platforms. The first attempt to synthe-
sise the patterns for typical design problems in the domain of information security may
be attributed to Yoder and Barcalow who proposed a collection of architectural secu-
rity patterns [2]. As well as other patterns, the security patterns encapsulate knowledge
about successful solutions to recurring design problems, focusing on the re-occurring
security problems. They support the design of the software,wherein the confidentiality,
integrity, and availability of information (for authorised use) are crucial.

Figure 1 illustrates as an example the Protected system pattern [3] (also known as
single access point pattern [2]). The pattern is used to protect the system resources
against unauthorized access by ensuring that all the clients’ requests to the protected
resources are mediated by a guard. The guard’s responsibility is to determine whether
the requests are permitted by a predefined security policy. Thus, the guard enforces the
security policy by intercepting the requests and matching them against this policy. The
guard should be non-bypassable and incorruptible, and it isresponsible for validating
input data contained in the requests. A firewall is an exampleof the protected system,
where the resources are represented by the IP addresses and ports of the systems behind
the firewall.

Client


+request() : Resource


Guard


Resource Type1
 Resource Type2
Resource Type3


Policy


*
 1
 1
 1


...


Fig. 1. The protected system pattern with a single centralized guard.

Since the work of Yoder and Barcalow, a number of security patterns or pattern
collections have been proposed, usually targeting a narrowsubset of problems in the
security domain (such as patterns for access control [13]).The available collections of
security patterns remain fragmented and sometimes inconsistent; e.g. the same patterns
appear under different names in different sources. In response to this, more recently,
the Open Group Security Forum attempted to create a more comprehensive list of ex-
isting security patterns [3]. According to the categories of problems being addressed,
the patterns in [3] are divided into the available system patterns facilitating the pro-
vision of predictable and uninterruptible access to the resources and services, and the
protected system patterns aimed at protecting valuable resources against unauthorized
use, disclosure or modification.

93



3 Secure Software Development Processes

A software development process defines the roles, activities, stages and the outcomes to
build a software product or to enhance an existing one [14]. The development process is
usually guided according to a specific process model, such asthe waterfall or Boehm’s
spiral model.

Security brings additional challenges in the development process, e.g. [15]:

– The actual customer of the system being developed is not adequate source of secu-
rity requirements;

– The use case methodology, while proven useful in many software development en-
deavours, is difficult to apply to security design, since capturing all malicious activ-
ities during the requirements definition is infeasible and requires from the software
architects deep knowledge of security domain;

– It is impossible to guarantee the absence of security bugs; therefore, the absence of
security bugs cannot be used as an acceptance criteria.

The traditional process models are of little practical use for the designers and developers
responsible for software security, because these models donot address security-specific
challenges. Instead, groups of security experts within thedevelopment teams followed
a separate security-specific process model, such as the security waterfall lifecycle [5].
As a result, the security design was isolated from the functional design and implied
its pre-existence, and consequently resulted in conflicts between these two designs and
between the designers.

Recently, however, several efforts were made to incorporate the security aspects into
the software development process. We will refer to the development processes created
in these efforts as the secure software development (SSD) processes. A secure software
development process emphasises security-related concerns. In particular, such process
is aimed at minimising the number of vulnerabilities in the design and the implemen-
tation of the software. In this section, several available process models for SSD are
overviewed.

One of the attempts to merge the security development and thegeneral lifecycle
models was conducted at Microsoft. In the attempt to improvethe software development
processes and thereby to make the software resistant to malicious attacks, Microsoft de-
veloped the so-called Trustworthy Computing Security Development Lifecycle (SDL).
This SDL modifies the organisation’s development process byadding well-defined se-
curity check-points and security deliverables [1].

According to Microsoft, several main principles should be consistently applied in
order to produce a more secure software [16]. These principles include i) “secure by
design” (designing and implementing software able to protect the information being
processed and able to resist attacks), ii) “secure by default” (software’s default state
should promote security), iii) “secure in deployment” (secure use of the software should
be supported with guidelines and tools), and iv) “communications” (software vulnera-
bilities discovered after the deployment should be remedied timely, and the information
about them should be delivered to the users). The integration of these principles into a
development process has resulted in a set of security checkpoints and security deliver-

94



Table 1. Adding security check-points and deliverables to the software development process
(adopted from [16]).

Process phase Security check-points and deliverables

Requirements Inception: security advisor assigned; ensure security milestones understood;identify security
requirements

Design Design & Threat modelling: design guidelines documented; threat models produced; security
architecture documented; threat model and design review completed; ship criteria agreed to

Implementation Guidelines & Best practices: coding and testing standards followed; test plans developed and
executed; tools used for code analysis

Verification (Beta)Security push: threat models reviewed; code reviewed; attack testing; new threats evaluated;
security testing completed

Release Final security review (FSR): threat models reviewed; unfixed bugs reviewed; new bugs reviewed;
penetration testing; documentation archived

RTM RTM & Deployment: signoff by security team

Response Security response feedback: tools/processes evaluated; postmortems completed

ables. These checkpoints and deliverables are listed in Table 1, where they are mapped
onto the phases of the traditional waterfall model.

Similarly to Microsoft’s SDL, Peterson [17–19] describes what security concerns
need to be addressed at various phases of an arbitrary securedevelopment process. The
reference process used by the author is iterative and includes the phases of analysis, de-
sign, development, and deployment. At the Analysis phase, the requirements are lumped
together and analysed. The specification of security requirements can be facilitated by
employing so-called misuse cases [17] that focus on the illegitimate behaviour of at-
tacker(s), i.e. on the functionality that the system shouldprohibit [20]. Misuse cases
can be as well used as a basis when (security-related) testing scenarios are defined.
On the design phase, the software architecture provides thesecurity team with the sys-
tem scope, and “illuminates security risks” [18]. Security-specific artefacts produced at
the design phase include threat models, data classification, and security integration de-
sign. At the coding phase, the unit testing and code development are supplemented with
unit hacking as well as with countermeasure and detection/signature development [19];
here, a unit hack is a security focused unit test case verifying the code’s resistance to a
particular type of attack.

McGraw [1] presents the software security best practices, and describes how they
can be applied to software artefacts. These best practices are essentially the same as
described in Microsoft’s SDL and/or Peterson’s security concerns.

National Institute of Standards and Technology (NIST) alsopublished recommen-
dations of how security should/could be incorporated into the system development life-
cycle (SDLC) [21]. The NIST guidelines align the security considerations along five
basic SDLC phases including Initiation, Development/acquisition, Implementation, Op-
eration/maintenance, and Disposition. In addition to the security aspects covered in the
guidelines above, the NIST recommendations address other security issues, such as
security certification and accreditation, or disposition-related issues (e.g. information
preservation and media sanitisation).

Other processes for secure software development have been proposed as well. These
include, among others, “Correctness by construction”, “Cleanroom Software Engineer-

95



ing”, and “Team software process”, as described in [22]. The“Correctness by con-
struction” process introduces a formal notation to specifythe system and design com-
ponents, and suggests conducting specific review and analyses aimed at ensuring the
consistency and correctness. As a result of applying this process, near-defect-free soft-
ware was reported to be produced. The “Cleanroom Software Engineering” is also a
formal process based on the incremental development and testing. Its four key points
include incremental development, function-based specification and design, functional
correctness verification, and statistical testing. The “Team software process” is an op-
erational process introduced by the Software Engineering Institute. It describes a set
of best practices to be used by independent developers and development teams. Ac-
cording to these best practices, secure software development is supported by preventing
and removing defects throughout the lifecycle, by applyingmeasurement and quality
management to control the process, and by using predictive measures for remaining de-
fects. The process is reported to be effective way of producing near defect-free software
within budget and time constraints [22].

4 Patterns in Secure Software Development Process

The place and role of patterns in traditional software development process has been
discussed in literature; e.g. Yacoub and Ammar [23] introduced the Pattern-Oriented
Analysis and Design (POAD) approach, where patterns are seen as key instruments in
software analysis and design. In this subsection, the role of security patterns in secure
software development is analysed, and the place of these patterns in process models is
considered.

Role of security patterns.As discussed in [22], more than 90% of software secu-
rity vulnerabilities are caused by known software defect types which can be classified
as specification, design, and implementation defects. Someof vulnerabilities are caused
by implementation defects, such as declaration errors, logic errors, loop control errors,
conditional expressions errors, failure to validate input, interface specification errors,
and configuration errors. At the same time, a number of vulnerabilities are caused by
specification and design defects, e.g. failure to identify threats, inadequate authentica-
tion, invalid authorisation, incorrect use of cryptography, failure to protect data, and
failure to carefully partition applications.

In order to minimise the number of vulnerabilities exposed in the software, it is
crucial to reduce the number of the specification, design, and implementation defects.
Security patterns may provide a support in amending these defects at various phases of
the development process, as discussed below.

Place of security patterns.In this subsection, the use of security patterns is con-
sidered along the requirements, design, implementation, and deployment phases com-
monly present in the software development process. For the sake of brevity, only the
pattern-specific activities are described for each phase.

Requirements. At this phase, explicit and testable security requirementsare to be
stated. Security patterns address the recurring security problems, and the descriptions
of these problems may be employed as a checklist of the problems that the software
being designed may potentially need to address.

96



For eliciting covert security requirements, misuse/abusecases may be employed
[17, 1]. To support the discovery of relevant misuse/abuse cases, some of the pattern
descriptions may present or exemplify a security problem ina form of a misuse case.

Other pattern-related activities at this phase, as suggested by Yacoub and Ammar
[23], include the identification of relevant design problems, the acquaintance with rel-
evant patterns, retrieval of candidate patterns from domain-specific pattern databases,
and the selection of patterns for further use in the design.

Design. At the design phase, the overall structure of the software isformed, and the
security-critical components in this structure are identified. The risk of incorporating
defects in the design may be mitigated, if the security patterns are employed during the
design process. For instance, such design defects as inadequate authentication, invalid
authorisation, failure to protect data may be avoided if theProtected System patterns
[3] are consistently used.

The design phase can be seen as consisting of high-level design activities, and the
design refinement activities [23]. During the high-level design, pattern-level diagrams
with different levels of details are constructed; this results in a detailed diagram, where
the patterns, interfaces between them, and the internal design of the patterns are shown.
In turn, the design refinement phase focuses on instantiating the application-specific
pattern internals, developing class diagrams, and, finally, optimising these diagrams to
reach a “dense and profound design” [23].

Security patterns, as other patterns, provide necessary concepts to express the struc-
ture and interactions imposed by an architecture at a higherabstraction level [24].
Therefore, documenting complex security designs may be facilitated by these patterns.

Once the architectural design is produced, its fitness to thestated requirements needs
to be assessed. In order to determine the appropriateness ofan architecture with re-
spect to these requirements, a formal architecture evaluation can be conducted. The
process of evaluation can be based on a specific evaluation method, such as the Soft-
ware Architecture Analysis Method (SAAM) and the Architecture Tradeoff Analysis
Method (ATAM) [25]. An important precondition for a successful evaluation is a deep
understanding of the architecture among the evaluators. For this, in ATAM, for exam-
ple, several steps are devoted to the identification and the analysis of the architectural
approaches and decisions (in particular in a form of architectural styles and patterns
followed), which underpin the architecture being evaluated [25]. Security patterns may
thus be useful in the evaluation process for revealing and analysing security-related
architectural approaches and decisions.

Implementation. At this phase, the coding and testing are performed in accordance
with standards and best practices. Depending on the particular platform and program-
ming language, the developers are faced with lower-level problems specific to this plat-
form or language. If improperly addressed, these problems may result in implemen-
tation defects such as loop control errors, conditional expressions errors, or failure to
validate input.

Low-level security idioms are aimed at encoding the successful solutions to such
problems, and are therefore useful at this phase. For example, Code Validator pattern
can be employed to cope with buffer overflows when programming in C/C++, Syntax
Validator pattern is useful for cleaning the strings fed to cgi-bin scripts, etc. [15].

97



Deployment. The implemented software at this phase is configured and integrated
into the enterprise architecture. Even if all the security guidelines and best practices are
carefully followed, the software produced is still highly likely to contain vulnerabilities
which are going to be discovered while the software is in operational use [16].

The development team, therefore, should response to the discovered vulnerabilities
by timely issuing patches and informing the users. The design and implementation of
such security updates could be seen as a special case of software maintenance. As ev-
idenced by experimental studies [26], this process can be completed faster and/or with
smaller number of mistakes if the use of patterns is documented in the software code.
Therefore, to facilitate further security updates, it is advisable to explicitly document
the employed security patterns in the code.

5 Discussion and Concluding Remarks

Among the variety of non-functional requirements which contemporary software is of-
ten required to meet, security appears to be one of the most difficult to satisfy. This
difficulty stems from the fact that making the software secure requires from the devel-
opment team to i) introduce appropriate security mechanisms, and ii) implement the
software (including the security mechanisms) appropriately. Therefore, the members of
a team faced with the need to design and implement secure software should be, on one
hand, skilful in software development, and on the other hand, literate in the security-
related issues, such as threat modelling, security mechanisms design, implementation,
verification, and integration.

The secure software development process models are aimed atalleviating the above
difficulty, by defining the set of activities needed to transform user requirements into a
product. Several such process models were proposed recently; among them are e.g.
Microsoft Security Development Lifecycle process, Peterson’s Secure Development
process, NIST guidelines, etc. Security patterns are as well aimed at alleviating the
difficulty of secure software development by encapsulatingknowledge about success-
ful solutions to recurring security problems. These patterns address various security-
specific issues at different phases of the development process. A number of security
patterns and pattern collections were elicited during lastdecade. Little attention, how-
ever, was devoted to the recommendations, which could be applied in companies, and
which would specify how and at which phase to deploy securitypatterns in secure soft-
ware development. While a number of works discussing security development process
models can be located [5, 21, 16, 22, 17–19, 27], the use of security patterns in these
models is not specified.

This paper could be seen as an initial attempt to amend this limitation by consider-
ing the place and role of security patterns in the secure software development. The role
of security patterns is to minimise the number of vulnerabilities exposed in the software,
through the minimisation of the design and implementation defects. Security patterns
may provide a support in amending these defects at differentphases of the development
process. At the design phase, many design defects can be avoided, if the security archi-
tectural and design patterns such as the Protected System patterns are consistently used.
At the implementation phase, the low-level security patterns (idioms) play an important

98



role in fighting against implementation defects, such as loop control errors, conditional
expressions errors, and failure to validate input.

As concerns the security patterns themselves, while increasingly large body of
knowledge is available on security patterns, several limitations in these works can be
identified, thus indicating the areas where further work is needed.

First, no single source (repository) gathering all or majorsecurity patterns into
a consistent pattern system is available. The available collections of patterns remain
fragmented and sometimes inconsistent; e.g. same patternscan be discussed under dif-
ferent names in different sources. The work aimed at remedying this situation is in
progress – e.g. the book solely devoted to security patternsby Schumacher et al. [7]
has been just published; the web-page devoted to security patterns has been created
(http://www.securitypatterns.org) and is developing, etc.

Second, the available collections of security patterns seem to largely ignore low-
level security patterns. The book by Ramachandran [15] is one of few sources, where
such low-level patterns (e.g. Sentinel, Validators) are considered. Noteworthy, the core
of solutions to such low-level problems (e.g., “validatinginput in forms”) can be found
in a variety of books on secure software development; however, we have not managed
to find any security pattern collections describing them.

Finally, security patterns may need to be presented in a format different from the tra-
ditional pattern presentation format, due to the peculiarities of the concepts and methods
employed in the domain of information security. For example, such pattern presentation
may include the description of the addressed threats, attacks, supported security goals,
etc. Such security-specific presentation format is not yet provided, however, for security
patterns.

Acknowledgments

This research was done in MODPA research project (http://www.titu.jyu.fi/modpa) at
the Information Technology Research Institute, University of Jyväskyl̈a. MODPA project
was financially supported by the National Technology Agencyof Finland (TEKES) and
industrial partners Nokia, SysOpen Digia, SESCA Technologies, Tieturi, Metso Paper,
and Trusteq. The work was partly supported by the Dept. of Mathematical Information
Technology, University of Jyv̈askyl̈a.

References

1. McGraw, G.: Software security. IEEE Security & Privacy Magazine2(2) (2004) 80–83
2. Yoder, J., Barcalow, J.: Architectural patterns for enabling application security. In: Proceed-

ings of PLoP 97. (1997)
3. Blakley, B., Heath, C., members of The Open Group Security Forum: Security design pat-

terns. Technical Guide No. G031, The Open Group (2004)
4. Pressman, R.S.: Software engineering: a practitioner’s approach. European adaptation, 5-th

edition edn. New York, McGraw-Hill (2000)
5. Baskerville, R.: Information systems security design methods: implications for information

systems development. ACM Computing Surveys25(4) (1993) 375 – 414

99



6. Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Model and New
Applications. Springer (2003)

7. Schumacher, M., Fernandez, E., Hybertson, D., Buschmann,F., Sommerlad, P.: Security
Patterns: Integrating Security and Systems Engineering. Wiley (2006)

8. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language:Towns, Buildings, Con-
struction. Oxford University Press (1977)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns:elements of reusable
object-oriented software. Addison-Wesley professional computing series. Addison-Wesley,
Boston, Mass. (1995)

10. Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., Stal, M.: Pattern-oriented Soft-
ware Architecture. A System of Patterns. John Wiley & Sons, UK (1996)

11. Noble, J., Weir, C.: Small Memory Software: Patterns for Systemswith Limited Memory.
Software patterns series. Addison-Wesley Professional (2001)

12. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
Second edition edn. Prentice Hall PTR / Sun Microsystems Press (2003)

13. Priebe, T., Fernandez, E., Mehlau, J., Pernul, G.: A pattern system for access control. In:
Proceedings of the IFIP WG 11.3 Conference on Data and Applications Security, Sitges
(2004) 235–249

14. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified SoftwareDevelopment Process. Addison
Wesley (1999)

15. Ramachandran, J.: Designing Security Architecture Solutions. WileyComputer Publishing
(2002)

16. Lipner, S.B.: The trustworthy computing security development lifecycle. In: 2004 Annual
Computer Security Applications Conference, IEEE Computer Society (2004)

17. Peterson, G.: Collaboration in a secure development process. part 1. Information Security
Bulletin 9 (2004) 165–172

18. Peterson, G.: Collaboration in a secure development process. part 2. Information Security
Bulletin 9 (2004) 205–212

19. Peterson, G.: Collaboration in a secure development process. part 3. Information Security
Bulletin 9 (2004) 263–266

20. Sindre, G., Opdahl, A.L.: Templates for misuse case description.In: Seventh International
Workshop on Requirements Engineering: Foundation for Software Quality. (2001)

21. Grance, T., Hash, J., Stevens, M.: Security considerations in theinformation system devel-
opment life cycle. NIST Recommendations, Special Publication 800-64 REV. 1, National
Institute of Standards and Technology, Gaithersburg, MD 20899-8930(2004)

22. Redwine, S.T.J., Davis, N.: Processes to produce secure software. towards more secure
software. In: National Cyber Security Summit. Volume Volume I. (2004)

23. Yacoub, S.M., Ammar, H.H.: Pattern-Oriented Analysis and Design. Composing Patterns to
Design Software Systems. Boston, Addison-Wesley (2004)

24. Schmidt, D.: Using design patterns to develop reusable object-oriented communication soft-
ware. CACM (Special Issue on Object-Oriented Experiences, Mohamed Fayad and W.T.
Tsai Eds.)38(10) (1995) 65–74

25. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison Wesley Longman (2001)

26. Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.: Two controlled experiments
assessing the usefulness of design pattern documentation in program maintenance. IEEE
Transactions on Software Engineering28(6) (2002) 595–606

27. Apvrille, A., Pourzandi, M.: Secure software development by example. IEEE Security &
Privacy Magazine3(4) (2005) 10–17

100


