The Place and Role of Security Patterns
in Software Development Process

Oleksiy Mazhelis and Anton Naumenko

University of Jy\askyg
Information Technology Research Institute
P.O0.Box35, FIN-40014, Jyskyk, Finland,

Abstract. Security is one of the key quality attributes for many contemporary
software products. Designing, developing, and maintaining such software neces-
sitates the use of a secure-software development process which specifies how
achieving this quality goal can be supported throughout the development life-
cycle. In addition to satisfying the explicitly-stated functional security require-
ments, such process is aimed at minimising the number of vulnerabilities in the
design and the implementation of the software. The secure software development
is a challenging task spanning various stages of the development process. This
inherent difficulty may be to some extent alleviated by the use of the so-called
security patterns, which encapsulate knowledge about successful solutions to re-
curring security problems. The paper provides an overview of the state of the art
in the secure software development processes and describes the role and place of
security patterns in these processes. The current usage of patterns in the secure
software development is analysed, taking into account both the role of patterns in
the development processes, and the limitations of the security patterns available.

1 Introduction

Nowadays, security is one of the key quality attributes that many software products
should possess. Development of such secure software necessitates both the implemen-
tation of appropriate security mechanisms, such as authentication and access control,
and robust design and implementation of the software making it resistant to attacks [1].

The process of secure software development is highly complex, due to the need
to take into account a variety of security-related aspects at different stages of the de-
velopment process. For instance, possible threats should be identified and evaluated at
the requirement phase; appropriate security mechanisms (controls) should be defined at
the design phase, etc. With the aim to facilitate this process, so called security patterns
are introduced [2, 3] that encapsulate knowledge about successful solutions to recurring
security problems.

In our research project on mobile design patterns and architettuveswork in
collaboration with software houses. The development of software in these organisa-
tions usually follows a specific method, derived from generic software development

1 MODPA project, http://titu.jyu.fi/modpa/

Mazhelis O. and Naumenko A. (2006).

The Place and Role of Security Patterns in Software Development Process.

In Proceedings of the 4th International Workshop on Security in Information Systems, pages 91-100
Copyright © SciTePress

process models, such as the incremental or the spiral médéljese models histor-
ically were of little practical use for the security teamegchuse security aspects were
not covered in them. Instead, a security team could followpagate security-specific
process model, such as the security waterfall lifecycle Thlus, the security design
was isolated from the functional design; furthermore, theusity design implied the
pre-existence of the functional design. As a result, casfle@ose between these two
designs and between the responsible designers. Onlywedjatecently, efforts have
started incorporating security into the software develepnprocess. However, the use
of security patterns appears to be mostly ignored in thesgela@xcept few recent
works within the security patterns community [6, 7].

This paper aims at specifying the role of security pattenmthé process of secure
software development taking place in the companies. Havwegviewed the available
models for secure software development processes, the pfasecurity patterns in
these models is identified, and the function of the pattesrenalysed. The paper is
organised as follows. The next Section introduces softwatterns in general and se-
curity patterns in particular. Section 3 reviews securéwsne development processes.
After that, Section 4 describes the use of security pattatmsfferent stages of a se-
cure software development process. Finally, Section 5 sanises the benefits of the
involvement of security patterns and indicates the areasewturrent work is limited.

2 Software Patterns

A pattern describes a solution to a specific type of problemssiring in a particular
context. The idea of identifying patterns in design is gatigattributed to the building
architect Christopher Alexander and colleagues, who dagddllowing definition of
patterns [8]:

Each pattern describes a problem which occurs over and geém & our
environment, and then describes the core of the solutiohabproblem, in
such a way that you can use this solution a million times owéhout ever
doing it the same way twice.

In the domain of software engineering, patterns became kmoainly after Gamma,
Helm, Johnson, and Vlissides (Gang of Four, or GoF) pubtigheir seminal book on
design patterns for object-oriented software [9]. Pagtémobject-oriented software
“identify participating classes and instances, theirg@ad collaborations, and the dis-
tribution of responsibilities” [9, p. 3]. The descriptiofi the pattern specifies among
other things the context in which the use of a pattern is gpate as well as the conse-
guences of pattern’s use. As a result, the use of patterpeasgproducing architectural
solutions with desired properties.

Patterns can be divided into several categories accordititetlevel of abstraction
at which they operate. Buschmann et al. identified architatipatterns, design pat-
terns, and idioms [10] in decreasing order of abstractivalldifferent stages of the
development process can employ patterns of differentatigtn levels:

— Architectural patterns are used to produce a high-leveteptual software archi-
tecture;

— Design patterns facilitate the creation of a more detaitattete architecture;
— ldioms are of practical use at the implementation stage tioesd the peculiarities
of a particular language or platform.

After the work of GoF, a number of other pattern catalogugstesns, and languages
have appeared [10-12], addressing different problem #eeg.sdistributed computing,
resource management, etc.), as well as different platfofims first attempt to synthe-
sise the patterns for typical design problems in the domgiimformation security may
be attributed to Yoder and Barcalow who proposed a colleatifoarchitectural secu-
rity patterns [2]. As well as other patterns, the securitifgras encapsulate knowledge
about successful solutions to recurring design probleowjding on the re-occurring
security problems. They support the design of the softwalnerein the confidentiality,
integrity, and availability of information (for authorideise) are crucial.

Figure 1 illustrates as an example the Protected systemrpd8] (also known as
single access point pattern [2]). The pattern is used toeptdhe system resources
against unauthorized access by ensuring that all the slieequests to the protected
resources are mediated by a guard. The guard’s respotysibito determine whether
the requests are permitted by a predefined security polfays,Tthe guard enforces the
security policy by intercepting the requests and matcHiegnt against this policy. The
guard should be non-bypassable and incorruptible, andésigonsible for validating
input data contained in the requests. A firewall is an exaraptee protected system,
where the resources are represented by the IP addressesrtmaf phe systems behind
the firewall.

Client Guard Policy

1 quest() : bl il

r 1

Resource Typel| |Resource Type3 Resource Type2

Fig. 1. The protected system pattern with a single centralized guard.

Since the work of Yoder and Barcalow, a number of securityepas or pattern
collections have been proposed, usually targeting a nastdaget of problems in the
security domain (such as patterns for access control [T&P.available collections of
security patterns remain fragmented and sometimes ingtensj e.g. the same patterns
appear under different names in different sources. In respdo this, more recently,
the Open Group Security Forum attempted to create a moreretvepsive list of ex-
isting security patterns [3]. According to the categoriépmblems being addressed,
the patterns in [3] are divided into the available systemepas facilitating the pro-
vision of predictable and uninterruptible access to theusses and services, and the
protected system patterns aimed at protecting valuabteiress against unauthorized
use, disclosure or modification.

3 Secure Software Development Processes

A software development process defines the roles, actiygtages and the outcomes to
build a software product or to enhance an existing one [14&.development process is
usually guided according to a specific process model, suttheasaterfall or Boehm’s
spiral model.

Security brings additional challenges in the developmentgss, e.g. [15]:

— The actual customer of the system being developed is notiatkeqource of secu-
rity requirements;

— The use case methodology, while proven useful in many softdevelopment en-
deavours, is difficult to apply to security design, sincetagpg all malicious activ-
ities during the requirements definition is infeasible aggluires from the software
architects deep knowledge of security domain;

— Itis impossible to guarantee the absence of security bbgsefore, the absence of
security bugs cannot be used as an acceptance criteria.

The traditional process models are of little practical wsetie designers and developers
responsible for software security, because these modelstddress security-specific
challenges. Instead, groups of security experts withirdéelopment teams followed
a separate security-specific process model, such as thetgeeaterfall lifecycle [5].
As a result, the security design was isolated from the foneti design and implied
its pre-existence, and consequently resulted in conflet&wéen these two designs and
between the designers.

Recently, however, several efforts were made to incorpdheg security aspects into
the software development process. We will refer to the dgrakbnt processes created
in these efforts as the secure software development (SSggses. A secure software
development process emphasises security-related candenparticular, such process
is aimed at minimising the number of vulnerabilities in tresidin and the implemen-
tation of the software. In this section, several availabiecpss models for SSD are
overviewed.

One of the attempts to merge the security development andeheral lifecycle
models was conducted at Microsoft. In the attempt to imptbeesoftware development
processes and thereby to make the software resistant toioualiattacks, Microsoft de-
veloped the so-called Trustworthy Computing Security Dewaent Lifecycle (SDL).
This SDL modifies the organisation’s development procesadaling well-defined se-
curity check-points and security deliverables [1].

According to Microsoft, several main principles should lbagistently applied in
order to produce a more secure software [16]. These prexiipiclude i) “secure by
design” (designing and implementing software able to mtotiee information being
processed and able to resist attacks), ii) “secure by défeadftware’s default state
should promote security), iii) “secure in deployment” (gexuse of the software should
be supported with guidelines and tools), and iv) “commutivces” (software vulnera-
bilities discovered after the deployment should be rentttiiely, and the information
about them should be delivered to the users). The integrafithese principles into a
development process has resulted in a set of security chiedkmnd security deliver-

Table 1. Adding security check-points and deliverables to the software developprocess
(adopted from [16]).

Process phase |Security check-points and deliverables

Requirements | Inception: security advisor assigned; ensure security milestones undeidutdfy security
requirements

Design Design & Threat modelling: design guidelines documented; threat modelsqaddsecurity
architecture documented; threat model and design review completed; ship criteria agreed t
Implementation |Guidelines & Best practices: coding and testing standards followed; test gael®ped and
executed; tools used for code analysis

Verification (Beta) Security push: threat models reviewed; code reviewed; attack testing; neve tevahtated;
security testing completed

Release Final security review (FSR): threat models reviewed; unfixed bugs reviewedhugs reviewed;
penetration testing; documentation archived

RTM RTM & Deployment: signoff by security team

Response Security response feedback: tools/processes evaluated; postmortems completed

ables. These checkpoints and deliverables are listed iie Talvhere they are mapped
onto the phases of the traditional waterfall model.

Similarly to Microsoft's SDL, Peterson [17—-19] describebat security concerns
need to be addressed at various phases of an arbitrary slEu@lepment process. The
reference process used by the author is iterative and iesltiet phases of analysis, de-
sign, development, and deployment. At the Analysis phasegquirements are lumped
together and analysed. The specification of security remeénts can be facilitated by
employing so-called misuse cases [17] that focus on thgititheate behaviour of at-
tacker(s), i.e. on the functionality that the system shqutzhibit [20]. Misuse cases
can be as well used as a basis when (security-related) gestenarios are defined.
On the design phase, the software architecture providessthgity team with the sys-
tem scope, and “illuminates security risks” [18]. Secuspecific artefacts produced at
the design phase include threat models, data classificatmhsecurity integration de-
sign. At the coding phase, the unit testing and code devedopare supplemented with
unit hacking as well as with countermeasure and detecigraire development [19];
here, a unit hack is a security focused unit test case vegfthie code’s resistance to a
particular type of attack.

McGraw [1] presents the software security best practiced,describes how they
can be applied to software artefacts. These best practieessaentially the same as
described in Microsoft's SDL and/or Peterson’s securitycans.

National Institute of Standards and Technology (NIST) g@sblished recommen-
dations of how security should/could be incorporated ihtodystem development life-
cycle (SDLC) [21]. The NIST guidelines align the securitynserations along five
basic SDLC phases including Initiation, Development/asitjan, Implementation, Op-
eration/maintenance, and Disposition. In addition to #wusity aspects covered in the
guidelines above, the NIST recommendations address o#lwerrity issues, such as
security certification and accreditation, or dispositietated issues (e.g. information
preservation and media sanitisation).

Other processes for secure software development have bmsrsed as well. These
include, among others, “Correctness by construction"e&@room Software Engineer-

ing”, and “Team software process”, as described in [22]. TBerrectness by con-
struction” process introduces a formal notation to spettifysystem and design com-
ponents, and suggests conducting specific review and a&safymed at ensuring the
consistency and correctness. As a result of applying tlisgss, near-defect-free soft-
ware was reported to be produced. The “Cleanroom SoftwaginEering” is also a
formal process based on the incremental development atidgtelis four key points
include incremental development, function-based spatifin and design, functional
correctness verification, and statistical testing. Theafiiesoftware process” is an op-
erational process introduced by the Software Engineernisgtute. It describes a set
of best practices to be used by independent developers ametbgment teams. Ac-
cording to these best practices, secure software develaps®upported by preventing
and removing defects throughout the lifecycle, by applyimgasurement and quality
management to control the process, and by using predictéasuares for remaining de-
fects. The process is reported to be effective way of pradueear defect-free software
within budget and time constraints [22].

4 Patterns in Secure Software Development Process

The place and role of patterns in traditional software dgwselent process has been
discussed in literature; e.g. Yacoub and Ammar [23] intozduthe Pattern-Oriented
Analysis and Design (POAD) approach, where patterns area&e&ey instruments in

software analysis and design. In this subsection, the fodeaurity patterns in secure
software development is analysed, and the place of thessrpmin process models is
considered.

Role of security patterns.As discussed in [22], more than 90% of software secu-
rity vulnerabilities are caused by known software defepey/which can be classified
as specification, design, and implementation defects. Sdmdnerabilities are caused
by implementation defects, such as declaration errorg; kErgors, loop control errors,
conditional expressions errors, failure to validate inputierface specification errors,
and configuration errors. At the same time, a number of valngties are caused by
specification and design defects, e.g. failure to identifgeats, inadequate authentica-
tion, invalid authorisation, incorrect use of cryptogrgpfailure to protect data, and
failure to carefully partition applications.

In order to minimise the number of vulnerabilities exposedhe software, it is
crucial to reduce the number of the specification, desigd,isplementation defects.
Security patterns may provide a support in amending thefeedeat various phases of
the development process, as discussed below.

Place of security patterns.In this subsection, the use of security patterns is con-
sidered along the requirements, design, implementatiwhdaployment phases com-
monly present in the software development process. Forake sf brevity, only the
pattern-specific activities are described for each phase.

Requirements. At this phase, explicit and testable security requiremangsto be
stated. Security patterns address the recurring secuntylgms, and the descriptions
of these problems may be employed as a checklist of the prabthat the software
being designed may potentially need to address.

For eliciting covert security requirements, misuse/abtesses may be employed
[17,1]. To support the discovery of relevant misuse/abuses, some of the pattern
descriptions may present or exemplify a security problemfiorm of a misuse case.

Other pattern-related activities at this phase, as sugdést Yacoub and Ammar
[23], include the identification of relevant design probterthe acquaintance with rel-
evant patterns, retrieval of candidate patterns from doyapécific pattern databases,
and the selection of patterns for further use in the design.

Design. At the design phase, the overall structure of the softwai@rieed, and the
security-critical components in this structure are idédi The risk of incorporating
defects in the design may be mitigated, if the security pastare employed during the
design process. For instance, such design defects as urstdeauthentication, invalid
authorisation, failure to protect data may be avoided ifRnetected System patterns
[3] are consistently used.

The design phase can be seen as consisting of high-levgindasiivities, and the
design refinement activities [23]. During the high-levesida, pattern-level diagrams
with different levels of details are constructed; this tesin a detailed diagram, where
the patterns, interfaces between them, and the interngjrdekthe patterns are shown.
In turn, the design refinement phase focuses on instargiétie application-specific
pattern internals, developing class diagrams, and, finagfiifmising these diagrams to
reach a “dense and profound design” [23].

Security patterns, as other patterns, provide necessacgpts to express the struc-
ture and interactions imposed by an architecture at a highstraction level [24].
Therefore, documenting complex security designs may bktéded by these patterns.

Once the architectural design is produced, its fithess tsttted requirements needs
to be assessed. In order to determine the appropriateness afchitecture with re-
spect to these requirements, a formal architecture evwatuatin be conducted. The
process of evaluation can be based on a specific evaluatithodyesuch as the Soft-
ware Architecture Analysis Method (SAAM) and the Architeet Tradeoff Analysis
Method (ATAM) [25]. An important precondition for a succédsevaluation is a deep
understanding of the architecture among the evaluatorsthigy in ATAM, for exam-
ple, several steps are devoted to the identification andrtalysis of the architectural
approaches and decisions (in particular in a form of archital styles and patterns
followed), which underpin the architecture being evald4f5]. Security patterns may
thus be useful in the evaluation process for revealing aradysimg security-related
architectural approaches and decisions.

Implementation. At this phase, the coding and testing are performed in aatoel
with standards and best practices. Depending on the plartiplatform and program-
ming language, the developers are faced with lower-levadlpms specific to this plat-
form or language. If improperly addressed, these problemg rasult in implemen-
tation defects such as loop control errors, conditionatesgions errors, or failure to
validate input.

Low-level security idioms are aimed at encoding the sudaésslutions to such
problems, and are therefore useful at this phase. For exar@pide Validator pattern
can be employed to cope with buffer overflows when progrargrmnC/C++, Syntax
Validator pattern is useful for cleaning the strings feddelmin scripts, etc. [15].

Deployment. The implemented software at this phase is configured andratid
into the enterprise architecture. Even if all the securitidglines and best practices are
carefully followed, the software produced is still highikdly to contain vulnerabilities
which are going to be discovered while the software is in ap@nal use [16].

The development team, therefore, should response to tbeveied vulnerabilities
by timely issuing patches and informing the users. The deargl implementation of
such security updates could be seen as a special case ocasoftvaintenance. As ev-
idenced by experimental studies [26], this process can bmplated faster and/or with
smaller number of mistakes if the use of patterns is docuadkint the software code.
Therefore, to facilitate further security updates, it iwiadble to explicitly document
the employed security patterns in the code.

5 Discussion and Concluding Remarks

Among the variety of non-functional requirements whichteomporary software is of-
ten required to meet, security appears to be one of the mifisuttito satisfy. This
difficulty stems from the fact that making the software sea@quires from the devel-
opment team to i) introduce appropriate security mechasisnd ii) implement the
software (including the security mechanisms) approdsiatderefore, the members of
a team faced with the need to design and implement secukessefshould be, on one
hand, skilful in software development, and on the other hétetate in the security-
related issues, such as threat modelling, security mesmanilesign, implementation,
verification, and integration.

The secure software development process models are airakbel@ting the above
difficulty, by defining the set of activities needed to tramef user requirements into a
product. Several such process models were proposed ngcamtbng them are e.g.
Microsoft Security Development Lifecycle process, Patnis Secure Development
process, NIST guidelines, etc. Security patterns are akawakd at alleviating the
difficulty of secure software development by encapsulakingwledge about success-
ful solutions to recurring security problems. These patteaddress various security-
specific issues at different phases of the development gsoéenumber of security
patterns and pattern collections were elicited duringdas@de. Little attention, how-
ever, was devoted to the recommendations, which could bigedgp companies, and
which would specify how and at which phase to deploy secpatyerns in secure soft-
ware development. While a number of works discussing segcdeitelopment process
models can be located [5, 21, 16, 22,17-19, 27], the use ofigepatterns in these
models is not specified.

This paper could be seen as an initial attempt to amend thitation by consider-
ing the place and role of security patterns in the securevaodt development. The role
of security patterns is to minimise the number of vulneitib exposed in the software,
through the minimisation of the design and implementatiefecdts. Security patterns
may provide a support in amending these defects at diff@teages of the development
process. At the design phase, many design defects can lwkedydithe security archi-
tectural and design patterns such as the Protected Syst@mgaare consistently used.
At the implementation phase, the low-level security pat€idioms) play an important

role in fighting against implementation defects, such ap kmntrol errors, conditional
expressions errors, and failure to validate input.

As concerns the security patterns themselves, while isargly large body of
knowledge is available on security patterns, several #ititihs in these works can be
identified, thus indicating the areas where further workeisded.

First, no single source (repository) gathering all or majecurity patterns into
a consistent pattern system is available. The availableat@mns of patterns remain
fragmented and sometimes inconsistent; e.qg. same pati@nrise discussed under dif-
ferent names in different sources. The work aimed at remnedihis situation is in
progress — e.g. the book solely devoted to security patteyrfSschumacher et al. [7]
has been just published; the web-page devoted to secutiigrips has been created
(http:/lwww.securitypatterns.org) and is developing, et

Second, the available collections of security patternsnseelargely ignore low-
level security patterns. The book by Ramachandran [15] ésajrfew sources, where
such low-level patterns (e.g. Sentinel, Validators) amesttered. Noteworthy, the core
of solutions to such low-level problems (e.g., “validatingut in forms”) can be found
in a variety of books on secure software development; hokyexe have not managed
to find any security pattern collections describing them.

Finally, security patterns may need to be presented in adodifferent from the tra-
ditional pattern presentation format, due to the pectiésbf the concepts and methods
employed in the domain of information security. For examplesh pattern presentation
may include the description of the addressed threats kattaopported security goals,
etc. Such security-specific presentation format is not y@tiged, however, for security
patterns.

Acknowledgments

This research was done in MODPA research project (httpwtitu.jyu.fi/modpa) at
the Information Technology Research Institute, Univgrsitlyvasky. MODPA project
was financially supported by the National Technology Agesfdyinland (TEKES) and
industrial partners Nokia, SysOpen Digia, SESCA Technielmdrieturi, Metso Paper,
and Trusteq. The work was partly supported by the Dept. ohklaiatical Information
Technology, University of Jyaskyh.

References

1. McGraw, G.: Software security. IEEE Security & Privacy MagaZ(®) (2004) 80—83

2. Yoder, J., Barcalow, J.: Architectural patterns for enabling apfidtin security. In: Proceed-
ings of PLoP 97. (1997)

3. Blakley, B., Heath, C., members of The Open Group Security FoiSeturity design pat-
terns. Technical Guide No. G031, The Open Group (2004)

4. Pressman, R.S.: Software engineering: a practitioner’s agprBacopean adaptation, 5-th
edition edn. New York, McGraw-Hill (2000)

5. Baskerville, R.: Information systems security design methods: imjgitafor information
systems development. ACM Computing Survégéd) (1993) 375 — 414

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Schumacher, M.: Security Engineering with Patterns: Origins, Etieat Model and New

Applications. Springer (2003)

. Schumacher, M., Fernandez, E., Hybertson, D., Buschnfan§ommerlad, P.: Security

Patterns: Integrating Security and Systems Engineering. Wiley (2006)

. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Languagens, Buildings, Con-

struction. Oxford University Press (1977)

. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design pattelersients of reusable

object-oriented software. Addison-Wesley professional computirigsseAddison-Wesley,
Boston, Mass. (1995)

Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P, ,NbtaPattern-oriented Soft-
ware Architecture. A System of Patterns. John Wiley & Sons, UK (1996)

Noble, J., Weir, C.: Small Memory Software: Patterns for SystsitisLimited Memory.
Software patterns series. Addison-Wesley Professional (2001)

Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Praxtiocel Design Strategies.
Second edition edn. Prentice Hall PTR / Sun Microsystems Press (2003)

Priebe, T., Fernandez, E., Mehlau, J., Pernul, G.: A pattetersyfor access control. In:
Proceedings of the IFIP WG 11.3 Conference on Data and Applicatiensri8y, Sitges
(2004) 235-249

Jacobson, |., Booch, G., Rumbaugh, J.: The Unified Softidavelopment Process. Addison
Wesley (1999)

Ramachandran, J.: Designing Security Architecture Solutions. \@deyputer Publishing
(2002)

Lipner, S.B.: The trustworthy computing security developmentylfiec In: 2004 Annual
Computer Security Applications Conference, IEEE Computer SocieB4(20

Peterson, G.: Collaboration in a secure development procet4. gaformation Security
Bulletin 9 (2004) 165-172

Peterson, G.: Collaboration in a secure development proces2. gaformation Security
Bulletin 9 (2004) 205-212

Peterson, G.: Collaboration in a secure development procet8. gaformation Security
Bulletin 9 (2004) 263-266

Sindre, G., Opdahl, A.L.: Templates for misuse case descriptinrseventh International
Workshop on Requirements Engineering: Foundation for Softwardit@2a001)

Grance, T., Hash, J., Stevens, M.: Security considerations infdrenation system devel-
opment life cycle. NIST Recommendations, Special Publication 8004 R, National
Institute of Standards and Technology, Gaithersburg, MD 20899-84XM)

Redwine, S.T.J., Davis, N.: Processes to produce secuweasef towards more secure
software. In: National Cyber Security Summit. Volume Volume 1. (2004)

Yacoub, S.M., Ammar, H.H.: Pattern-Oriented Analysis and Deslgmposing Patterns to
Design Software Systems. Boston, Addison-Wesley (2004)

Schmidt, D.: Using design patterns to develop reusable object-atiememunication soft-
ware. CACM (Special Issue on Object-Oriented Experiences, Motidragad and W.T.
Tsai Eds.)38(10) (1995) 65-74

Clements, P., Kazman, R., Klein, M.: Evaluating Software ArchitestiMethods and Case
Studies. Addison Wesley Longman (2001)

Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, WoTcontrolled experiments
assessing the usefulness of design pattern documentation in progiaterraace. |IEEE
Transactions on Software Engineeri28(6) (2002) 595-606

Apvrille, A., Pourzandi, M.: Secure software development tangxe. IEEE Security &
Privacy Magazing(4) (2005) 10-17

