Multinomial Mixture Modelling
for Bilingual Text Classification

Jorge Civera and Alfons Juan

Departament de Sistemes Infaxtits i Computad
Universitat Poliecnica de Vaincia
46022 Vaéncia, Spain

Abstract. Mixture modelling of class-conditional densities is a standard pat-
tern classification technique. In text classification, the use of class-conditional
multinomial mixtures can be seen as a generalisation of the Naive Bayes text clas-
sifier relaxing its (class-conditional feature) independence assumption. In this pa-
per, we describe and compare several extensions of the class-conditional multino-
mial mixture-based text classifier for bilingual texts.

1 Introduction

Mixture modelling is a popular approach for density estimation in supervised and un-
supervised pattern classification [1]. On the one hand, mixtures are flexible enough for
finding an appropriate tradeoff between model complexity and the amount of training
data available. Usually, model complexity is controlled by varying the number of mix-
ture components while keeping the same (often simple) parametric form for all compo-
nents. On the other hand, maximum likelihood estimation of mixture parameters can be
reliably accomplished by the well-knowExpectation-Maximisation (EMjlgorithm.

Although most research on mixture models has concentrated on mixtures for con-
tinuous data, there are many pattern classification tasks for which discrete mixtures are
better suited. This is the casetekt classification (categorisatiof]. In this case, the
use of class-conditional discrete mixtures can be seen as a generalisation of the well-
known Naive Bayedext classifier [3,4]. In [5], the binary instantiation of the Naive
Bayes classifier is generalised using class-conditional Bernoulli mixtures. Similarly,
in [6, 7], its multinomial instantiation is generalised with multinomial mixtures. Both
generalisations seek to relax the Naive Bayes (class-conditional feature) independence
assumption made when using a single Bernoulli or multinomial distribution per class.
This unrealistic assumption of the Naive Bayes classifier is one of the main reasons ex-
plaining its comparatively poor results in contrast to other techniques such as boosting-
based classifier committees, support vector machines, example-based methods and re-
gression methods [2]. In fact, the performance of the Naive Bayes classifier is signifi-
cantly improved by using the generalisations mentioned above [5-7]. Moreover, there
are other recent generalisations (and corrections) that also overcome the weaknesses of
the Naive Bayes classifier and achieve very competitive results [8—12].

In this paper, we describe and compare several (minor) extensions of the (class-
conditional) multinomial mixture-based text classifier for the case in which text data
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is available in two languages. Our interest in this taskithgual text classification
comes from its potential use statistical machine translatiorin this application area,
the problem of learning a complex, global statistical tcarcer from heterogeneous
bilingual sentence pairs can be greatly simplified by firsissifying sentence pairs
into homogeneous classes and then learning simpler, strssfic transducers [13].
Clearly, this is only a marginal application of bilinguakteclassification. More gen-
erally, the proliferation of multilingual documentatiom ¢ur Information Society will
surely attract many research efforts in multilingual tdzasssification. Obviously, most
conventional, monolingual text classifiers can be alsorelad in order to fully exploit
the intrinsic redundancy of multilingual texts.

The following section describes the different basic modadsonsider for multino-
mial mixture modelling of bilingual texts. In section 3, waddly discuss how to plug
these basic models in the Bayes decision rule for bilinglesdsification. Section 4
poses the maximum likelihood estimation of these modelsgusie EM algorithm. Fi-
nally, section 5 will be devoted to experimental results section 6 will discuss some
conclusions and future work.

2 Multinomial Mixture Modelling

A finite mixture model is a probability (density) function thfe form:

p(x) = Z a;p(a | ) 1)

where! is thenumber of mixture componerasid, for each component «; € [0, 1]

is its prior or coefficientandp(x | i) is its component-conditional probability (density)
function It can be seen as a generative model that first selectishttoemponent with
probability a; and then generatasin accordance with(x | 7).

The choice of a particular functional form for the composahi¢pends on the type
of data at hand and the way it is represented. In the case batiref-wordgext repre-
sentation, the order in which words occur in a given sentéoicdocument) is ignored,;
the only information retained is a vector of word coumts= (x1,...,2p), wherez,
is the number of occurrences of woddn the sentence, an is the size of the vo-
cabulary ¢ =1, ..., D). In this case, a convenient choice is to model each componen
1 as aD-dimensionalmultinomial probability function governed by its own vector of
parameters ogprototypep,; = (p;1,...,pip) € [0,1]7,
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wherez, = )", x4 is the sentence length. Equation (1) in this particular msalled
multinomial mixtureNote that the first factor in (2) is a multinomial coefficiemtigg

the number of different sentences of lengththat are equivalent in the sense of having
identical vector of word counts. Also note thaip,, is theith component-conditional
probability of wordd to occur in a sentence and, therefore, the second factor)in (2

p(x|i) = Pid )
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is the probability that each of these equivalent sentenasstd occur. Thus, Eq. (2)
(and Eq. (1)) defines a explicit probability function over B-dimensional vectors of
word counts with identicat., and an implicit probability function over all sentences
of lengthx_. in which equivalent sentences are equally probable.

In this work, we are interested in modelling the distribatiof bilingual texts;
i.e. pairs of sentences (or documents) that are mutuallétéorss of each other. Bilin-
gual texts will be formally described using a direct extensaf the bag-of-words rep-
resentation of monolingual text. That is, we have pairs efftim (x, y) in which z is
the bag-of-words representation of a sentence input (source language, ang is its
counterpart in autput(targef) language. For instance,andy may be bag-of-words
in Dutch and English, respectively. As abowejs a D-dimensional vector of words
counts. Regarding, the size of the output vocabulary will be denotedyand thus
y is a E-dimensional vector of word countse {0, 1,...,y. }¥ withy, = Zle Ye-

For modelling the probability of a paite, y), we will consider five simple models:

1. Monolingual input-language model:
p(z,y) = p(x) (©)
wherep(x) is given by (1) and (2).
2. Monolingual output-language model:

p(z,y) =p(y) (4)
wherep(y) is @ multinomial mixture model for the output bag-of-words,

I E
) =S Byl wih plyl)=—L[[a  ©
i=1 [ ve! 2

whereg;. is the ith component-conditional probability of wokdto occur in an
output sentence.

3. Bilingual bag-of-words model:

p(z,y) = p(2) (6)

wherez is abilingual bag-of-wordsobtained from the concatenation of the sen-
tences originatindz, y), andp(z) is a monolingual, multinomial mixture model
like the two previous models.

4. Global (Naive Bayes) decomposition model:

p(z,y) = p(z) p(y) )
wherep(x) andp(y) are given by the first two monolingual models above.

5. Local (Naive Bayes) decomposition model:

I
plx,y) = vip(x,yli) with p(z,y|i)=plx|i)p(yli)  (8)
i=1

wherep(x | ) is given by (2) anc(y | i) by (5).
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Note that the first two models ignore one of the languagesivedoand hence they
do not take advantage of the intrinsic redundancy in thelablai data. The remaining
manage bilingual data in slightly different ways.

3 Bilingual Text Classification

As with other types of mixtures, multinomial mixtures canused as class-conditional
models in supervised classification tasks.Cetenote the number of supervised classes.
Assume that, for each supervised clasae know its priorp,. and its class-conditional
probability function, which is given by one of the five moddiscussed in the previous
section. Then, the Bayes decision rule is to assign each(pay) to a class giving
maximum a posteriori probability or, equivalently,

c(zx,y) = argmax logp. + logp(x,y|c) (9)

In the case of the monolingual input-language model, tHeslbecomes:

p/ D

c(x,y) = argmaxlog p. + log Z Qi H D, (10)
¢ i=1  d=1

Similar rules hold for the monolingual output-language elahd the bilingual bag-of-
words model. In the case of the global decomposition motisl, i

I D

I E
c(x,y) = argmaxlogp. +log > i [ ol +108> B [[ e, (A1)
¢ i=1 d=1 i=1 e=1

while, in the local decomposition model, we have

I D E
c(z, y) =argmaxlogp, +log > vei [ [ o [T a2 (12)
5 i=1  d=1 e=1
4 Maximum Likelihood Estimation
Let (X,Y) = {(x1,y,),...,(xN,yy)} be a set of samples available to learn one of

the five mixture models discussed in section 2. This is assitzdl parameter estimation
problem since the mixture is a probability function of knofumctional form, and all
that is unknown is a parameter vector including the prios @mponent prototypes.
In what follows, we will focus on the local decomposition neticthe rest of models
can be estimated in a similar way.

The vector of unknown parameters for the local decompasitiodel is:

@:(717"'/71;1)1"--7p];q13--'aqj) (13)

We are excluding the number of components from the estimatioblem, as it is a cru-
cial parameter to control model complexity and receivegigpattention in Section 5.
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Following the maximum likelihood principle, the best pargtar values maximise
the log-likelihood function

LOIX,Y) ZlogZ%p @uli) (Y1) (14)

In order to find these optimal values, it is useful to think atle sample paifz,,,y,,)

as anincompletecomponent-labelled sample, which can be completed by anand
tor vectorz,, = (21, - .., 2,7) With 1 in the position corresponding to the component
generating'z,,, y,,) and zeros elsewhere. In doing so, a complete version of the lo
likelihood function (14) can be stated as

N I
Lo(O1X,Y.Z) = > zuillogyi + log p(@nli) + logp(y, )] (15)

n=11:=1

whereZ = {z1,..., zy} is the so-callednissingdata.

The form of the log-likelihood function given in (15) is geably preferred because
it makes available the well-knowEM optimisation algorithm (for finite mixtures) [14].
This algorithm proceeds iteratively in two steps. The Eftpgon) step computes the
expected value of the missing data given the incompleteatatéhe current parameters.
The M(aximisation) step finds the parameter values whichimiae (15), on the basis
of the missing data estimated in the E step. In our case, thepgaplaces each,; by
the posterior probability ofx,,, y,,) being actually generated by th component,

I vi p(xn | 7) p(y,, | 1) (16)

I F 5
i1 Y2 (Twld’) (@] )

foralln=1,...,Nandi =1,..., 1, while the M step finds the maximum likelihood
estimates for the priors,

1 N
_szni (izl,...,f) (17)
n=1

and the component prototypes,

N

1 1
b, = =x D Zniln 4 = =N Z Zni Y (18)
Zn:l Zni Zd:l Tnd p=1 Zn:l Zni Ze 1 Yne n=1
foralli=1,...,1.

The above estimation problem and algorithm are only validafsingle multino-
mial mixture of the form (8). Nevertheless, it is straightfiard to extend them in
order to simultaneously work with several class-condalomixtures in a supervised
setting. In this setting, training samples come with theirresponding class labels,
{(xn,y,,cn)}N_;, and the vector of unknown parameters is:

¥ =(p1;---,pc;O1,...,00) (19)
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where, for each supervised clagsits prior probability is given by, and its class-
conditional probability function is a mixture controlleg la vector of the form (13),
©.. The log-likelihood of# w.r.t. the labelled data is

N I
L=> 108DPe, > Veui P(@nli, ) p(Y, i cn) (20)
n=1

i=1

which can be optimised by a simple extension of the EM alforigiven above. More
precisely, the E step computes (16) usélg, , while the M step computes the conven-
tional estimates for the class priors and (class-dependgsions of) Egs. (17) to (18)
for each class separately. This simple extension of the Eer#éhm is equivalent to the
usual practice of applying its basic version to each supedvclass in turn. However,
we prefer to adopt the extended EM, mainly to have a unifietiémmork for classifier
training in accordance with the log-likelihood criterid20y.

5 Experimental Results

The five different models considered were assessed and cethpa two bilingual
text classification datasets (tasks) known asTitaveller dataset and thBAF corpus.
TheTravellerdataset comprises Spanish-English sentence pairs dramrafrestricted
semantic domain, whilBAF is a parallel French-English corpus collected from a mis-
cellaneous "institutional” document pool. This sectiostfilescribes these datasets and
then provides the experimental results obtained.

5.1 Datasets

The Traveller dataset comes fromlanited-domainSpanish-English machine transla-
tion application for human-to-human communication situz in the front-desk of a
hotel [15]. It was semi-automatically built from a small &8 dataset of sentence pairs
collected from traveller-oriented booklets by four persdiote that each person had to
cater for a (non-disjoint) subset of subdomains, and thals parson can be considered
a different (multimodal) class of Spanish-English sen¢epairs. Subdomain overlap-
ping among classes foresees that perfect classificationt igassible, although in our
case, low classification error rates will indicate that oixtare model has been able to
capture the multimodal nature of the data. Unfortunatélg, subdomain of each pair
was not recorded, and hence we cannot train a subdomainv&gzbmultinomial mix-
ture in each class to see how it compares to mixtures leathbut such supervision.

TheTravellerdataset containg 000 sentence pairs, with, 000 pairs per class. The
size of the vocabulary and the number of singletons reflectalative simplicity of this
corpus. Some statistics are shown in Table 1.

The BAF corpus [16] is a compilation of bilingual "institutional’rénch-English
texts ranging from debates of the Canadian parliament @&fdipscourt transcripts and
UN reports to scientific, technical and literary documeiitss dataset is composed of
11 documents that are organised into 4 natural genrest(tistial, Scientific, Tech-
nical and Literary) trying to be representative of the typésext that are available in



99

multilingual versions. Institutional and Scientific clascomprises documents from the
original pool of 11 documents, which were theme-relatetideuoted to heterogeneous
purposes or written by different authors. This fact prosittee multimodal nature to the
BAF corpus that can be adequately modelled by mixture modeksBAl corpus was
aligned at the sentence level by human experts and it waalinthought to be used as
a reference corpus to evaluate automatic alignment tegbsiop machine translation.

Prior to performing the experiments, tBAF corpus was simplified in order to re-
duce the size of the vocabulary and discard spurious semfeirs. This preprocessing
mainly consisted in three basic actions: downcasing, ceptent of those words con-
taining a sequence of numbers by a generic label, and isolafipunctuation marks.
This basic procedure halved the size of the vocabulary amdfiiantly simplified this
corpus. Neither stopword lists, nor stemming technique®applied since, as shown
in [8], it is unclear whether this further preprocessing rbayconvenient. As it can be
seen in Table 1, this corpus is more complex tharTita@eller dataset.

Table 1. TravellerandBAF corpora statistics.

Traveller BAF

Sp En Fr En
sentence pairs 8000 18509
average length 9 8 28 23
vocabulary size 679 503 20296 15325
singletons 95 106 8084 5281
running words 86K 80K 522K 441K

5.2 Experimental Results

Several experiments were carried out to analyse the balravfeach individual clas-
sifier in terms of log-likelihood and classification erroteras a function of the number
of mixture components per class € {1, 2,5, 10,20, 50,100}). This was done for a
training and test sets resulting from a random datasettipar(il/2-1/2 split forTrav-
eller and 4/5-1/5 foBAF).

Figure 1 shows the evolution of the error rate (lgtixis) and log-likelihood (right
y axis), on training and test sets, for an increasing numbenigfure componentsz(
axis). From top to bottom rows we have: the best monolinglassifier (English in
both datasets), the bilingual bag-of-words classifier, glathal and local classifiers.
Each plotted point is an average over values obtained §@randomised trials.

From the results in Figure 1, we can see that the evolutiohefdg-likelihood on
the training and test sets is as theoretically expectedalfatassifiers in bothTraveller
andBAF. The log-likelihood in training always increases, while tlog-likelihood in
test increases up to a moderate number of compongfits 60 in Travellerand5 —
10 in BAF). This number of components can be considered as an ingficafi the
number of “natural” subclasses in the data. About this nurobenixture components
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is also commonly found the lowest classification test ermte,ras it occurs in our case.
As the number of components keeps increasing, the well-knovertraining effect
appears, the log-likelihood in test falls and the accurasyrades. For this reason we
decided to limit the number of mixture componentd @0, since additional trials with
an increasing number of mixture components confirmed thi®peance degradation.

Figure 2 shows competing curves for test error-rate as aiumof the number of
mixture components for the English-based, bilingual bagrards-based, global and
local classifiers; there are two plots, one Toavellerand the other foBAF. Error bars
representind5% confidence intervals are plotted for the English-basedsiflass in
both plots, and the global classifierBAF.

From the results foffravellerin Figure 2, we can see that there is no significant
statistical difference in terms of error rate between th& beonolingual classifier and
the bilingual classifiers. The reason behind these singlsults can be better explained
in the light of the statistics of th&raveller dataset shown in Table 1. The simplicity of
the Traveller dataset, characterised by its small vocabulary size atarge number of
running words, allows for a reliable estimation of modelgmaeters in both languages.
This is reflected in the high accuracy (95%) of the monolingual classifiers and the
little contribution of a second language to boost the pentorce of bilingual classifiers.
Nevertheless, bilingual classifiers seem to achieve syteatfly better results.

In contrast to the results obtained foraveller, the results foBAF in Figure 2 in-
dicate that bilingual classifiers perform significantlyteethan monolingual models.
More precisely, if we compare the curves for the Englisheldadassifier and the global
classifier, we can observe that there is no overlapping legtvtleeir error-rate confi-
dence intervals. Clearly, the complexity and data scammitplem of theBAF corpus
lead to poorly estimated models, favouring bilingual dféess that take advantage of
both languages. However, the different bilingual classifleave similar performance.

Additional experiments using smootitgram language models were performed
with the well-known and publicly available SRILM toolkit T1. A Witten-Bell [18]
smoothedh-gram language model was trained for each supervised @assately and
for both languages independently. These class-deperatentdge models were used to
define monolingual and bilingual Naive Bayes classifiersuRs are given in Table 2.

From the results in Table 2, we can see tharam language models are similar
to our 1-component mixture models. In fact, both models are eqeitadxcept for the
parameter smoothing. The results obtained witram classifiers withh > 1 are much
better that the results for = 1 and slightly better than the best results obtained with
generall-component multinomial mixtures. More precisely, the besults achieved
with n-grams arel.1% in Travellerand2.6% in BAF, while the best results obtained
with multinomial mixtures aré.4% in Travellerand2.9% in BAF.

Table 2. Test-set error rates for monolingual and bilingual naive classifiasgdb on smooth
n-gram language models ifravellerandBAF.

Traveller 1-gram 2-gram 3-gram BAF 1-gram 2-gram 3-gram
English classifier 4.1 1.9 1.3 English classifier 5.3 35 3.6
Spanish classifier 2.8 1.2 1.2 French classifier 6.7 4.4 4.4

Bilingual classifier 3.3 1.2 1.1 Bilingual classifier 4.1 2.8 2.6
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Fig. 1. Error rate and log-likelihood curves in training and test sets as a functitiremumber
of mixture components, ifiraveller (left column) andBAF (right column) for the four classifiers
considered. Classifiers: the best monolingual, the bilingual bag-ads\@BoW), the global and
the local classifier.
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Fig. 2. Test-set error rate curves as a function of the number of mixture coemts, for each
classifier inTraveller (left) andBAF (right).

6 Conclusions and Future Work

We have presented three different extensions of the mufimomixture-based text
classification model for bilingual text: the bilingual bafrwords model and the global
and local decomposition models. The performance of thensions was compared
to that of monolingual and smootirgram classifiers. Two outstanding conclusions
can be stated from the results presented. First, mixtuseebelassifiers surpass single-
component classifiers in all cases (monolingual, bilindaead-of-words, global and
local). In fact, we have taken advantage of the flexibilitytioé mixture modelisa-
tion over the "single-component” approach to further inyerthe error rates achieved.
This mixture modelling superiority is also reflected in thermalingual versions of our
text classifiers and corroborated through smootiram language model experiments
with independent software. Second, bilingual classifietperform their monolingual
and smoothl-gram counterparts, and the excellence of bilingual di@ssiis more
clearly shown when the complexity of the dataset does nowdtr monolingual well-
estimated models, as in tiBAF corpus. Therefore, the contribution of an extra source
of information instantiated as a second language cannot@lected.

As a future work, smootm-gram language models for bilingual text classifica-
tion provide an interesting starting point for future resbabased on more versatile
language models, as mixtures of bilinguafjram language models. A promising ex-
tension of this work would be the development of mixtur@-afram language models.

All'in all, the bilingual approaches described in this work eelatively simple mod-
els for the statistical distribution of bilingual texts. kosophisticated models, such as
IBM statistical translation models [19], may be better irschébing the statistical dis-
tribution of bilingual, correlated texts.
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