
APPLYING AGENT-ORIENTED MODELLING AND
PROTOTYPING TO SERVICE-ORIENTED SYSTEMS

Aneesh Krishna, Ying Guan, Aditya Ghose
Decision Systems Laboratory, School of Information Technology and Computer Science

University of Wollongong, NSW 2522, Australia

Keywords: Service-Oriented Architecture (SOA), Web Engineering, Agent-Oriented Conceptual Modelling, Executable
Specification.

Abstract: A Service-Oriented Architecture (SOA) is a form of distributed systems architecture, which is essentially a
collection of services. Web services are built in the distributed environment of the Internet, enabling the
integration of applications in a web environment. In this paper, we show how agent-oriented conceptual
modelling techniques can be used to model service-oriented systems and architectures and how these
models can be executed. The resulting executable specification environment permits us to support early
rapid prototyping of the service-oriented systems, at varying levels of abstraction.

1 INTRODUCTION

A Service-Oriented Architecture (SOA) is an
information technology approach or strategy in
which applications make use of (or perhaps more
accurately, rely on) services available on the
network such as the World Wide Web. A SOA is a
form of distributed systems architecture, essentially
a collection of services. SOA provides consistent
interoperability and reuses existing services where
possible. Implementing a SOA can involve
developing applications that use services and
making applications available as services. A SOA is
typically characterized by the following properties
(Jørstad 2005): Logic view, Message orientation,
Description orientation, Granularity and Platform
neutrality. Web services are self-describing software
applications that can be advertised, located, and used
across the Internet using a set of standards such as
SOAP, WSDL (Chinnici 2002) and UDDI (UDDI
2002). Web services are built on the distributed
environment of the Internet.

Agents are components that aim to convey
models inspired from real life (Chen 2004). The
development of agent-based systems offers a new
and existing paradigm for the production of
sophisticated programs in a dynamic and open
environment, particularly in distributed domains
such as a web-based systems and electronic
commerce (Lohse 1998). Current works on Web
services are intimately entwined with work on agent-

based systems. Agent-oriented techniques show a
potential for web services, where agents are needed
both to provide services and to make best use of the
resources available (Chen 2004). Early-phase
Requirement Engineering (RE) activities of web
services are usually performed informally and
without much tool support. The agent-oriented
conceptual modelling notation as exemplified by the
i* framework (Yu 1995) is a popular means of
modelling proposed system requirements. Each
component of a web service can be regarded as an
agent and the whole web service can be viewed as
composed of agent system. Hence, we feel that
agent-oriented conceptual modelling technique i*
framework is suitable for modelling a web service.
The i* framework allows analysts to construct agent-
based prototypes of the proposed web services based
on the preliminary requirements from the
stakeholders. Such notations model organizational
context and offer high level of
social/anthropomorphic abstractions (such as goals,
tasks, softgoals (Chung 2000) and dependencies) as
modelling constructs. It has been argued that such
notations help to answer questions such as; what
goals exist, how key actors depend on each other
and what alternatives must be considered.

The objective of this paper is to show how agent-
oriented conceptual modelling techniques (i*
framework) can be used to model service-oriented
systems and architectures, and how these models can
be executed by mapping i* models into 3APL

246
Krishna A., Guan Y. and Ghose A. (2006).
APPLYING AGENT-ORIENTED MODELLING AND PROTOTYPING TO SERVICE-ORIENTED SYSTEMS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 246-252
DOI: 10.5220/0002469902460252
Copyright c© SciTePress

(Hindriks 1999) agents. This approach makes use of
the advantages of i* for the early-phase of
requirement engineering and validates the model by
mapping it into an executable specification to see the
design result in an emulation program.

The remainder of this paper is organized in the
following manner. In Section 2, steps for modelling
agent-based prototyping of Service-oriented
Architecture are given. We shall provide the
executable specifications for the i* framework in
section 3. Section 4 provides an example to illustrate
the proposed approach and section 5 presents some
concluding remarks.

2 AGENT-BASED PROTOTYPING
OF SERVICE-ORIENTED
ARCHITECTURE

2.1 Preliminaries

Many modelling techniques tend to address “late-
phase” requirements while the vast majority of
critical modelling are arguably taken in early-phase
requirements engineering (Yu 1995). Agent-oriented
conceptual modelling offers an interesting approach
in modelling the early-phase requirements. The i*
modelling framework is a semi-formal notation built
on agent-oriented conceptual modelling. The central
concept in i* is the intentional actor agent.
Intentional properties of an agent such as goals,
beliefs, abilities and commitments are used in
modelling requirements. The actor or agent construct
is used to identify the intentional characteristics
represented as dependencies involving goals to be
achieved, tasks to be performed, resources to be
furnished or softgoals (optimization objectives or
preferences) to be satisfied. The i* framework also
supports the modelling of rationale by representing
key internal intentional characteristics of
actors/agents. The i* framework consists of two
modelling components: Strategic Dependency (SD)
Models and Strategic Rationale (SR) Models.

The SD model consists of a set of nodes and
links. Each node represents an “actor”, and each link
between the two actors indicates that one actor
depends on the other for something in order that the
former may attain some goal. An SR model
represents the internal intentional characteristics of
each actor/agent via task decomposition links and
means-end links. The task decomposition links
provide details on the tasks and the (hierarchically
decomposed) sub-tasks to be performed by each
actor/agent while the means-end links relate goals to
the resources or tasks required to achieve them. The

SR model also provides constructs to model
alternate ways to accomplish goals by asking why,
how and how else questions. Readers are
encouraged to read (Yu 1995) for details on i*
framework.

2.2 Early Requirements Analysis

During the requirements elicitation phase,
stakeholders and goals for individual service are first
identified, then the functional and non-functional
requirements of each of them are defined and finally
the relationships between them are identified. In
(Lau 2004), the authors have proposed an approach
based on the Tropos methodology (Castro 2002), for
designing web services. Our proposal is different
from theirs in the sense that, we focus on modelling
service-oriented systems and architectures in the
early requirement phase, and validate these models
by executable specifications, while in (Lau 2004),
the authors have proposed the methodology for the
whole requirement phase and they aim on
implementing the web services.

We shall use the example of online shopping
service throughout the rest of this paper to illustrate
how to model a web service using i* framework and
consequently how these models can be executed.

The online shopping service sells a range of
products. Customers can buy goods through a
website. After an order is placed, the retailer
contacts the payment system to validate customer
credits and also charge the customer from the
customer’s account. Once payment is processed, the
retailer notifies the product management system to
provide the necessary information. The product
management system collects goods and ships them
to the transport centre together with the delivery
information. Eventually, the transport centre delivers
the ordered products to the customer. Upon
completion of the delivery, the retailer will get the
confirmation of delivery.

Step 1: Identify actors
Five actors are identified during this step.

Customer/Web server, shops online through the
website. Retail system, provides service for selling
the products. Product management system offers
goods and handles delivery. Transport system,
delivers goods to the Customer. Payment system
validates the Customer’s credits and charges their
account.

Step 2: Identify goals

APPLYING AGENT-ORIENTED MODELLING AND PROTOTYPING TO SERVICE-ORIENTED SYSTEMS

247

After identifying the actors of a web service,

their goals are defined simultaneously. For e.g., the
actor Customer/Web server has the goal own
product online and actor Retailer system’s goal is to
sell product.

Step 3: Identify dependency relationships
The actor or agent construct is used to identify

the intentional characteristics represented as
dependencies involving goals to be achieved, tasks
to be performed, resources to be furnished or
softgoals (optimisation objectives or preferences) to
be satisfied (Lau 2004). Combining the results from
steps 1 and 2, the output of this process is a Strategic
Dependency (SD) model. Specifically, The customer
has a goal to own products, shopping confirmation
and softgoal to obtain products at the lowest price
and assure the security of credit. He depends on the
retail system to receive shopping confirmation.
Conversely, the retail system depends on the web
server to provide the order information for further
transactions. The retail system also depends on the
payment system and the product management
system to fulfil charging customer Task dependency
and the resource dependency providing products to
customer respectively. Simultaneously, the payment
system needs the customer credit information to
charge customer. The product management system

depends on the retail system to offer order
information, which includes product information,
and delivery information, and also depends on the
Transport system to ship goods to customer on the
condition that delivery information is provided
together with goods (to be transported) to the
transport system.

The SD model provides an important level of
abstraction for describing systems in relation to their
environments, in terms of intentional relationships
among them. This allows the analyst to understand
and analyse new or existing organizational and
system configurations even if the internal goals and
beliefs of individual agents are not known.

Step 4: Conduct means-end analysis and task-
decomposition analysis

In the i* framework, the Strategic Rationale (SR)
model provides a more detailed level of modelling
by looking “inside” actors to model internal
intentional relationships. Intentional elements (goals,
tasks, resources, and softgoals) appear in the SR
model not only as external dependencies, but also as
internal elements linked by task-decomposition and
means-ends relationships (Figure 1). Task
decomposition links provide details on the tasks and
the (hierarchically decomposed) sub-tasks to be
performed by each actor while the means-end links

Figure 1: Strategic Rationale Model of online shopping service.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

248

relate goals to the resources or tasks required to
achieve them. The SR model also provides
constructs to model alternate ways to accomplish
goals by asking why, how and how else questions.
During this step, goals are further decomposed.
Tasks can also be decomposed into subtasks. The
output of this step is a SR diagram for each actor.
Figure 1 shows the SR model for this case. For
example, the Customer/Web Server actor, has an
internal task to perform ShoppingOnline. This task
can be performed by subtasks SelectProduct and
PlaceOrder (these are related to the parent task via
task decomposition links). The SelectProduct task is
further decomposed into subtasks BrowseCatalog
and SearchProduct.
After performing outlined four steps, models of the
proposed web service are generated. Our next step is
to show how these agent-oriented models can be
executed. In our proposal, we use 3APL as the
programming language for generating executable
specifications.

3 EXECUTABLE
SPECIFICATIONS FOR I *

3.1 3APL

3APL (An Abstract Agent Programming Language)
(Hindriks 1999, Dastani 2004) is a programming
language for implementing cognitive agents. Agents
written in 3APL language consist of goals, belief,
practical reasoning rules and capabilities. A goal is a
state of the system that the agent wants to achieve. A
Belief is used to represent the current mental state of
the agent. Practical reasoning rules are the means for
the agent to manipulate the goals. Capabilities are
the actions that can be performed by the agent. An
action can only be performed if certain beliefs hold,
this is called precondition of an action.

In this paper, we adopt 3APL platform (Dastani
2004) to support our work. Our work is mainly
based on 3APL definitions from (Hindriks 1999,
Dastani 2004).

Definition 1 A 3APL agent is defined as a tuple
〈 n, B, G, P, A 〉 , where n is the name of the agent, B
is a set of beliefs (Beliefbase), G is a set of goals
(Goalbase), P is a set of practical reasoning rules
(Rulebase) and A is a set of basic actions
(Capabilities).

In (Hindriks 1999), a set of programming
constructs for goals are defined, namely
BactionGoal, PreGoal, TestGoal, SkipGoal,
SequenceGoal, IfGoal, WhileGoal and JavaGoal,

which can be used in the body part of a practical
reasoning rule and make 3APL more flexible.

In a 3APL agent, P is a set of rules in the form:
πh <-ϕ | πb,
In this formula, πh and πb belong to a goal

variable set, and ϕ is a belief. When the agent has
goal πh and believes ϕ then πh is replaced by πb.

For a 3APL agent, Beliefbase is dynamic. It is
updated with executing basic actions from the set of
capabilities. The structure of a basic action is shown
below:

{ϕ1} Action(X) {ϕ2}
ϕ1 is the pre-condition and ϕ2 is the post-

condition. Precondition and post-condition are belief
formulas. It is possible to have an action that does
not have any pre-condition or post condition. The
execution of an action will result in the update of
beliefbase through replacing preconditions by
postconditions. The beliefbase can also be extended
with a Prolog program (facts and rules) using the
LOAD option (Dastani 2004). In addition, beliefs
can be generated from the communications between
two agents (sent and received). 3APL has a
mechanism to support the communications between
agents. A message mechanism is defined in (Dastani
2004) to fulfill the communication between agents.
The messages themselves have a specific structure,
Receiver/ Sender, Performative are three
compulsory elements in a message. Usually, there
are three type of message: send(Receiver,
Performative, Content), sent(Receiver, Performative,
Content), and received(Sender, Performative,
Content). This agent communication mechanism is
described in details in (Dastani 2004).

In this paper we shall not elaborate more on the
syntax of 3APL, readers who may want more details
are directed to (Hindriks 1999, Dastani 2004).

3.2 Mapping i* Model to 3APL
Agents

We view an i* model as a pair 〈 SD, SR 〉 where SD
is a graph denoted by 〈 Actors, Dependencies 〉
where Actors is a set of nodes (one for each actor)
and Dependencies is a set of labeled edges. These
edges can be of 4 kinds: goal dependencies(denoted
by DG(SD)), task dependencies(denoted by DT(SD)),
resource dependencies(denoted by DR(SD)) and
softgoal dependencies(denoted by DS(SD)). Each
edge is defined as a triple 〈 To, Td, ID 〉 , where To
denotes the depender, Td denotes the dependum and
ID is the label on the edge that serves as a unique
name and includes information to indicate which of
the four kinds of dependencies that edge represents.
SR is a set of graphs, each of which describes an
actor.

APPLYING AGENT-ORIENTED MODELLING AND PROTOTYPING TO SERVICE-ORIENTED SYSTEMS

249

 We adopt the concept of an environment
simulator agent (ESA) defined in (Salim 2005).

We define MAS is a pair 〈 Agents, ESA 〉 where
Agents = {a1, ..., an}, each ai is a 3APL agent and
ESA is a specially designated Environment
Simulator Agent implemented in 3APL which holds
the knowledge about the actions that might be
performed by actors in SD model and the possible
environment transformation after the executions of
those actions. The environment agent can verify
fulfilment properties (clearly defined in Formal
Tropos (Fuxman 2004)), which include conditions
such as creation conditions, invariant conditions,
and fulfillment conditions of those actions associated
with each agent. Every action of each agent has
those fulfilment properties. ESA is used to check
whether those actions of all agents in this system
satisfy corresponding conditions.

Each graph in an SR model is a triple 〈 SR-nodes,
SR-edges, ActorID 〉 . The SR-nodes consist of a set
of goal nodes (denoted by NG), a set of task nodes
(denoted by NT), a set of resource nodes (denoted by
NR) and a set of softgoal nodes (denoted by NS). SR-
edges can be of 3 kinds: means-ends links (denoted
by the set MELinks), task-decomposition link
(denoted by the set TDLinks) and softgoal
contribution link (denoted by the set SCLinks). Each
MELink and TDLink is represented as a pair, where
the first element is the parent node and the second
element is the child node. A SCLink is represented
as a triple 〈 s, m, c 〉 , where the first element is the
parent node, the second element is the child node
and the third element is the softgoal contribution
which can be positive or negative.

Any MAS 〈 Agents, ESA 〉 obtained from an i*
model m= 〈 SD, SR 〉 , where SD= 〈 Actors,
Dependencies 〉 and SR is a set of triples of the
form 〈 SR-nodes, SR-edges, ActorID 〉 (we assume
that a such a triple exists for each actor in Actors)
with SR-nodes= NG ∪ NT ∪ NR ∪ Ns and SR-
edges=MELinks ∪ TDLinks ∪ SCLinks must satisfy
the following conditions (Guan 2005):

1. For all a in Actors, there exists an agent in
Agents with the same name.

For example, in the Online Shopping System,
Retail system is an actor in SR Model, therefore,
there is an agent named “Retail System” in this
3APL agents system.

2. For every goal node or task node n in the SR
diagram for that actor, the corresponding agent 〈 a,
B, G, P, A 〉 in Agents must satisfy the property that
goal(n) or task(n) in the G.

For example, goal Sell product and task Handle
Online Order are in the boundary of actor Retail
System, according to step 2, SellProduct() and
HandelOnlinOrder() are in the goalbase of agent
RetailSystem.

3. For all a in Actors and for each p in NG (parent
node) for which a link 〈 p, c 〉 in MELink exists in the
SR model for that actor, with c in NT (children node),
the corresponding agent 〈 a, B, G, P, A 〉 in Agents
must satisfy the property that goal(p)<- ϕ |
SeqComp(T) is an element of P. Here T={c1,…,cn},
given that <p,c1>,…,<p, cn> are all the task
decomposition links that share the same parent p.
SeqComp(T) is an operation that generates the body
of the practical reasoning rule referred to above by
sequentially composing the goal or task children
identified in each of the means-end links with the
same parent p. The i* model in itself does not
provide any information on what this sequence
should be. This needs to be provided by the analyst
or, by default, obtained from a left-to-right reading
of the means-ends-links for the same parent in an SR
diagram.

For example, in the SR diagram of actor Retail
System of figure 1, task Handle Online Order and
goal Sell Product are connected by a means-end
link, therefore, rule SellProduct()<-ϕ |
HandelOnlineOrder() can be added into the
Rulebase of agent RetailSystem. Belief fomula ϕ and
parameters of goal and task can be specified
according to the real case.

4. For all a in Actors and for each p in NT for
which a link 〈 p, c 〉 in TDLink exists in the SR
model for that actor (where c in (NT∪NG)), the
corresponding agent 〈 a, B, G, P, A 〉 in Agents must
satisfy the property that goal(p)<- ϕ| SeqComp(T) is
an element of P. Here T={c1,…,cn}, given that
<p,c1>,…,<p, cn> are all the task decomposition
links that share the same parent p. SeqComp(T) is as
defined in rule 3.

Note that, in the rules defined above, the
execution orders of sub-tasks within the Task-
decomposition links are from left to right as default.
Belief formulas of each practical reasoning rule
cannot be generated completely automatically,
instead those beliefs are specified by the designers.

Take task Handel Online Order as the parent
task node for example, this task is decomposed into
three sub-tasks: Confirm Customer, Let Payment
System Handel Payment and Let Product
Management System Send Product. Using the above
rule, will lead to:

HandleOnlineOrder() <- ϕ |
 BEGIN

letpaymentsystemhandelpayment();
 confirmcustomer();

letproductmanagementsystemsendproduct()
 END.
Note that, in the rules defined above, the

execution orders of sub-tasks within the Task-

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

250

decomposition links are from left to right as default.
Belief formulas of each practical reasoning rule
cannot be generated completely automatically;
instead, those beliefs are specified by designers.

5. For all a in Actors and for each triple 〈 s, m,
c 〉 in SCLinks in the SR model for that actor, the
corresponding agent 〈 a, B, G, P, A 〉 in Agents must
satisfy the property that belief(m, s, c) is an element
of B. We do not describe how beliefs about softgoal
contributions are used in agent programs for brevity
– we will flag however that they can plan a critical
role in selecting amongst practical reasoning rules.

For example, there are two ways to achieve goal
Own Product for an actor, one is Go Shopping, the
other is Shopping Online. On the assumption that
task GoShopping has positive contribution to
softgoals low effort, convenient and time saving
while task ShoppingOnline has positive effects on
those three softgoals.

The following beliefs are in the beliefbase of
agent Customer.

Belief(OwnProduct, GoShopping,
timesavingnegative).

Belief(OwnProduct, GoShopping,
loweffortnegative).

Belief(OwnProduct, GoShopping,
convenientnegative).

Belief(OwnProduct, ShoppingOnline,
timesavingpositive).

Belief(OwnProduct, ShoppingOnline,
loweffortpositive).

Belief(OwnProduct,ShoppingOnline,
convenientpositive).

6. For all dependencies 〈 To, Td, ID 〉
in SD, there exist agents 〈 To, Bo, Go,
Po, Ao 〉 , 〈 Td, Bd, Gd, Pd, Ad 〉 in Agents,
such that if 〈 To, Td, ID 〉 is in DG(SD),
then goal(ID) is an element of Go,

 goal(ID) <-ϕ|
 BEGIN
 send(Td, request,

requestAchieve(ID));
 send(ESA, inform,

believe(ϕ))
 END is an element of Po,
 received(To, request,

requestAcheive(ID)) |
 BEGIN
 Achieve(ID);
 send(ESA, inform,

believe(Achieved(ID))
 END is an element of Pd.
 Here ϕ denotes the creation

condition of the dependency ID.
 Similarly, if 〈 To, Td, ID 〉 is

in DT(SD) , task(ID) is in Go,
 Task(ID) <-ϕ |

 BEGIN
 send(Td, request,

requestPerform(ID));
 send(ESA, inform

,believe(ϕ))
 END ∈ Po
 received(To, request,

requestPerform (ID)) |
 BEGIN
 Perform(ID);
 send(ESA, inform,

believe(Performed(ID))
 END is an element of Pd..
 Similarly, if 〈 To, Td, ID 〉 is in

DR(SD) then
 Request(ID) <-ϕ |
 BEGIN
 send(Td, request,

requestProvide(ID));
 send(ESA, inform ,believe(ϕ))
 END ∈ Po,
 received(To, request,

requestProvide(ID)) |
 BEGIN
 send(To,request,offer(ID));
 send(ESA, inform,

believe(Offered(ID))
 END is an element of Pd..
 Notice that these rules require that the creation

conditions be communicated by the depender agent
to the ESA agent. The ESA monitors all of the
actions/tasks performed by each agent, all of the
messages exchanged and all of the beliefs (usually
creation conditions for dependencies) communicated
by individual agents for consistency and for
constraint violations (e.g. the FormalTROPOS-style
conditions associated with dependencies). When any
of these is detected, the ESA generates a user alert.

 We shall select one task-dependency and one
resource-dependency related to agent Retail System
in order to illustrate rule 6. Actor Customer depends
on actor Retail System to perform task Buy Product
Online and to provide Confirmation of buying.
According to rule 6, for agent Customer,
BuyProductOnline() is in the Goalbase. Rules shown
below are in its Rulebase:

Request(confirmation) <-
 product(P) AND

needconfirmation(P) |
 BEGIN
 send(retailsystem, request,

requestProvide(confirmation));
 send(ESA, inform

,believe(needconfirmation))
 END
Task(BuyProductOnline) <-
 needtobuyproductonline |

APPLYING AGENT-ORIENTED MODELLING AND PROTOTYPING TO SERVICE-ORIENTED SYSTEMS

251

 BEGIN
 send(retailsystem, request,

requestPerform(BuyProductOnline));
 send(ESA, inform ,believe(ϕ))

END are in Rulebase.
For agent RetailSytem, two rules are

generated for these two dependencies
relationships.

received(customer, request,
requestProvide(confirmation)) |

 BEGIN
 send(customer, request,

offer(confirmation));
 send(ESA, inform,

believe(Offered(confirmation))
 END
received(customer, request,

requestPerform (BuyProductOnline)) |
 BEGIN
 Perform(BuyProductOnline);
 send(ESA, inform,

believe(Performed(BuyProductOnline))
 END
 Figure 2 (provided below) is a snapshot for the

Online Shopping 3APL agent System. It provides
insight into the communication messages.

Figure 2: Communication messages.

4 CONCLUSIONS

This paper has shown how agent-oriented
conceptual modelling techniques such as i*
framework can be employed to model service-
oriented systems. Along with this we have suggested
an approach to executing i* models by translating
these into a set of interacting agents (services)
implemented in the 3APL language. This approach
makes use of the advantages of i* for the early-phase
of requirement engineering and validates the model
by mapping it into an executable specification to see

the design result in an emulation program. We are
working towards automating the approach proposed
in this paper.

REFERENCES

Castro, J., Kolp, M., Mylopoulos, J., (2002) Towards
requirements-driven information systems engineering:
the Tropos project, Information Systems Journal,
2002.

Chen, F., Yang, H., Guo, H., Xu, B. (2004) Agentification
for web services, Proceedings of the 28th Annual
International Computer Software and Applications
Conference, 2004 pp.514 – 519

Chinnici, R. (2002) Web Service Description Language
(WSDL) Version 1.2, World Wide Web Consortium,
2002, www.w3.org/TR/wsdl12/

Chung, L., Nixon, B., Yu, E., Mylopoulos, J. (2000) Non-
Functional Requirements in Software Engineering,
Kluwer Academic Publishing, 2000

Dastani, M. (2004) 3APL Platform User Guide November
16, Utrecht University, 2004

Diana, L., Mylopoulos, M. (2004) Designing Web
Services with Tropos, Proceedings of ICWS'04, San
Diego, USA, 2004. IEEE Computer Society Press

Fuxman, A., Liu, L., Pistore, M., Roveri, M., Mylopoulos,
J. (2004) Specifying and Analyzing Early
Requirements in Tropos, Requirements Engineering
Journal, 9(2): 132-150, 2004

Guan, Y., Ghose, A. K. (2005) Executable specifications
for agent-oriented conceptual modelling. Proceedings
of Proceedings of the IEEE/WIC 2005 International
Conference on Intelligent Agent Technology, France,
2005

Hindriks, K. V., De Boer, F. S., Van der, H. W., Meyer, J.
(1999) Agent programming in 3APL. Autonomous
Agents & Multi-Agent Systems, 2(4):357- 401, 1999

Jørstad, I., Dustdar, S., van Do, T. (2005). A Service
Oriented Architecture Framework for collaborative
services. 3rd International Workshop on Distributed
and Mobile collaboration (DMC), IEEE WETICE,
Linköping, Sweden, 13-15 June 2005

Lohse, G., Spiller, P. (1998) “Electronic shopping”,
Communications of the ACM, 41(7): 81–87, July 1998

Salim, F., Chang, C., Krishna, A., Ghose, A. K. (2005)
Towards executable specifications: Combining i* and
AgentSpeak (L). Proceedings of 17th International
Conference on Software Engineering and Knowledge
Engineering (SEKE-2005), Taipei, Taiwan, July, 2005

Universal Description, Discovery and Integration,
Organization for Advancement of Structured
Information System, (2002),
www.uddi.org/specification.html

Yu, E. (1995) Modelling Strategic Relationships for
Process Reengineering. PhD Thesis, Graduate
Department of Computer Science, University of
Toronto, Toronto, Canada, 1995, pp. 124

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

252

