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Abstract: Shilling behaviors are one of the most serious fraud problems in online auctions, which make winning 
bidders have to pay more than what they should pay for auctioned items. In concurrent online auctions, 
where multiple auctions for the same type of items are running simultaneously, shilling behaviors can be 
even more severe because detecting, predicting and preventing such fraudulent behaviors become very 
difficult. In this paper, we propose a formal approach to detecting shilling behaviors in concurrent online 
auctions using model checking techniques. We first develop a model template that represents two concurrent 
online auctions in Promela. Based on the model template, we derive an auction model that simulates the 
bidding processes of two concurrent auctions. Then we use the SPIN model checker to formally verify if the 
auction model satisfies any questionable behavioral properties that are written in LTL (Linear Temporal 
Logic) formulas. Thus, our approach simplifies the problem of searching for shilling behaviors in concurrent 
online auctions into a model checking problem. Finally, we provide a case study to illustrate how our 
approach can effectively detect possible shill bidders. 

1 INTRODUCTION 

In traditional economic theory, auction can be used 
to determine the value of a commodity that is 
difficult to tag a price. The commodity can be a 
physical product, such as artwork and antiques; or it 
can be a virtual product, for example, spectrum 
licenses and procurement contracts. The most 
commonly used types of auctions include English 
auction, Dutch auction, sealed first-price auction, 
and sealed second-price auction. Among them, only 
English auction is adopted in online auction houses. 
In an English auction, participants can openly 
observe other people’s bids and then bid against 
each other. The following bidding price must be 
higher than the previous one.  The auction ends 
when the bidding reaches a point where no one 
wants to beat the current highest price. So, in an 
English auction, a bidder can bid multiple times 
while the bidding price ascends. The seller of the 
auctioned item can set a pre-determined reserve 
price. If the final bidding price is lower than the 
reserve price, the seller can reserve the right of not 
selling the auctioned item. 

The characteristic of multiple bids and ascending 
bidding price in English auctions has made this 
auction type very popular, but it also makes shilling 
behaviors very common in online auctions. 

There are two main kinds of shilling behaviors: 
reserve price shilling and competitive shilling 
(Kauffman and Wood, 2000). In reserve price 
shilling, a seller sets a low reserve price and pretends 
to be normal bidders to put in bids, in order to drive 
up the bidding price to his own evaluation of the 
item. Usually the lower reserve price the seller sets 
the cheaper fee he has to pay to the auction house. In 
this case, the seller can avoid paying higher reserve 
price fee. In competitive shilling, a seller also 
pretends to be normal bidders, and constantly 
monitors the bidding process and puts in fake bids to 
drive up the bidding price; however, the objective of 
doing this is to make potential buyers pay extra 
money to win their bids instead of paying less 
reserve price fee. Although the objectives of these 
two behaviors are different, their distinction is not 
always very clear. For example, a reserve-price-
shilling seller might still want to drive up the 
bidding price, even after it has already reached the 
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seller’s own evaluation of the item. Notice that 
normally the reserve price shilling only affects the 
auction houses; while the competitive shilling affects 
all bidders in the market. It is obvious that the 
competitive shilling causes a greater harm to the 
auction market than the reserve price shilling. In 
addition, shilling behaviors involved in concurrent 
online auctions, where multiple auctions for the 
same type of items are running simultaneously, are 
much more difficult to detect than shilling behaviors 
occur in a standalone auction. Thus, in this paper, we 
focus on studying competitive shilling behaviors in 
concurrent online auctions. 

There is very little previous work on shill 
detection for online auctions. Wang and his 
colleagues showed that private value English 
auctions with shill bidding can result in a higher 
expected seller profit than other auction formats 
(Wang et al., 2002). This explains why in online 
auction houses like eBay, shilling behaviors have 
become a very serious problem that cannot be 
ignored. The authors proposed a commission fee 
mechanism in which the auctioneer charges the 
seller a commission fee based on the difference 
between the winning bid and the seller’s reserve 
price. This approach can make shill bidding un-
profitable, but it could be unfair to sellers’ interests, 
especially when the sellers are not shilling at all. 

Kauffman and Wood used a statistical approach 
to detecting shilling behaviors and showed that how 
the statistic data of a market would look like if 
opportunistic behaviors do exist. They also showed 
how to use an empirical model to test for 
questionable behaviors (Kauffman and Wood, 2000). 
However, their approach suffers from a few 
problems, for example, it needs to review multiple 
auctions over a long period of time (Gupta and 
Bapna, 2002). Furthermore, the statistical approach 
could not deal with the shilling problem directly. 

In this paper, we propose to use model checking 
technique to detect shilling behaviors in two 
concurrent online auctions. Our approach can 
directly detect shilling behaviors based on the latest 
auction data, and then suggest shill suspects, if any. 

The rest of this paper is organized as follows: 
Section 2 introduces the pattern-based model 
checking technique. Section 3 first presents a 
motivation example for shill detection using model 
checking. Then it introduces a model template and 
shows how to build an auction model based on 
auction data from two concurrent auctions. Section 4 
provides a case study for how to use our approach to 
detect shilling behaviors. Finally, in Section 5, we 
provide conclusions and our future work. 

2 PATTERN-BASED MODEL 
CHECKING TECHNIQUE 

2.1 The SPIN Model Checker 

There is a wide variety of model checking tools 
available, such as SPIN, NuSMV2, Java Pathfinder 
and MARIA. Among them, the SPIN model checker 
provides a friendly user interface and accepts model 
specifications written in Promela (PROcess MEta 
Language) (Holzmann, 1997). Promela is a CSP-like 
language mainly used to describe abstract level 
concurrent software system. Like any other 
programming languages, Promela supports variables, 
arrays and user-defined data types as well as control 
flow statement. In addition, Promela supports 
symbolic constants, message channels, processes, 
selection and repetition, atomic sequence and 
deterministic steps. 

2.2 LTL and Patterns 

The SPIN model checker supports specification of 
system properties using Linear Temporal Logic 
(LTL) (Pnueli, 1977), which is a formal method to 
specify temporal relationships of statements. LTL 
has been proven to have good expressivity and more 
natural language like statements for verification. 
LTL consists only a few logic operators, such as G 
(always), F (eventually), U (until), W (unless, or 
weak until) and O (next). Combining with Boolean 
operators, i.e., && (and), || (or), ! (negation), → 
(logical implication) and ↔ (logical equivalence), 
LTL is capable of describing many key properties of 
a concurrent software system. 

On the other hand, like many other formal 
specification and verification methods, writing a 
LTL formula is not easy and error prone. Even a 
person who has expertise in LTL may still have a 
difficult time in understanding the semantic of a 
LTL formula, such as  []((Q&&!R&&<>R)→(P→ 
(!R U (S&&!R))) U R). To solve this problem, 
Dwyer and his colleagues proposed a pattern-based 
approach to helping software engineers to specify 
requirements properties without having to worry 
about the complexity and potential traps (Dwyer et 
al., 1999). 

There are quite a few patterns proposed in 
previous work (Dwyer et al., 1999). Before we 
present some of the patterns that we use in this 
paper, we first introduce a notation called pattern 
scope, which represents the extent of a program 
execution over which the pattern must hold. 
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Figure 1: Pattern scopes for pattern-based LTL. 

Figure 1 is an illustration of pattern scopes 
adapted from (Dwyer et al., 1999). The capital 
letters Q and R stand for events. Every pattern can 
be assigned with one of the five scopes, in which 
during the extent of the specified scope, a pattern 
must hold. It should be clarified that all these pattern 
scopes are defined as closed-left and open-right. For 
example, if the scope is “Between Q and R”, then Q 
is included in the scope but R is excluded. 

In Table 1 and Table 2, we list two patterns that 
are used in this paper. For example, the Absence 
pattern in pattern scope “Before R” is described by 
the formula <>R → (!P U R). It specifies that 
during the extent of the starting state and event R, 
event P must be false. Similarly, the Existence 
pattern in pattern scope “Between Q and R” is 
described by the formula [](Q && !R→(!R W (P 
&& !R))), which specifies that during the extent of 
event Q and event R, event P must become true.  

For more LTL pattern definitions, please refer to 
previous work (Dwyer et al., 1999). 
 

Table 1: Absence patterns (event P is false). 
Pattern Scope Formula 
Globally [](!P) 
Before R <>R → (!P U R) 
After Q [](Q → [](!P)) 
Between Q and R []((Q && !R && <>R) →

(!P U R)) 
After Q until R [](Q && !R → (!P W R)) 
 

Table 2: Existence patterns (event P becomes true). 
Pattern Scope Formula 
Globally <>(P) 
Before R !R W (P && !R) 
After Q [](!Q) || <>(Q && <>P))
Between Q and R [](Q && !R→(!R W (P && 

!R))) 
After Q until R [](Q && !R → (!R U (P 

&& !R))) 

3 MODELING CONCURRENT 
ONLINE AUCTIONS 

3.1 A Motivation Example 

The basic idea of our approach is to automatically 
generate an auction model based on auction data 
from two concurrent auctions, and verify if the 
auction model satisfies certain bidders’ behavioral 
properties. The following figure (Figure 2) shows an 
example of two concurrent auctions. 

Auction 0

Auction 1

Start of Auction

Price is lower

User A bids

Price is lower

User A bids

Reach Reserve Price End of Auction

Start of Auction Reach Reserve Price End of Auction

T

T T T T

T T TT TTT T

T

T

T

 
Figure 2: An example of two concurrent auctions. 

To simplify matters, we assume that the auction 
that starts first is always Auction 0, and the one that 
starts later is always Auction 1. In Figure 2, “T” 
stands for “True”, and for each auction it has two 
predicates, i.e., “Price is lower” and “User A bids”. 
If any predicate becomes “T” at a certain point of 
time in the process of any one of the two auctions, it 
means that the event happens at that time. For 
example, if “Price is lower” is “T” at a point in 
Auction 0, it means that at that time, the bidding 
price is lower in Auction 0. Similarly, if “User A 
bids” is “T” at a point in Auction 1, it means that at 
that time User A puts in his/her bid in Auction 1. 

We use an example to show how to write a 
pattern-based LTL formula for a certain behavioral 
property. For instance, we want to detect the 
following shilling behavior: 

While two auctions are running concurrently, a 
user bids in the auction that has higher bidding 
price rather than lower bidding price. 

Suppose Auction 0 starts first and also ends first. 
Then we need to verify the following: after “start of 
Auction 1” until “end of Auction 0”, does “(User A 
bids in Auction 0 && price is lower in Auction 1) or 
(User A bids in Auction 1 && price is lower in 
Auction 0) become true?” The formula can be 
composed using the Existence pattern with “After Q 
until R” scope. If we use “S1” to represent “start of 
Auction 1”, “E0” to represent “end of Auction 0”, 
“P” to represent “User A bids in Auction 0 && price 
is lower in Auction 1”, and “S” to represent “User A 
bids in Auction 1 && price is lower in Auction 0”, 
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the formula can be written as ([](S1 && !E0 -> 
(!E0 U(P && !E0)))) || ([](S1 && !E0 -> 
(!E0 U(S && !E0)))). 

From Figure 2, we can see that the behavior 
specified above becomes true for three times 
(denoted by three vertical dotted lines). Thus, the 
LTL formula must be valid. 

3.2 Preprocessing the Auction Data 

The first step to build an auction model is to 
preprocess the auction data. As shown in Figure 3, 
this task is accomplished by the Preprocessor, which 
extracts numeric data from two concurrent auctions 
and substitutes them into a model template to 
produce a specific auction model. 
 

Output

Input

Input

Preprocess

Output

Preprocessor

Model Template
(template.txt)

Two Auctions
Data

Symbol
Definitions

(definitions.txt)

Auction Model
Code (pan_in)

Model

 
Figure 3: Preprocessing the auction data. 

Calculate Data Size

Code GeneratorParse User List

Re-arrange Data Definit ion Generator

 
Figure 4: Preprocessor’s major tasks. 

The generated auction model consists of a 
Promela model code with an LTL symbol definition 
file. The major sub-tasks in preprocessing of auction 
data are illustrated in Figure 4, which consists of 5 
steps, namely “Calculate Data Size”, “Parse User 
List”, “Re-arrange Data”, “Generate Code”, and 
“Generate Symbol Definitions”. 

3.3 The Auction Model Template 

The auction model template is written in Promela 
code. The template allows us to generate different 
Promela code for auction models based on different 
extracted numeric auction data. 
 

Table 3: Auction model template code. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
 

int finalRound=…; 
byte bidSeq[…]; 
byte flag0[…]; 
byte flag1[…]; 
int reservePrice0=…; 
int reservePrice1=…; 
int currentHighestBid0=…; 
int currentHighestBid1=…; 
int previousHighestBid0=…; 
int previousHighestBid1=…; 
int increment0[…]; 
int increment1[…]; 
 
typedef Auction{ 
int dataSize; 
int timeInterval[…]; 
byte userIDs[…]; 
int bidAmount[…]; 

}; 
Auction auction0,auction1; 
int timeElapse0, timeElapse1; 
bit startPoint0=0; 
bit startPoint1=0; 
bit reservePoint0=0; 
bit reservePoint1=0; 
bit endPoint0=0; 
bit endPoint1=0; 
int roundCount=0; 
 
proctype ModelChecker(){ 
 
checkingState: 
do  
::(roundCount < finalRound) -> 
  d_step{ 
    startPoint0=0; 
    startPoint1=0; 
    reservePoint0=0; 
    reservePoint1=0; 
    endPoint0=0; 
    endPoint1=0; 
    if 
    ::(bidSeq[roundCount]==0)-> 
      if 
      ::(flag0[roundCount]==1)-> 
        startPoint0=1; 
      ::(flag0[roundCount]==2)-> 
        reservePoint0=1; 
      ::else -> skip; 
      fi; 
      ...       
    ::(bidSeq[roundCount]==1)-> 
    ... 
    ::(bidSeq[roundCount]==7)-> 
    ... 
    fi; 
    roundCount++; 
  } 
  :: else ->  
    goto endState; 

  od;   
                  
endState:               
skip; 

} 
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67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

init{           
bidSeq[0]=0;       

  ... 
auction0.dataSize=…; 
auction0.agentIDs[0]=…; 
auction0.bidAmount[0]=…; 
auction0.timeInterval[0]=…; 
... 
flag0[0]=…; 
... 
run ModelChecker();                 

} 

 
As shown in Table 3, we first define the global 

variables in the auction template (line 1~19), which 
will be initialized with values extracted from the 
auction data in the init procedure (line 67~78). 
These global variables can be used to define symbols 
to compose LTL formula. In line 20~28, we define 
the local variables that can only be used by the 
model checker. 

The code between line 30-66 represents the state 
transitions of the bidding process. When each 
auction round starts, all flags are cleared (line 
36~41). Then according to different bid sequences 
that represent different bidding situations, the model 
runs differently. For example, when the bid 
sequence is “0”, it means that a bidder placed a bid 
in Auction 0; while at the same time no one was 
bidding in Auction 1. To handle this case, we first set 
up the flags, and then all the old values from the 
previous bid of the relevant variables are updated to 
the new values that represent the current bid. 
 

Clean All Flags

Case 0:  Auction 0 is bidding

Case 1:  Auction 1 is bidding

Case 2:  Both auctions are bidding at
the same time

Case 3:  Auction 0 is bidding, and
Auction 1 has reached end of auction

Case 4:  Auction 1 has reached end of
auction

Case 5:  Auction 0 has reached end of
auction

Case 6:  Auction 0 has reached end of
auction, and Auction 1 is bidding

Case 7:  Both auctions have reached
end of auction at the same time

 
Figure 5: Different bidding situations. 

In Figure 5, we show 8 different biding situations 
in a UML state diagram that correspond to different 
bidding sequences. Since each auction can be in one 
of the following states: “bidding”, “not biding” and 
“end”, we shall have 9 combinations for two 
concurrent auctions. However, one of the cases (i.e., 

“not bidding, not bidding”) can be excluded from 
consideration because when it happens, both 
auctions must have already ended. 

3.4 Symbol Definitions for LTL 

In order to verify properties specified in LTL 
formulas, we need to define symbols that can be 
used in formula composition. We define most of the 
terms to be self-explanatory. For example, “start0” 
(“start1”) denotes the start of Auction 0 (Auction 1); 
while “end0” (“end1”) denotes the end of Auction 0 
(Auction 1). Similarly, the symbol “reserve0” 
(“reserve1”) denotes that the reserve price of 
Auction 0 (Auction 1) is reached. However, for a 
term like “bid00”, the first “0” denotes Auction 0, 
and the second “0” denotes the bidding behavior of 
User 0. Thus, if a user numbered 16 bids on Auction 
0, then it should be represented by the symbol 
“bid016”. 

Symbol definitions, combining with LTL 
formulas, can ease the task of writing LTL formulas. 
In practical use, users can also develop their own set 
of symbol definitions. 

3.5 The Model Checking Process 

After the auction model has been created, the model 
checking process becomes simple. The model 
checking process consists of the following steps. 

1. Duplicate the symbol definition file called 
“definitions.txt” and name it as “pan.ltl”. 

2. Type in the LTL formula. The formula will be 
translated to “never claim” that can be used to 
match either finite or infinite behaviors. 

3. Append the generated “never claim” to the 
“pan.ltl” file. 

4. Use the SPIN to generate a model verifier (pan) 
from both the Promela model code (“pan_in”) 
and the file “pan.ltl”. The file “pan.ltl” should 
contain both a “never claim” and symbol 
definitions. 

5. Compile the verifier source code (pan) using 
“gcc” to produce an executable file “pan.exe”. 

6. Execute the model verifier. After the execution 
of the auction model, the model verifier will 
show whether the result is valid or invalid. An 
invalid result indicates that during the 
verification process, the model verifier 
encountered errors. If any errors are 
encountered, the model we developed violates 
the LTL formula that we specified. In this case, 
the behavior we specified does not exist in the 
model being checked. 
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4 A CASE STUDY 

In this section, we use a case study to show how 
potential shills can be detected. The auction data was 
collected from the eBay, but to protect users’ 
privacy, we have changed all user IDs (due to page 
limitation, the auction data is not presented in this 
paper). The titles for the two auctions are the same, 
which is “HP/COMPAQ PRESARIO LAPTOP CD-
RW BURNER DVD WIRELESS”. Both auctions 
are held by the same seller and the description to 
these two auction items is shown in Table 4. 

Table 4: Description of auctioned items. 

Item Specifics - PC Laptops 
Brand:  Compaq  Hard Drive Cap:  60 GB  
Chip Type:  --  Screen Size: 15 inches  
Model:  --  OS Included:  Yes  
Processor 
Speed:  1.4 GHz  Primary Drive:  CD-RW/DVD 

Combo  
Memory  512 MB  Condition:  --  
 

To simplify our verification process, we have 
made a few adjustments for the auction data. We 
erased all currency symbols and time zone 
abbreviations to make them appear simpler. We 
rounded up all bidding prices that have decimals. In 
addition, we added a user’s bidding price by 1 if the 
user’s bidding price is the same as the previous bid. 
Note that each user name is associated with a 
numeric value in parentheses, which represents the 
user’s feedback score. 

Since the eBay does not provide any information 
about the reserve price for each auction, as well as 
whether the seller has set up a reserve price, we 
assume the reserve prices for both auctions are $500. 
The value of $500 is very close to both winning bids 
($630 and $620), but sill gives us good ranges (from 
$500 to $630 and from $500 to $620) for checking 
bidding behaviors. We define overbid and deliberate 
bid as follows. 

Definition If the price difference between the 
previous bid and the current bid is over 10 dollars, it 
is considered as an overbid (a bid in large 
increment). 

Definition If the time gap between the current 
bid and the previous bid is over 7200 seconds (2 
hours), it is considered as a deliberate bid. 

The reason we set 10 dollars as the boundary is 
based on our observation, since most bid increments 
are less than this number. Similarly, we set the 2 
hours boundary for deliberate bid because 2 hours is 
a reasonable period of time for a bidder to make a 
deliberate decision. In practical, these two values 

should be defined and adjusted according to auction 
administrator’s experiences and observations.  

In the two concurrent online auctions, there are 
totally 35 users, among which we selected the 
following four users for investigation: “paperchen”, 
“benniten23”, “andy293” and “yass3d”. We chose 
these four users because they are the only bidders 
who are involved in both of the two concurrent 
online auctions, and thus, they are more likely to be 
shills. 

After the auction data has been preprocessed, the 
data is re-arranged. We then determine the auction 
data’s overlapping style as shown in Figure 7. 
 

S0

S1

R0

R1

E0

E1

Auction 0

Auction 1

Figure 7: Overlapping style for the two auctions. 
 

We now use model checking techniques to verify 
the following behavioral properties that are related 
to shilling behaviors. 
 
Property 1: User places a deliberate overbid before 
R0 in Auction 0 or before R1 in Auction 1, but 
doesn’t bid at all after R0 or R1. 
Patterns Used: (1) Existence, before R (2) Absence, 
after Q 
Formulas: 
For Auction 0: ((!reserve0 W ((action0) && 
!reserve0)))&&([](reserve0-> 
[](!action1))) i.e., (((!reserve0 U 
((action0)&&!reserve0))||([]!reserve0))
)&&([](reserve0->[](!action1))) 
For Auction 1: ((!reserve1 W ((action0)&& 
!reserve1)))&&([](reserve1-> 
[](!action1))) i.e., (((!reserve1 U 
((action0)&&!reserve1))||([]!reserve1))
)&&([](reserve1->[](!action1))) 
Actions: For Auction 0: (overBid06 && deliBid0), 
(overBid014 && deliBid0), (overBid016 && 
deliBid0) and (overBid017 && deliBid0) for 
action0; bid06, bid014, bid016 and bid017 for 
action1. For Auction 1, the same rule applies. 
Note: deliBid0 means the time interval between 
currently placed bid and previous bid is longer than 
the limit we have set, so the bid is considered as a 
deliberate bid. The formula (overBid06 && 
deliBid0) means “paperchen” (numbered 6) is 
placing a deliberate overbid. 
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Table 5: Model checking results for Property 1. 

             Auction      
User 

Auction 0 Auction 1 

paperchen (5) Valid Valid 
benniten23 (1) Invalid Invalid 
andy293 (12) Invalid Invalid 
yass3d (12) Invalid Invalid 

 
Explanation: This property implies that a user 
places an overbid to stimulate the bidding when he 
notices that it has been a while since previous bid 
was placed, and he stops bidding after the bid 
reaches the reserve price. This behavior is highly 
suspicious for shilling. From Table 5, we find that 
only “paperchen” has such behavior, so he is very 
likely a shill. 
 
Property 2: After S1 until E0, user bids in auctions 
that have higher bidding price. 
Patterns Used: Existence, After Q until R 
Formulas: 
For Auction 0: ([](start1&&!end0->(!end0 U 
((action)&&!end0)))) 
For Auction 1: ([](start1&&!end0->(!end0 U 
((action)&&!end0)))) 
Actions: (bid06 && p1Lower), (bid014 && 
p1Lower), (bid016 && p1Lower), (bid017 && 
p1Lower) for Auction 0. The same rule applies to 
Auction 1. 
Note: The variable p1Lower means the bidding 
price in Auction 1 is lower than that in Auction 0. So 
(bid06&&p1Lower) means “paperchen” is bidding 
on Auction 0 when Auction 1 has lower bidding 
price. 

Table 6: Model checking results for Property 2. 

             Auction      
User 

Auction 0 Auction 1 

paperchen (5) Invalid Valid 
benniten23 (1) Valid Valid 
andy293 (12) Valid Invalid 
yass3d (12) Valid Invalid 

 
Explanation: Since during the time the two auctions 
overlap, anyone who doesn’t bid on the auction that 
has the cheaper bidding price is suspicious. From 
Table 6, we notice that the results for the user 
“benniten23” were valid for both auctions, which 
suggest that the user might not be a normal bidder. 

Based on the above analysis, we can conclude 
that the user “paperchen” and “benniten23” are 
possible shills because both of them attempted to 
drive up the bidding price and one of them 
(“paperchen”) stopped bidding after the price 
reached the reserve price. When a certain amount of 

time has passed after the last bid, “paperchen” tried 
to create a competitive bidding atmosphere by 
placing overbids. Notice that our approach can 
effectively detect and suggest shill suspects; 
however, it is not guaranteed that suspects must be 
shills. Based on the model checking results, we can 
easily track the suspects’ bidding history and draw 
conclusions if the suspects are actually shills. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we introduced a model checking 
approach to detecting shilling behaviors in 
concurrent online auctions. We proposed an auction 
model template that supports automatic generation 
of auction models based on auction data. With our 
pattern-based model checking approach, we can not 
only easily write specifications for bidding 
behaviors, but also directly detect suspicious shills in 
concurrent online auctions. Our approach can be 
easily extended to support more than two concurrent 
online auctions. To provide tool support for 
automatic generation of specifications of shilling 
behaviors envisions our future research work. 
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