
A FORMAL APPROACH TO DETECTING SHILLING
BEHAVIORS IN CONCURRENT ONLINE AUCTIONS

Yi-Tsung Cheng and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747

Keywords: Concurrent online auctions, Shilling behaviors, Model checking, Linear temporal logic (LTL).

Abstract: Shilling behaviors are one of the most serious fraud problems in online auctions, which make winning
bidders have to pay more than what they should pay for auctioned items. In concurrent online auctions,
where multiple auctions for the same type of items are running simultaneously, shilling behaviors can be
even more severe because detecting, predicting and preventing such fraudulent behaviors become very
difficult. In this paper, we propose a formal approach to detecting shilling behaviors in concurrent online
auctions using model checking techniques. We first develop a model template that represents two concurrent
online auctions in Promela. Based on the model template, we derive an auction model that simulates the
bidding processes of two concurrent auctions. Then we use the SPIN model checker to formally verify if the
auction model satisfies any questionable behavioral properties that are written in LTL (Linear Temporal
Logic) formulas. Thus, our approach simplifies the problem of searching for shilling behaviors in concurrent
online auctions into a model checking problem. Finally, we provide a case study to illustrate how our
approach can effectively detect possible shill bidders.

1 INTRODUCTION

In traditional economic theory, auction can be used
to determine the value of a commodity that is
difficult to tag a price. The commodity can be a
physical product, such as artwork and antiques; or it
can be a virtual product, for example, spectrum
licenses and procurement contracts. The most
commonly used types of auctions include English
auction, Dutch auction, sealed first-price auction,
and sealed second-price auction. Among them, only
English auction is adopted in online auction houses.
In an English auction, participants can openly
observe other people’s bids and then bid against
each other. The following bidding price must be
higher than the previous one. The auction ends
when the bidding reaches a point where no one
wants to beat the current highest price. So, in an
English auction, a bidder can bid multiple times
while the bidding price ascends. The seller of the
auctioned item can set a pre-determined reserve
price. If the final bidding price is lower than the
reserve price, the seller can reserve the right of not
selling the auctioned item.

The characteristic of multiple bids and ascending
bidding price in English auctions has made this
auction type very popular, but it also makes shilling
behaviors very common in online auctions.

There are two main kinds of shilling behaviors:
reserve price shilling and competitive shilling
(Kauffman and Wood, 2000). In reserve price
shilling, a seller sets a low reserve price and pretends
to be normal bidders to put in bids, in order to drive
up the bidding price to his own evaluation of the
item. Usually the lower reserve price the seller sets
the cheaper fee he has to pay to the auction house. In
this case, the seller can avoid paying higher reserve
price fee. In competitive shilling, a seller also
pretends to be normal bidders, and constantly
monitors the bidding process and puts in fake bids to
drive up the bidding price; however, the objective of
doing this is to make potential buyers pay extra
money to win their bids instead of paying less
reserve price fee. Although the objectives of these
two behaviors are different, their distinction is not
always very clear. For example, a reserve-price-
shilling seller might still want to drive up the
bidding price, even after it has already reached the

375
Cheng Y. and Xu Computer H. (2006).
A FORMAL APPROACH TO DETECTING SHILLING BEHAVIORS IN CONCURRENT ONLINE AUCTIONS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 375-381
DOI: 10.5220/0002460803750381
Copyright c© SciTePress

seller’s own evaluation of the item. Notice that
normally the reserve price shilling only affects the
auction houses; while the competitive shilling affects
all bidders in the market. It is obvious that the
competitive shilling causes a greater harm to the
auction market than the reserve price shilling. In
addition, shilling behaviors involved in concurrent
online auctions, where multiple auctions for the
same type of items are running simultaneously, are
much more difficult to detect than shilling behaviors
occur in a standalone auction. Thus, in this paper, we
focus on studying competitive shilling behaviors in
concurrent online auctions.

There is very little previous work on shill
detection for online auctions. Wang and his
colleagues showed that private value English
auctions with shill bidding can result in a higher
expected seller profit than other auction formats
(Wang et al., 2002). This explains why in online
auction houses like eBay, shilling behaviors have
become a very serious problem that cannot be
ignored. The authors proposed a commission fee
mechanism in which the auctioneer charges the
seller a commission fee based on the difference
between the winning bid and the seller’s reserve
price. This approach can make shill bidding un-
profitable, but it could be unfair to sellers’ interests,
especially when the sellers are not shilling at all.

Kauffman and Wood used a statistical approach
to detecting shilling behaviors and showed that how
the statistic data of a market would look like if
opportunistic behaviors do exist. They also showed
how to use an empirical model to test for
questionable behaviors (Kauffman and Wood, 2000).
However, their approach suffers from a few
problems, for example, it needs to review multiple
auctions over a long period of time (Gupta and
Bapna, 2002). Furthermore, the statistical approach
could not deal with the shilling problem directly.

In this paper, we propose to use model checking
technique to detect shilling behaviors in two
concurrent online auctions. Our approach can
directly detect shilling behaviors based on the latest
auction data, and then suggest shill suspects, if any.

The rest of this paper is organized as follows:
Section 2 introduces the pattern-based model
checking technique. Section 3 first presents a
motivation example for shill detection using model
checking. Then it introduces a model template and
shows how to build an auction model based on
auction data from two concurrent auctions. Section 4
provides a case study for how to use our approach to
detect shilling behaviors. Finally, in Section 5, we
provide conclusions and our future work.

2 PATTERN-BASED MODEL
CHECKING TECHNIQUE

2.1 The SPIN Model Checker

There is a wide variety of model checking tools
available, such as SPIN, NuSMV2, Java Pathfinder
and MARIA. Among them, the SPIN model checker
provides a friendly user interface and accepts model
specifications written in Promela (PROcess MEta
Language) (Holzmann, 1997). Promela is a CSP-like
language mainly used to describe abstract level
concurrent software system. Like any other
programming languages, Promela supports variables,
arrays and user-defined data types as well as control
flow statement. In addition, Promela supports
symbolic constants, message channels, processes,
selection and repetition, atomic sequence and
deterministic steps.

2.2 LTL and Patterns

The SPIN model checker supports specification of
system properties using Linear Temporal Logic
(LTL) (Pnueli, 1977), which is a formal method to
specify temporal relationships of statements. LTL
has been proven to have good expressivity and more
natural language like statements for verification.
LTL consists only a few logic operators, such as G
(always), F (eventually), U (until), W (unless, or
weak until) and O (next). Combining with Boolean
operators, i.e., && (and), || (or), ! (negation), →
(logical implication) and ↔ (logical equivalence),
LTL is capable of describing many key properties of
a concurrent software system.

On the other hand, like many other formal
specification and verification methods, writing a
LTL formula is not easy and error prone. Even a
person who has expertise in LTL may still have a
difficult time in understanding the semantic of a
LTL formula, such as []((Q&&!R&&<>R)→(P→
(!R U (S&&!R))) U R). To solve this problem,
Dwyer and his colleagues proposed a pattern-based
approach to helping software engineers to specify
requirements properties without having to worry
about the complexity and potential traps (Dwyer et
al., 1999).

There are quite a few patterns proposed in
previous work (Dwyer et al., 1999). Before we
present some of the patterns that we use in this
paper, we first introduce a notation called pattern
scope, which represents the extent of a program
execution over which the pattern must hold.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

376

Q

Q

Q

R R

Q

Global

Before Q

After Q

Between Q and R

After Q until R

Q

R R Q

Q

Figure 1: Pattern scopes for pattern-based LTL.

Figure 1 is an illustration of pattern scopes
adapted from (Dwyer et al., 1999). The capital
letters Q and R stand for events. Every pattern can
be assigned with one of the five scopes, in which
during the extent of the specified scope, a pattern
must hold. It should be clarified that all these pattern
scopes are defined as closed-left and open-right. For
example, if the scope is “Between Q and R”, then Q
is included in the scope but R is excluded.

In Table 1 and Table 2, we list two patterns that
are used in this paper. For example, the Absence
pattern in pattern scope “Before R” is described by
the formula <>R → (!P U R). It specifies that
during the extent of the starting state and event R,
event P must be false. Similarly, the Existence
pattern in pattern scope “Between Q and R” is
described by the formula [](Q && !R→(!R W (P
&& !R))), which specifies that during the extent of
event Q and event R, event P must become true.

For more LTL pattern definitions, please refer to
previous work (Dwyer et al., 1999).

Table 1: Absence patterns (event P is false).
Pattern Scope Formula
Globally [](!P)
Before R <>R → (!P U R)
After Q [](Q → [](!P))
Between Q and R []((Q && !R && <>R) →

(!P U R))
After Q until R [](Q && !R → (!P W R))

Table 2: Existence patterns (event P becomes true).
Pattern Scope Formula
Globally <>(P)
Before R !R W (P && !R)
After Q [](!Q) || <>(Q && <>P))
Between Q and R [](Q && !R→(!R W (P &&

!R)))
After Q until R [](Q && !R → (!R U (P

&& !R)))

3 MODELING CONCURRENT
ONLINE AUCTIONS

3.1 A Motivation Example

The basic idea of our approach is to automatically
generate an auction model based on auction data
from two concurrent auctions, and verify if the
auction model satisfies certain bidders’ behavioral
properties. The following figure (Figure 2) shows an
example of two concurrent auctions.

Auction 0

Auction 1

Start of Auction

Price is lower

User A bids

Price is lower

User A bids

Reach Reserve Price End of Auction

Start of Auction Reach Reserve Price End of Auction

T

T T T T

T T TT TTT T

T

T

T

Figure 2: An example of two concurrent auctions.

To simplify matters, we assume that the auction
that starts first is always Auction 0, and the one that
starts later is always Auction 1. In Figure 2, “T”
stands for “True”, and for each auction it has two
predicates, i.e., “Price is lower” and “User A bids”.
If any predicate becomes “T” at a certain point of
time in the process of any one of the two auctions, it
means that the event happens at that time. For
example, if “Price is lower” is “T” at a point in
Auction 0, it means that at that time, the bidding
price is lower in Auction 0. Similarly, if “User A
bids” is “T” at a point in Auction 1, it means that at
that time User A puts in his/her bid in Auction 1.

We use an example to show how to write a
pattern-based LTL formula for a certain behavioral
property. For instance, we want to detect the
following shilling behavior:

While two auctions are running concurrently, a
user bids in the auction that has higher bidding
price rather than lower bidding price.

Suppose Auction 0 starts first and also ends first.
Then we need to verify the following: after “start of
Auction 1” until “end of Auction 0”, does “(User A
bids in Auction 0 && price is lower in Auction 1) or
(User A bids in Auction 1 && price is lower in
Auction 0) become true?” The formula can be
composed using the Existence pattern with “After Q
until R” scope. If we use “S1” to represent “start of
Auction 1”, “E0” to represent “end of Auction 0”,
“P” to represent “User A bids in Auction 0 && price
is lower in Auction 1”, and “S” to represent “User A
bids in Auction 1 && price is lower in Auction 0”,

A FORMAL APPROACH TO DETECTING SHILLING BEHAVIORS IN CONCURRENT ONLINE AUCTIONS

377

the formula can be written as ([](S1 && !E0 ->
(!E0 U(P && !E0)))) || ([](S1 && !E0 ->
(!E0 U(S && !E0)))).

From Figure 2, we can see that the behavior
specified above becomes true for three times
(denoted by three vertical dotted lines). Thus, the
LTL formula must be valid.

3.2 Preprocessing the Auction Data

The first step to build an auction model is to
preprocess the auction data. As shown in Figure 3,
this task is accomplished by the Preprocessor, which
extracts numeric data from two concurrent auctions
and substitutes them into a model template to
produce a specific auction model.

Output

Input

Input

Preprocess

Output

Preprocessor

Model Template
(template.txt)

Two Auctions
Data

Symbol
Definitions

(definitions.txt)

Auction Model
Code (pan_in)

Model

Figure 3: Preprocessing the auction data.

Calculate Data Size

Code GeneratorParse User List

Re-arrange Data Definit ion Generator

Figure 4: Preprocessor’s major tasks.

The generated auction model consists of a
Promela model code with an LTL symbol definition
file. The major sub-tasks in preprocessing of auction
data are illustrated in Figure 4, which consists of 5
steps, namely “Calculate Data Size”, “Parse User
List”, “Re-arrange Data”, “Generate Code”, and
“Generate Symbol Definitions”.

3.3 The Auction Model Template

The auction model template is written in Promela
code. The template allows us to generate different
Promela code for auction models based on different
extracted numeric auction data.

Table 3: Auction model template code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
54
55
56
57
58
59
60
61
62
63
64
65
66

int finalRound=…;
byte bidSeq[…];
byte flag0[…];
byte flag1[…];
int reservePrice0=…;
int reservePrice1=…;
int currentHighestBid0=…;
int currentHighestBid1=…;
int previousHighestBid0=…;
int previousHighestBid1=…;
int increment0[…];
int increment1[…];

typedef Auction{
int dataSize;
int timeInterval[…];
byte userIDs[…];
int bidAmount[…];

};
Auction auction0,auction1;
int timeElapse0, timeElapse1;
bit startPoint0=0;
bit startPoint1=0;
bit reservePoint0=0;
bit reservePoint1=0;
bit endPoint0=0;
bit endPoint1=0;
int roundCount=0;

proctype ModelChecker(){

checkingState:
do
::(roundCount < finalRound) ->
 d_step{
 startPoint0=0;
 startPoint1=0;
 reservePoint0=0;
 reservePoint1=0;
 endPoint0=0;
 endPoint1=0;
 if
 ::(bidSeq[roundCount]==0)->
 if
 ::(flag0[roundCount]==1)->
 startPoint0=1;
 ::(flag0[roundCount]==2)->
 reservePoint0=1;
 ::else -> skip;
 fi;
 ...
 ::(bidSeq[roundCount]==1)->
 ...
 ::(bidSeq[roundCount]==7)->
 ...
 fi;
 roundCount++;
 }
 :: else ->
 goto endState;

 od;

endState:
skip;

}

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

378

67
68
69
70
71
72
73
74
75
76
77
78

init{
bidSeq[0]=0;

 ...
auction0.dataSize=…;
auction0.agentIDs[0]=…;
auction0.bidAmount[0]=…;
auction0.timeInterval[0]=…;
...
flag0[0]=…;
...
run ModelChecker();

}

As shown in Table 3, we first define the global

variables in the auction template (line 1~19), which
will be initialized with values extracted from the
auction data in the init procedure (line 67~78).
These global variables can be used to define symbols
to compose LTL formula. In line 20~28, we define
the local variables that can only be used by the
model checker.

The code between line 30-66 represents the state
transitions of the bidding process. When each
auction round starts, all flags are cleared (line
36~41). Then according to different bid sequences
that represent different bidding situations, the model
runs differently. For example, when the bid
sequence is “0”, it means that a bidder placed a bid
in Auction 0; while at the same time no one was
bidding in Auction 1. To handle this case, we first set
up the flags, and then all the old values from the
previous bid of the relevant variables are updated to
the new values that represent the current bid.

Clean All Flags

Case 0: Auction 0 is bidding

Case 1: Auction 1 is bidding

Case 2: Both auctions are bidding at
the same time

Case 3: Auction 0 is bidding, and
Auction 1 has reached end of auction

Case 4: Auction 1 has reached end of
auction

Case 5: Auction 0 has reached end of
auction

Case 6: Auction 0 has reached end of
auction, and Auction 1 is bidding

Case 7: Both auctions have reached
end of auction at the same time

Figure 5: Different bidding situations.

In Figure 5, we show 8 different biding situations
in a UML state diagram that correspond to different
bidding sequences. Since each auction can be in one
of the following states: “bidding”, “not biding” and
“end”, we shall have 9 combinations for two
concurrent auctions. However, one of the cases (i.e.,

“not bidding, not bidding”) can be excluded from
consideration because when it happens, both
auctions must have already ended.

3.4 Symbol Definitions for LTL

In order to verify properties specified in LTL
formulas, we need to define symbols that can be
used in formula composition. We define most of the
terms to be self-explanatory. For example, “start0”
(“start1”) denotes the start of Auction 0 (Auction 1);
while “end0” (“end1”) denotes the end of Auction 0
(Auction 1). Similarly, the symbol “reserve0”
(“reserve1”) denotes that the reserve price of
Auction 0 (Auction 1) is reached. However, for a
term like “bid00”, the first “0” denotes Auction 0,
and the second “0” denotes the bidding behavior of
User 0. Thus, if a user numbered 16 bids on Auction
0, then it should be represented by the symbol
“bid016”.

Symbol definitions, combining with LTL
formulas, can ease the task of writing LTL formulas.
In practical use, users can also develop their own set
of symbol definitions.

3.5 The Model Checking Process

After the auction model has been created, the model
checking process becomes simple. The model
checking process consists of the following steps.

1. Duplicate the symbol definition file called
“definitions.txt” and name it as “pan.ltl”.

2. Type in the LTL formula. The formula will be
translated to “never claim” that can be used to
match either finite or infinite behaviors.

3. Append the generated “never claim” to the
“pan.ltl” file.

4. Use the SPIN to generate a model verifier (pan)
from both the Promela model code (“pan_in”)
and the file “pan.ltl”. The file “pan.ltl” should
contain both a “never claim” and symbol
definitions.

5. Compile the verifier source code (pan) using
“gcc” to produce an executable file “pan.exe”.

6. Execute the model verifier. After the execution
of the auction model, the model verifier will
show whether the result is valid or invalid. An
invalid result indicates that during the
verification process, the model verifier
encountered errors. If any errors are
encountered, the model we developed violates
the LTL formula that we specified. In this case,
the behavior we specified does not exist in the
model being checked.

A FORMAL APPROACH TO DETECTING SHILLING BEHAVIORS IN CONCURRENT ONLINE AUCTIONS

379

4 A CASE STUDY

In this section, we use a case study to show how
potential shills can be detected. The auction data was
collected from the eBay, but to protect users’
privacy, we have changed all user IDs (due to page
limitation, the auction data is not presented in this
paper). The titles for the two auctions are the same,
which is “HP/COMPAQ PRESARIO LAPTOP CD-
RW BURNER DVD WIRELESS”. Both auctions
are held by the same seller and the description to
these two auction items is shown in Table 4.

Table 4: Description of auctioned items.

Item Specifics - PC Laptops
Brand: Compaq Hard Drive Cap: 60 GB
Chip Type: -- Screen Size: 15 inches
Model: -- OS Included: Yes
Processor
Speed: 1.4 GHz Primary Drive: CD-RW/DVD

Combo
Memory 512 MB Condition: --

To simplify our verification process, we have
made a few adjustments for the auction data. We
erased all currency symbols and time zone
abbreviations to make them appear simpler. We
rounded up all bidding prices that have decimals. In
addition, we added a user’s bidding price by 1 if the
user’s bidding price is the same as the previous bid.
Note that each user name is associated with a
numeric value in parentheses, which represents the
user’s feedback score.

Since the eBay does not provide any information
about the reserve price for each auction, as well as
whether the seller has set up a reserve price, we
assume the reserve prices for both auctions are $500.
The value of $500 is very close to both winning bids
($630 and $620), but sill gives us good ranges (from
$500 to $630 and from $500 to $620) for checking
bidding behaviors. We define overbid and deliberate
bid as follows.

Definition If the price difference between the
previous bid and the current bid is over 10 dollars, it
is considered as an overbid (a bid in large
increment).

Definition If the time gap between the current
bid and the previous bid is over 7200 seconds (2
hours), it is considered as a deliberate bid.

The reason we set 10 dollars as the boundary is
based on our observation, since most bid increments
are less than this number. Similarly, we set the 2
hours boundary for deliberate bid because 2 hours is
a reasonable period of time for a bidder to make a
deliberate decision. In practical, these two values

should be defined and adjusted according to auction
administrator’s experiences and observations.

In the two concurrent online auctions, there are
totally 35 users, among which we selected the
following four users for investigation: “paperchen”,
“benniten23”, “andy293” and “yass3d”. We chose
these four users because they are the only bidders
who are involved in both of the two concurrent
online auctions, and thus, they are more likely to be
shills.

After the auction data has been preprocessed, the
data is re-arranged. We then determine the auction
data’s overlapping style as shown in Figure 7.

S0

S1

R0

R1

E0

E1

Auction 0

Auction 1

Figure 7: Overlapping style for the two auctions.

We now use model checking techniques to verify
the following behavioral properties that are related
to shilling behaviors.

Property 1: User places a deliberate overbid before
R0 in Auction 0 or before R1 in Auction 1, but
doesn’t bid at all after R0 or R1.
Patterns Used: (1) Existence, before R (2) Absence,
after Q
Formulas:
For Auction 0: ((!reserve0 W ((action0) &&
!reserve0)))&&([](reserve0->
[](!action1))) i.e., (((!reserve0 U
((action0)&&!reserve0))||([]!reserve0))
)&&([](reserve0->[](!action1)))
For Auction 1: ((!reserve1 W ((action0)&&
!reserve1)))&&([](reserve1->
[](!action1))) i.e., (((!reserve1 U
((action0)&&!reserve1))||([]!reserve1))
)&&([](reserve1->[](!action1)))
Actions: For Auction 0: (overBid06 && deliBid0),
(overBid014 && deliBid0), (overBid016 &&
deliBid0) and (overBid017 && deliBid0) for
action0; bid06, bid014, bid016 and bid017 for
action1. For Auction 1, the same rule applies.
Note: deliBid0 means the time interval between
currently placed bid and previous bid is longer than
the limit we have set, so the bid is considered as a
deliberate bid. The formula (overBid06 &&
deliBid0) means “paperchen” (numbered 6) is
placing a deliberate overbid.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

380

Table 5: Model checking results for Property 1.

 Auction
User

Auction 0 Auction 1

paperchen (5) Valid Valid
benniten23 (1) Invalid Invalid
andy293 (12) Invalid Invalid
yass3d (12) Invalid Invalid

Explanation: This property implies that a user
places an overbid to stimulate the bidding when he
notices that it has been a while since previous bid
was placed, and he stops bidding after the bid
reaches the reserve price. This behavior is highly
suspicious for shilling. From Table 5, we find that
only “paperchen” has such behavior, so he is very
likely a shill.

Property 2: After S1 until E0, user bids in auctions
that have higher bidding price.
Patterns Used: Existence, After Q until R
Formulas:
For Auction 0: ([](start1&&!end0->(!end0 U
((action)&&!end0))))
For Auction 1: ([](start1&&!end0->(!end0 U
((action)&&!end0))))
Actions: (bid06 && p1Lower), (bid014 &&
p1Lower), (bid016 && p1Lower), (bid017 &&
p1Lower) for Auction 0. The same rule applies to
Auction 1.
Note: The variable p1Lower means the bidding
price in Auction 1 is lower than that in Auction 0. So
(bid06&&p1Lower) means “paperchen” is bidding
on Auction 0 when Auction 1 has lower bidding
price.

Table 6: Model checking results for Property 2.

 Auction
User

Auction 0 Auction 1

paperchen (5) Invalid Valid
benniten23 (1) Valid Valid
andy293 (12) Valid Invalid
yass3d (12) Valid Invalid

Explanation: Since during the time the two auctions
overlap, anyone who doesn’t bid on the auction that
has the cheaper bidding price is suspicious. From
Table 6, we notice that the results for the user
“benniten23” were valid for both auctions, which
suggest that the user might not be a normal bidder.

Based on the above analysis, we can conclude
that the user “paperchen” and “benniten23” are
possible shills because both of them attempted to
drive up the bidding price and one of them
(“paperchen”) stopped bidding after the price
reached the reserve price. When a certain amount of

time has passed after the last bid, “paperchen” tried
to create a competitive bidding atmosphere by
placing overbids. Notice that our approach can
effectively detect and suggest shill suspects;
however, it is not guaranteed that suspects must be
shills. Based on the model checking results, we can
easily track the suspects’ bidding history and draw
conclusions if the suspects are actually shills.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we introduced a model checking
approach to detecting shilling behaviors in
concurrent online auctions. We proposed an auction
model template that supports automatic generation
of auction models based on auction data. With our
pattern-based model checking approach, we can not
only easily write specifications for bidding
behaviors, but also directly detect suspicious shills in
concurrent online auctions. Our approach can be
easily extended to support more than two concurrent
online auctions. To provide tool support for
automatic generation of specifications of shilling
behaviors envisions our future research work.

REFERENCES

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C., 1999.
Patterns in property specifications for finite-state
verification. In Proceedings of the 21st International
Conference on Software Engineering (ICSE 99), Los
Angeles, pp. 16-22.

Gupta, A. and Bapna, R., 2002. Online mercantile
processes: a closer look at B2C online auctions. In
Handbook of Electronic Commerce in Business and
Society, P. B. Lowry, R. J. Watson, and J. O.
Cherrington eds., St. Lucie Press, pp. 85-98.

Holzmann, G. J., 1997. The model checker SPIN. IEEE
Transactions on Software Engineering, Volume 23,
No. 5, pp. 279-295.

Kauffman, R. J., and Wood, C. A., 2000. Running up the
bid: modeling seller opportunism in Internet auctions.
In Proceedings of the Sixth Americas Conference on
Information Systems (AMCIS 2000), M. Chung (ed.),
Long Beach, CA, pp. 929-935.

Pnueli, A., 1977. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on
Foundations of Computer Science, IEEE Computer
Society Press, pp. 46-67.

Wang, W., Zoltán, H., and Whinston, A. B., 2002. Shill
bidding in multi-round online auctions. In Proceedings
of the 35th Hawaii International Conference on
System Sciences (HICSS’02), Hawaii, USA.

A FORMAL APPROACH TO DETECTING SHILLING BEHAVIORS IN CONCURRENT ONLINE AUCTIONS

381

