
POWERING RSS AGGREGATORS WITH ONTOLOGIES
A Case for the RSSOwl Aggregator

Felipe M. Villoria, Oscar Díaz and Sergio F. Anzuola
The Onekin Group, University of the Basque Country, Pº Manuel de Lardizabal, 1 - 20018, San Sebastián, Spain

Keywords: RSS, Content Syndication, Ontology, Aggregation, Web Application.

Abstract: Content syndication through RSS is gaining wide acceptance, and it is envisaged that feed aggregators will
be provided as a commodity in future browsers. As we consume more of our information by way of RSS
feeds, search mechanisms other than simple keyword search will be required. To this end, advances in
semantic tooling can effectively improve the current state of the art in feed aggregators. This work reports
on the benefits of making a popular RSS aggregator, RSSOwl, ontology-aware. The paper uses three
common functions, namely, semantic view, semantic navigation and semantic query, to illustrate how RSS
aggregators can be “ontology powered”. The outcome is that location, browsing and rendering of RSS feeds
are customised to the conceptual model of the reader, making RSS aggregators a powerful companion to
face the “RSSosphere”. The system has been fully implemented, and successfully tested by distinct users.

1 INTRODUCTION

Most aggregators limit themselves to keeping feeds
into folders, and little assistance is given to locate
the desire news, except basic keyword search. As we
consume more of our information by way of RSS
feeds, the inability to store, index, and precisely
search those feeds becomes more tiresome. This
work strives to make aggregators ontology-aware.
That is, feed providers continue to supply dull
content, but the feed aggregator is now capable to
annotate this content in accordance to a user-specific
ontology.

As a prove of concept, this paper describes how a
feed aggregator tool, RSSOwl (The RSSOwl
Development Team, 2004), has been extended to
permit feed consumers to provide their own
ontologies. This accounts for enhancements in
searching and tagging. Searching wise, the ontology
permits a quicker and more focused location of the
news of interest. As for tagging, news can be tagged
with references to the ontology. Besides, when
looking for a concept in the ontology, it is useful to
locate not only the concept as such, but also those
related concepts that are “semantically” related.
Tagging is then extended not only to the sought
concept but also to its neighbour concepts.

Related works include the Artequakt project
(Alani et al., 2003) and the SCORE (Semantic

Content Organization and Retrieval Engine) project
(Sheth et al., 2002). The Artequakt project links a
knowledge extraction tool with an ontology to
achieve continuous knowledge support and guide
information extraction. The extraction tool searches
online documents and extracts knowledge that
matches the given classification structure. As for
SCORE, it provides a tool that focuses on automatic
classification and metadata extraction based on
semantic techniques.

The rest of this article motivates the need for
ontologies (Section 2) and the advantages brought
by the use of ontologies in feed aggregators using
RSSOwl as a testbed (Section 3).

2 WHY ARE ONTOLOGIES
NEEDED?

Traditional feed aggregators timely recover items.
Search mechanisms can be available to locate items
that contain a certain word. This approach poses at
least two main drawbacks: lack of context and lack
of abstraction.

Lack of context. Searches based on words rather
than the concepts which those words denote, lead to
the retrieve of inputs which are hardly related with
the concept you are looking for. If you are interested

197
M. Villoria F., Díaz O. and F. Anzuola S. (2006).
POWERING RSS AGGREGATORS WITH ONTOLOGIES - A Case for the RSSOwl Aggregator.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - SAIC, pages 197-200
DOI: 10.5220/0002458001970200
Copyright c© SciTePress

Figure 1: The running ontology on resources.

in owls, a word-based search will locate those items
with the string “owl” inside. This could retrieve
items on owls (the user’s intent) but also on the
Ontology Web Language (OWL). The ontology fixes
the concepts of a certain subject area which can be
realised by distinct words, and provides the context
to map a word with the intended concept.

Lack of abstraction. Ontologies enhance the
level of abstraction at which queries can be posed.
By introducing taxonomies and relationships, more
abstracted concepts can be used that those explicitly
appearing on the documents. For example, without
the aid of a controlled vocabulary one may wonder
whether to use the term “car”, “automobile”, or
“vehicle” in performing a given search on the
Internet. Backed by an ontology, however, the
searcher may be advised that "automobile" should be
used instead of “car”. The degree to which
terminology is semantically precise will have a
direct impact on the degree to which relevant
information can be found.
This work uses OWL for the description of the
ontology. Figure 1 depicts the ontology that is used
throughout this paper. It conceptualises the notion of
resource for a software company. A resource can be
either the tools being used by the organization, the
standards which are followed by this company, or
web sites that provide relevant material. Besides the
base classes, derived classes can be defined by
restricting the property values of a base class. For
instance, the W3CStandard is a derived class of the

Standard class which sets the property committee to
W3C.

Figure 2: Starting scenario. The “Item” canvas is just text.

3 LEVERAGING RSSOWL

News are syndicated through feeds. A feed
comprises a channel, which has a title, link,
description and (optional) language, followed by a
series of items (also known as news), each of which
have a title, link and description. The content itself
appears in the <description> tag, either as an
HTML-escaped string or as a CDATA element. In
other words, the description can not be annotated.

RSSOwl is a popular feed aggregator, free of
charge, open-source and cross-platform (The
RSSOwl Development Team, 2004). This work uses
RSSOwl version 0.72b. Figure 2 shows the kickoff
screenshot of RSSOwl. The upper-left hand side of
the screen shows a folder hierarchy where folders
corresponds to blogrolls (i.e. collections of Web log
feeds that indicate the site you are subscribed to).
Selecting a folder leads to display the items’ titles
from this channel on the right-hand side of the
screen (rendered as anchors). From then on, the
content of a single item (i.e. the <description> tag)
can be obtained by selected any of these anchors.
Basically, this situation can be characterised as
channel grouping, keyword search, and folder-based
navigation.

Ontology-aware aggregators can now leverage
this functionality that would be difficult or
impossible otherwise. Next paragraphs show how
this has been achieved in RSSOwl that can now be
configured with a OWL file.

Semantic query. Rather than a basic keyword
search, a “semantic search” assists the user to map
words in the syndicated news to concepts in the
ontology. To obtain these benefits, RSSOwl is

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

198

empowered with user-provided ontologies. The
addition of the ontologies is reflected as a new
canvas on the screen. Specifically, this canvas is
rendered at the lower-left hand side (see figure 3).
The ontology is depicted as a specialization tree.

This canvas is used as a rudimentary query
interface: the user clicks on the concept sought (e.g.
the RSS instance) and the canvas on the right shows
all news where this concept appears, regardless of
their container blogrolls.

This output requires a mapping between the
strings found on the news and the concepts of the
ontology. However, instances of the ontology are
identified through URIs, and these URIs will never
be found in the news. What is needed is a human-
readable version of the instance name.

To attain this aim, the notion of label is used.
RDFS provides a RDFS:LABEL as a human-
readable version of resource name. Analogously,
one wants to assign an instance with a human-
readable name even if it instantiates a class from a
given ontology that does not use the property
RDFS:LABEL per se. For instance, one might want
to state that the property siteOwner of the Site class
will serve to ascertain the appearance of a site in the
news so that the appearance of the string “Tim Bray”
in a feed will be taken as a reference to the resource
whose owner is Tim Bray. That is, the siteOwner
plays the role of the label for sites.

LABEL is then a kind of property. Data-based
properties (e.g. siteOwner) can then be of the special
kind label. Figure 1 depicts this through a tagged
value which is associated with the property. Notice
how a different label can be stated for each class:
stdName is the label for Standards whereas
siteOwner is the label for Site. It is also worth
mentioning that a class can have more than one
label, either defined among its own properties or
inherited from its superclass. In our running
example, all resources (should it be sites, standards
or tools) have as one of their labels the property
URL which is inherited from the resource class.
Hence, the appearance of either “Tim Bray” (the
owner) or “www.textuality.com” (the URL) will lead
to a connection with the very same resource in the
ontology.

For the domain at hand, basic word search seems
to be sufficient as both polysemy and synonymy are
rare, that is, “XML” or “Tim Bray” univocally
identified the standard concept, and the siteOwner of
the www.textuality.com site. This is due to the
smaller amount of documents to be tagged and their
more focused nature. Unlike other works where
tagging is extended to the whole web (Sheth et al.,

2002), this work focuses on tagging only those
feed’s items which have been previously selected by
the user. This implies that the context is much more
focused and hence, Tim Bray other than the owner
of the XML site would hardly appear in the feed’s
item.

Figure 3: Semantic query enhancement.

Being ontology-powered, RSSOwl queries can

now be stated at a higher level of abstraction. The
user clicks on any of the concepts that appear on the
lower-left hand side canvas, and the system displays
all news related with the selected concept. For
instance, it suffices a single click on Standards for
RSSOwl to retrieve all news which contain the labels
associated with the concepts Standards,
W3CStandards, RDF Schema, RSS and XML, which
would require several clicks otherwise (see figure 3).

Semantic view. Semantic metadata can also help
to provide a view more akin to the aggregator’s
perspective rather than feeds being clustered
according to their providers. Readers could thus
arrange feeds according to their personal
categorization schema, or being rendered along
indexing schema that fit the reader’s mental model.

For instance, if writing a report on XML, you
could be interested in highlighting the titles of those
items addressing XML issues, not to be overlooked
in the bulk of everyday news. In general, highlight
filters can be defined based on the presence/absence
of concept’s labels.
Another useful outcome is to annotate the content
rather than the title of the news. Figure 4 shows this
situation. An item has been selected. Its content is
annotated, i.e. the string “XML” is recognised as the
label of the XML concept. Rendering wise, this
leads this string to be highlighted, and turned into an
anchor to the URL of the associated ontological term
(e.g. http://www.w3.org/TR/1998/REC-xml-1998021
0). In this way, news items are enhanced with links
to the corresponding URLs, and in so doing, the user

POWERING RSS AGGREGATORS WITH ONTOLOGIES - A Case for the RSSOwl Aggregator

199

can directly access the resource site for further
information.

Figure 4: Semantic view enhancement.

Figure 5: Semantic navigation enhancement: the “Item”
canvas becomes a hypertext.

Semantic navigation. Semantic metadata allows
for semantic browsing, i.e. you can move along
semantically related feeds. For instance, once
positioned in a feed which is annotated with a given
XML ontological term, you can be interested in
moving to those feeds that are “semantically”
related. Hence, searching for the XML concept will
locate not only the “XML” string, but also
semantically related concepts such as the site of
“Tim Bray” (see figure 5).

This notion of “semantic proximity” is realised
through the neighbour association. An association
plays the role of a neighbour for a given class, if the
content of this property points to resources that are
closer to the resource at hand. Consider again the
sample ontology. The helpfulSite property plays the
role of neighbour for the standard class. This
implies that if looking for the XML standard, the
system will tag the “XML” string as well as the
strings that correspond to labels of sites that are

helpful for XML (i.e. the content of the helpfulSite
property).

This situation is shown in figure 5. The bottom-
right hand side of the screen continues to display the
content of the selected news. Now, however, the raw
content provided by the news is “markuped” with
the neighbour concept. To better assess the
implementation, figure 5 shows the source code:

If you want to develop applications
with <a href=”www.w3.org/TR/1998/REC-
xml-19980210”>
XML and with <a
href=”http://blogs.law.harvard.edu/tech
/rss”> RSS
 you should visit <a
href=”http://www.textuality.com/textual
ity.html”> Tim
Bray web Site

An anchor markup wrappers “Tim Bray” as an
indication that his website is a helpfulSite for the
XML concept.

In this way, the plain text of the RSS
<description> tag is now turned into hypertext. The
user is no longer limited to browse items based on
their repository folders. Rather, a folder-cutting
navigation is facilitated where the user moves from
one item to those ontologically related items.

4 CONCLUSIONS

This work describes how semantic tooling can be
successfully applied to RSS aggregators. The
RSSOwl aggregator is used as a testbed. The tool is
currently at work in a research lab. Users
particularly appreciate the ability to search at a
higher-level of abstraction, and the tagging of
neighbours.

REFERENCES

Alani, H., Kim, S., Millard, D. E., Weal, M. J., Hall, W.,
Lewis, P. H., and Shadbolt, N. R. (2003). Automatic
Ontology-Based Knowledge Extraction from Web
Documents. IEEE Intelligent Systems, (January-
February):2-9

Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut,
K., and Warke, Y. (2002). Semantic Content
Management for Enterprise and the Web. IEEE
Internet Computing, (July-August). to appear.

The RSSOwl Development Team (2004). Welcome to
RSSOwl - Free RSS & RDF Newsreader.
http://www.rssowl.org.

ICEIS 2006 - SOFTWARE AGENTS AND INTERNET COMPUTING

200

