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Abstract: Various researchers and practitioners have proposed the use of control flow graphs for investigating 
software engineering aspects, such as testing, slicing, program analysis and debugging. However, the 
relevant software applications support only low level languages (e.g. C, C++) and most, if not all, of the 
research papers do not provide information or any facts showing the tool implementation for the control 
flow graph, leaving it to the reader to imagine either that the author is using third party software for creating 
the graph, or that the graph is constructed manually (by hand). In this paper, we extend our previous work 
on a dedicated program analysis architecture and we describe a tool for automatic production of the control 
flow graph that offers advanced capabilities, such as vertices grouping, code coverage and enhanced user 
interaction. 

1 INTRODUCTION 

In our previous work (Andreou, Sofokleous, 2004), 
we presented the design and implementation details 
of a new basic program analyzer architecture. The 
architecture was designed to provide the capabilities 
of a program analyzer to other external applications, 
such as slicing tools, test case generators, debuggers 
etc. Although the result of the control flow graph 
construction was accurate and clear-sighted for 
small to medium programs, it became evident that 
for large programs its performance and viewing-
ability were degraded. As each screen is limited by 
its own resolution, then it is very obvious that the 
more components a graph has, the more difficult for 
a user to perceive it. In addition, layout algorithms 
performance and memory requirements depend on 
the number of graph elements, making it harder to 
depict a graph as its size grows. The rest of the paper 
is organized as follows: section 2 presents the 
current research status in this area and discusses the 
theoretical background of our proposition.  Section 3 
provides the design details of the proposed 
architecture and describes its basic parts. Finally, 

section 4 draws the conclusions and provides some 
directions for future work.  

2 LITERATURE OVERVIEW 

Control Flow Graphs have been widely used in the 
static analysis of software. McCabe (McCabe 1976), 
was among the first that used the control flow graph 
for the study of software. Furthermore, Fenton, 
Whitty and Kaposi, (Fenton, Whitty et al. 1985), 
studied the structuredness of software, using the 
graphic representations of program flow. On the 
other hand, the Program Dependence Graph (PDG) 
has been proposed by Ottenstein and Ottenstein 
1984 (Ottenstein, Ottenstein 1984), (Ferrante, 
Ottenstein et al. 1987) addressing the internal 
representation for monolithic programs (programs 
that contain one unique block) and trying to 
implement certain processes of software technology, 
like slicing and estimation of metrics. Control flow 
information indicates the possible routes of 
instructions following the execution of a program 
(Damian 2001). The appropriate analysis of a 
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control flow graph provides information about the 
run-time and non-runtime properties of programs 
(e.g. determination of what functions may be called 
at each application point in a program). In addition, 
some other researchers have demonstrates its ability 
to serve several application areas such as induction 
variable elimination, type recovery etc. (Shivers 
1991). Although many authors propose the use of 
CFG, its extraction stays usually at a minimum 
level, supporting a limited set of commands (Jones, 
Mycroft 1986).  

Graph visualization, is a kind of process that is 
not the same for all graphs. Many characteristics 
make this kind of practice different and usually 
complicated. For instance, a graph of a large size 
(i.e. a graph that has many elements) poses several 
difficult obstacles in terms of performance and 
memory. Supposing that it is feasible to layout and 
display all the elements of the graph, it is still almost 
impossible to distinguish the nodes from the edges 
and therefore the viewing ability and usability is 
dramatically decreased (Herman, Melançon et al. 
2000). Therefore, reducing the number of visible 
elements being viewed may turn to be very useful, 
improving the clarity and the performance of the 
layout and the rendering algorithms (Kimelman, 
Leban et al. 1994). Such techniques are referred in 
the literature as cluster analysis, grouping, clumping, 
classification and unsupervised pattern recognition 
(Everitt 1974), (Mirkin 1996). Many efforts have 
been made thus far to develop software frameworks 
intended to be used with mathematics and include 
large libraries of algorithms, while others target 
more general applications (Berry, Dean et al. 1999, 
Cesar 1999.).  

Graph architectures, like ProDAG (Richardson, 
O'Malley et al. 1992), have been used as dependence 
analysis tools for Ada and C++ programs. ProDAG 
identifies dependencies based on the program 
dependence relationships defined by Podgurski and 
Clarke. Dependence analysis is performed by 
ProDAG in a two-step process. First, a language-
specific intermediate representation is created, and 
then language-independent analysis is performed 
over this representation. In (Cooper, Harvey et al. 
2002), the authors present an algorithm for building 
correct control flow graphs from scheduled 
assembly code.  However this kind of analysis is 
useful if the target code is expressed at the assembly 
level. 

3 EXTENDING THE BPAS 
SYSTEM 

The proposed Basic Program Analyzer System 
(BPAS) is decomposed into two subsystems 
performing two types of analysis, the runtime (or 
dynamic analysis) and the non-runtime analysis (or 
static analysis) respectively. Both sub-systems can 
provide a mixture of information and operations 
about the program under study, such as variable and 
scope identification, control flow graph creation, 
code coverage and running simulation. Thus, 
external applications can use their functionality for 
obtaining this information. While the non-runtime 
analysis is carried out without executing the 
program, the runtime analysis evaluates the 
behaviour of the program and gathers information 
during real or simulated execution. The layered 
architecture is built similarly to the traditional OSI 
communication standard and therefore it enjoys its 
advantages as well. Each module responsible for a 
specific process is placed as an intermediary layer to 
the system, or as an additional layer that can be 
activated at any point of time. The layered design 
offers scalability and expandability to the system. 
This is also supported by the present work since the 
module responsible for the control flow graph 
creation has been replaced with a new version 
without affecting the other modules.  

The most important BPAS modules are the 
IOExecutive, the Parser, the Walker, the Static 
Analyzer (Non-Runtime Analysis), the Dynamic 
Analyzer (Runtime Analysis) and the program code 
coverage. Although the BPAS works only with Java 
code, its design and layered composition make 
possible the use of additional programming 
languages with minor adaptations in the Parser layer 
and the creation of a new grammar specification. 

3.1 Constructing the Control Flow 
Graph with Grouping (Detail 
Level) 

At the stage of non-runtime program analysis, the 
analyzer creates the control flow graph without 
executing the program. Although the old control 
flow graph algorithm proposed in (Andreou, 
Sofokleous 2004) was satisfactory for small to 
medium programs, it became evident that for large 
programs its performance and memory requirements 
were significant and its viewing ability was affected. 
Having that in mind, we propose here the concept of 
multi-grouping, that is, the ability to display the 
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same information in fewer vertices and provide the 
option for the selection of the level of detail. The 
basic idea is that the user defines the number of the 
levels of detail before the analysis.  

Figure 1: Multilevel Grouping. 
 
For instance, if this level number is set to 2 the 

control flow graph will have two levels of details 
(figure 1). The lowest level is the default level, 
which is displayed initially on screen. The default 
level has 8 vertices (including Start, End nodes) and 
8 edges; some of its vertices/edges belong also to the 
highest level of the control flow graph (common 
elements).  The highest level control flow graph 
having 13 vertices and 14 edges is the “expanded 
graph” or the graph without grouping. Each level of 
grouping has its own rules (i.e. which 
statements/expressions are grouped). In the example, 
the levels of detail mean that the first level will have 
the grouping of neighbouring vertices that are simple 
statements only.  Specifically, for vertices A(Read 

X), B(Read Y), C(int other=X+Y), D(X=X+Y) a new 
vertex is created that has as value the value of the 
A,B,C,D vertices joined with semicolons. The new 
vertex ABCD is connected with a new outgoing 
edge to the descendent of the D vertex and with a 
new incoming edge from the precedent of the A 
vertex. The new vertices and edges are displayed 
with dash lines in the figure. Although the two 
graphs have common edges and vertices, only edges 
and vertices belonging to the selected graph net are 
viewable at any point of time. The set of common 
elements in this example include the vertex (X<Y) 
and its outgoing edges. Having more levels involves 
grouping of nested code blocks. The desired number 
of levels depends on the size of the program and the 
usage objective.  

3.2 The Code Coverage Module 

The common Code Coverage (CC) module, which is 
part of the runtime analysis system, simulates the 
execution of the program and at the same time it is 
able to indicate the executed/covered code. Code 
coverage may be used by other application systems, 
such as testing systems, development tools, 
debuggers etc. Such systems need to determine the 
covered vertices (or the executed code/statements) 
for each pair of input (test case). The particular 
module is incorporated in our architecture being able 
to extract not only this kind of information but 
additional pieces as well, such as the executed path 
from start to end, the covered code, how many times 
each vertex was executed etc. The code coverage 
module simulates the real execution of a program 
under study (virtual running) as follows: 

Step 1: A pair of input values is given to the CC 
module. 

Step 2: A control flow graph visitor takes the 
values and begins the graph walking from the start 
node. At each vertex, the visitor executes (simulates 
the real execution of) the statements and conditions.  

Step 3: Each variable is stored in a data structure 
having an initial value, a current value and a variable 
name. The current variable value is updated each 
time the visitor evaluates a relevant to this variable 
statement. 

Step 4: The visitor marks the visited 
vertices/statements. 

Step 5: The user is able to interact with the 
program and view the executed vertices/statements. 
In addition, information about the program or the 
node is provided by the enhanced user interface. 
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4 CONCLUSIONS AND FUTURE 
WORK 

This paper describes the utilization of grouping 
algorithms in cooperation with control flow graphs 
for software analysis purposes. While a number of 
algorithms for grouping common visual graphs and 
their elements have been proposed, control flow 
graph clustering algorithms imply a different kind of 
processing. In this context we extended our previous 
work on program analysis and we replaced the 
existing module that creates the control flow graph 
with a new, modified algorithm that can manipulate 
the control flow graph prior to displaying it so as to 
provide optional levels of details. The basic program 
analyzer was tested extensively in a number of 
programs ranging from 100 to 20,000 lines of code, 
and having different types of statements. The results 
demonstrate the ability of the proposed grouping 
feature of the new control flow algorithm is able to 
handle large programs with different types of 
statements (or equivalently different complexity). In 
addition, this paper introduces a new software 
module, which performs code coverage processing, 
the latter enhancing and completing the proposed 
architecture. 

With the above feature the modified Basic 
Program Analyzer broadens its scope and allows its 
usage by additional types of application tools: The 
grouping of vertices in different levels of detail 
provides the means to investigate larger programs, 
since performance and memory no longer constrain 
the process. In addition, the ability to select the level 
of display detail aids the easy comprehension of a 
large program graph, since the analyzer is able to 
depict the same information with less graph 
elements.  
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