
TRUST MANAGEMENT WITHOUT REPUTATION IN P2P
GAMES

Adam Wierzbicki
Polish-Japanese Institute of Information Technology, ul. Koszykowa 86, Warsaw, Poland

Keywords: Peer-to-peer computing, trust management, massive multiplayer online games, secret sharing.

Abstract: The article considers trust management in Peer-to-Peer (P2P) systems without using reputation. The aim is
to construct mechanisms that allow to enforce trust in P2P applications, where individual peers have a high
possibility of unfair behaviour that is strongly adverse to the utility of other users. An example of such an
application of P2P computing is P2P Massive Multi-user Online Games, where cheating by players is
simple without centralized control or specialized trust management mechanisms. The article presents new
techniques for trust enforcement that use cryptographic methods and are adapted to the dynamic
membership and resources of P2P systems.

1 INTRODUCTION

The Peer-to-peer (P2P) computing model has been
widely adopted for file-sharing applications. Other
examples of practical use of the P2P model include
distributed directories for applications such as
Skype, content distribution or P2P backup. Clearly,
the P2P model is attractive for applications that have
to scale to very large numbers of users, due to
improved performance and availability. However,
using the P2P model for complex applications still
faces several obstacles. Since the P2P model
requires avoiding the use of centralized control, it
becomes very difficult to solve coordination,
reliability, security and trust problems. A large body
of ongoing research aims to overcome these
problems and has succeeded in some respects. It
remains to be shown whether the results of this
research can be applied to build complex
applications using the P2P model.

It is the aim of this paper to consider how the P2P
model could be applied to build a Massive
Multiplayer Online (MMO) game. At present,
scalability issues in MMO games are usually
addressed with large dedicated servers or even
clusters. According to white papers of a popular
multi-player online game – TeraZona (Zona, 2002) –
a single server may support 2000 to 6000
simultaneous players, while cluster solutions used in
TeraZona support up to 32 000 concurrent players.

The client-server approach has a severe weakness,
which is the high cost of maintaining the central
processing point. Such an architecture is too
expensive to support a set of concurrent players that
is by an order or two orders of magnitude larger than
the current amounts. To give the impression of what
scalability is needed – games like Lineage report up
to 180 000 concurrent players in one night.

MMO games are therefore an attractive
application of the P2P model. On the other hand,
MMO games are very complex applications that can
be used to test the maturity of the P2P model. In a
P2P MMO game, issues related to trust become of
central importance, as shall be shown further in this
paper. How can a player be trusted not to modify his
own private state to his advantage? How can a
player be trusted not to look at the state of hidden
objects? How can a player be trusted not to lie, when
he is accessing an object that cannot be used unless a
condition that depends on the player’s private state
is satisfied? In this paper, we show how all of these
questions can be answered. We also address
performance and scalability issues that are a prime
motivation for using the P2P model. For the first
time, an integrated architecture for security and trust
in P2P MMO games has been developed.

Our trust management architecture does not use
reputation, but relies on cryptographic mechanisms
that allow players to enforce trust by verifying
fairness of moves. Therefore, we call our approach
to trust management “trust enforcement”. The trust

126
Wierzbicki A. (2006).
TRUST MANAGEMENT WITHOUT REPUTATION IN P2P GAMES.
In Proceedings of the International Conference on Security and Cryptography, pages 126-134
DOI: 10.5220/0002104901260134
Copyright c© SciTePress

management architecture proposed for P2P MMO
games makes used of trusted central components. It
is the result of a compromise between the P2P and
client-server models. A full distribution of the trust
management control would be too difficult and too
expensive. On the other hand, a return to the trusted,
centralized server would obliterate the scalability
and performance gains achieved in the P2P MMO
game. Therefore, the proposed compromise tries to
preserve performance gains while guaranteeing
fairness of the game. To this end, our trust
management architecture does not require the use of
expensive encryption, which could introduce a
performance penalty.

In the next section, security and trust issues in
P2P MMO games are reported and illustrated by
possible attack scenarios. In section 3, some
methods of trust management for P2P MMO games
will be proposed. Section 4 presents a security
analysis that demonstrates how the reported security
and trust management weaknesses can be overcome
using our approach. Section 5 discusses the
performance of the presented protocols. Section 6
describes related work, and section 7 concludes the
paper.

2 SECURITY ISSUES IN P2P
MMO GAMES

The attacks described in this section illustrate some
of the security and trust management weaknesses of
P2P game implementations so far. We shall use a
working assumption that the P2P MMO game uses
some form of Dynamic Hash Table (DHT) routing
in the overlay network, without assuming a specific
protocol. In the following section, we describe a
trust management architecture that can be used to
prevent the attacks described in this section.

Private state: Self-modification
P2P game implementations that allow player to
manage their own private state (Knutsson, B., 2004)
do not exclude the possibility that a game player can
deliberately modify his own private state (e.g.
experience, possessed objects, location, etc.) to gain
advantage over other game players. A player may
also alter decisions already made in the past during
player-player interaction that may affect the
outcome of such an interaction.

Public state: Malicious / illegal modifications
In a P2P MMO game, updates of public state may be
handled by a peer who is responsible for a public
object. The decision to update public state depends
then solely on this peer – the coordinator.
Furthermore, the coordinator may perform malicious
modifications and multicast illegal updates to the
group. The falsified update operation may be
directly issued by the coordinator and returned back
to the group as a legal update of the state. Such an
illegal update may also be issued by another player
that is in a coalition with the coordinator, and
accepted as a legal operation.

Attack on the replication mechanism
When state is replicated in a P2P game, replication
players are often selected randomly (using the
properties of the overlay to localize replicated data
in the virtual network). This can be exploited when
the replication player can directly benefit from the
replica of the knowledge he/she is storing (i.e. the
replication player is in the region of interest and has
not yet discovered the knowledge by himself).

Attack on P2P overlays
In a P2P overlay (such as Pastry), a message is
routed to the destination node through other
intermediary nodes. The messages travel in open
text and can be easily eavesdropped by competing
players on the route. The eavesdropped information
can be especially valueable if a player is revealing
his own private state to some other player (player–
player interaction). In such case, the eavesdropping
player will find out whether the interacting players
should be avoided or attacked.
The malicious player may also deliberately drop
messages that he is supposed to forward. Such an
activity will obstruct the game to some extent, if the
whole game group is relatively small.

Conclusion from described attacks
Considering all of the attacks described in this
chapter, a game developer may be tempted to return
to the safe model of a trusted, central server. The
purpose of this article is to show that this is not
completely necessary. The trust management
architecture presented in the next section will require
trusted centralized components. However, the role of
these components, and therefore, the performance
penalty of using them, can be minimized. Thus, the
achieved architecture is a compromise between the
P2P and client-server models that is secure and
benefits from increased scalability due to the
distribution of most game activities.

TRUST MANAGEMENT WITHOUT REPUTATION IN P2P GAMES

127

Overlay routing (Pastry/Scribe)

PUBLIC STATE
storing, updates
(coordinators),

replication
PRIVATE STATE CONCEALED STATE

secret sharing

CONDITIONAL
 STATE

secret sharing,
coordinator
verification

(veto)

Byzantine
agreement
protocols

Finite-set/
Infinite-set
drawing

Other
conditions

History, coordinator
verification

Commitment protocols

Figure 1: A trust management architecture for P2P MMO games.

3 TRUST ENFORCEMENT
ARCHITECTURE

In this section, we propose a trust management
architecture for P2P MMO games. Before the details
of the proposed architecture will be described, let us
shortly discuss the used concepts of “trust” and
“trust management”.

Trust enforcement
In much previous research, the notion of trust has

been directly linked to reputation that can be seen as
a measure of trust. However, some authors (Mui, L.,
2003, Gmytrasiewicz, P., 1993) have already defined
trust as something that is distinct from reputation. In
this paper, trust is defined (extending the definition
of Mui) as a subjective expectation of an agent about
the behavior of another agent. This expectation
relates the behavior of the other (trusted) agent to a
set of normative rules of behavior, usually related to
a notion of fairness or justice. In the context of
electronic games, fair behavior is simply defined as
behavior that obeys all rules of the game. In other
words, an agent trusts another agent if the agent
believes that the other agent will behave according
to the rules of the game.

Trust management is used to enable trust. A trust
management architecture, system or method enables
agents to distinguish whether other agents can or
cannot be trusted.

Reputation systems are a type of trust
management architectures that assigns a computable
measure of trust to any agent on the basis of the
observed or reported history of that agent’s
behavior. Among many applications of this
approach, the most prominent are on-line auctions
(Allegro, E-Bay). However, P2P file sharing
networks such as Kazaa, Mojo Nation, Freenet |
Freedom Network also use reputation. Reputation
systems have been widely researched in the context

of multi-agent programming,, social networks, and
evolutionary games (Aberer, K., 2001).

Our approach does not rely on reputation, which
is usually vulnerable to first-time cheating. We have
attempted to use cryptographic methods for
verification of fair play, and have called this
approach “trust enforcement”. To further explain
this approach to trust management, consider a
simple “real-life” analogy. In many commercial
activities (like clothes shopping) the actors use
reputation (brand) for trust management. On the
other hand, there exist real-life systems that require
and use trust management, but do not use reputation.
Consider car traffic as an example. Without trust in
the fellow drivers, we would not be able to drive to
work every day. However, we do not know the
reputation of these drivers. The reason why we trust
them is the existence of a mechanism (the police)
that enforces penalties for traffic law violations (the
instinct for self-preservation seems to be weak in
some drivers). This mechanism does not operate
permanently or ubiquitously, but rather irregularly
and at random. However, it is (usually) sufficient to
enable trust.

The trust management architecture proposed in
this paper is visualized on Figure 1. It uses several
cryptographic primitives such as commitment
protocols and secret sharing. It also uses certain
distributed computing algorithms, such as Byzantine
agreement protocols. These primitives shall not be
described in detail in this paper for lack of space.
The reader is referred to (Menezes, J., 1996, Lamport,
L., 1982, Tompa, M., 1993). The relationships between
the components of the trust management architecture
will be described in this section.

Our trust management architecture for P2P MMO
games will use partitioning of game players into
groups, like in the approach of (Knutsson, B., 2004).
A group is a set of players who are in the same
region. All of these players can interact with each
other. However, players may join or depart from a

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

128

group at any time. Each group must have a trusted
coordinator, who is not a member of the group (he
can be chosen among the players of another region
or be provided by the game managers). The
coordinator must be trusted because of the necessity
of verifying private state modifications (see below).
However, the purpose of the trust management
architecture is to limit the role of the coordinator to a
minimum. Thus, the performance gains from using
the P2P model may still be achieved, without
compromising security or decreasing trust.

Game play scenarios using trust
management

Let us consider a few possible game play
scenarios and describe how the proposed trust
management mechanisms would operate. In the
described game scenarios that are typical for most
MMO games, the game state can be divided into
four categories:
• Public state is all information that is publicly

available to all players and such that its
modifications by any player can be revealed.

• Private state is the state of a game player that
cannot be revealed to other players, since this
would violate the rules of the game.

• Conditional state is state that is hidden from all
players, but may be revealed and modified if a
condition is satisfied. The condition must be
public (known to all players) and cannot
depend on the private state of a player.

• Concealed state is like conditional state, only
the condition of the state’s access depends on
the private state of a player.

Player joins a game. From the bootstrap server
or from a set of peers, if threshold PKI is used, the
player must receive an ID and a public key
certificate C={ID, Kpub, sjoin} (where sjoin is the
signature of the bootstrap server (or the peers), and
Kpub is the public key that forms a pair with the
secret key kpriv,) that allows strong and efficient
authentication (see next section. Note that the keys
will not be used for data encryption). The player
selects a game group and reports to its coordinator
(who can be found using DHT routing). The
coordinator receives the player’s certificate. The
player’s initial private state (or the state with which
he joins the game after a period of inactivity) is
verified by the coordinator. The player receives a
verification certificate (VC) that includes a date of
validity and is signed by the coordinator.

Player verifies his private state. In a client-
server game, the game server maintains all private
state of a user, which is inefficient. In the P2P

solution, each player can maintain his own private
state, causing trust management problems. We have
tried to balance between the two extremes. It is true
that a trusted entity (the coordinator) must oversee
modifications of the private state. However, it may
do so only infrequently. Periodically or after special
events, a player must report to the coordinator for
verification of his private state. The coordinator
receives the initial (recently published) private state
values and a sequence of modifications that he may
verify and apply on the known private state. For
each modification, the player must present a proof.
If the verification fails, the player does not receive a
confirmation of success. If it succeeds, the player is
issued a VC that has an extended date of validity and
is signed by the coordinator. Verification by a
coordinator is done by “replaying” the game of the
user from the time of the last verification to the
present. The proofs submitted by the player must
include the states of all objects and players that he
has interacted with during the period.

Player interacts with a public object. Peer-to-
peer overlays (like DHTs) provide an effective
infrastructure for routing and storing of public
knowledge within the game group. Any public
object of the game is managed by some peer. The
player issues modification requests to the manager
M of the public object. The player also issues a
commitment of his action A that can be checked by
the manager. Let us denote the commitment by
C(ID, A) (the commitment could be a hash function
of some value, signed by the player).

Commitments should be issued whenever a player
wishes to access any object, and for decisions that
affect his private state. Commitments may also be
used for random draws (Wierzbicki, A., 2004). It
will be useful to regard commitments as
modifications of public state that is maintained for
each player by a peer that is selected using DHT
routing, as for any public object.

The request includes the action that the player
wishes to execute, and the player’s validation
certificate, VC. Without a valid certificate, the player
should not be allowed to interact with the object. If
the certificate is valid, and the player has issued a
correct commitment of the action, the manager
updates his state and broadcasts an update message.
The manager also sends a signed testimony T={t, A,
Si, Si+1, P, sM} to the player. This message includes
the time t and action A, state of the public object
before (Si) and after the modification (Si+1) and some
information P about the modifying player (f. ex., his
location). The player should verify the signature sM
of the manager on the testimony. The manager of the

TRUST MANAGEMENT WITHOUT REPUTATION IN P2P GAMES

129

object then sends an update of the object’s state to
the game group.

If any player (including the modifying player, if T
is incorrect) rejects the update (issues a veto), the
coordinator sends T to the protesting player, who
may withdraw his veto. If the veto is upheld, a
Byzantine agreement round is started. (This kind of
Byzantine agreement is known as the Crusader’s
protocol.)

Note that if a game player has just modified the
state of a public object and has not yet sent an
update, he may receive another update that is
incorrect, but will not veto this update, but send
another update with a higher sequence number.

To decide whether an update of the public state is
correct, players should use the basic physical laws of
the game. For example, the players could check
whether the modifying player has been close enough
to the object. Players should also know whether the
action could be carried out by the modifying player
(for example, if the player cuts down a tree, he must
possess an axe). This decision may require
knowledge of the modifying player’s private state.
In such a case, the modification should be accepted
if the modifying player will undergo validation of
his private state and present a validation certificate
that has been issued after the modification took
place.

Player executes actions that involve
randomness. For example, the player may search
for food or hunt. The player uses a fair random
drawing protocol (Wierzbicki, A., 2004) (usually, to
obtain a random number). This involves the
participation of a minimal number (for instance, at
least 3) of other players that execute a secret sharing
together with the drawing player. The drawing
player chooses a random share l0 and issues a
commitment of his share C(ID, l0) to the manager of
his commitments (that are treated as public state).
The drawing player receives and keeps signed shares
l1,...,ln from the other players, and uses them to
obtain a random number. The result of the drawing
can be obtained from information that is part of
constant game state (drawing tables).

Player meets and interacts with another
player. For example, let two players fight. The two
players should first check their validation certificates
and refuse the interaction if the certificate of the
other player is not valid. Before the interaction takes
place, both players may carry out actions A1,...,Ak
that modify their private state (like choosing the
weapon they will use). The players must issue
commitments of these actions. The commitments
must also be sent to an arbiter, who can be any

player. The arbiter will record the commitments and
the revealed actions. After the interaction is
completed, the arbiter will send both players a
signed testimony about the interaction.

If the interaction involves randomness, the
players draw a common random number using a fair
drawing protocol (they both supply and reveal
shares; shares may also be contributed by other
players).

Finally, the players reveal their actions to each
other and to the arbiter. The results of the interaction
are also obtained from fixed game information and
affect the private states of both players. The players
must modify their private states fairly, otherwise
they will fail verification in the future (this includes
the case if a player dies. Player death is a special
case. It is true that once a player is dead, he can
continue to play until his VC expires. This can be
corrected if the player who killed him informs the
group about his death. Such a death message forces
any player to undergo immediate verification if he
wishes to prove that he is not dead). Note that at any
time, both players are aware of the fair results of the
interaction, so that a player who has won the fight
may refuse further interactions with a player who
decides to cheat.

Player executes an action that has a secret
outcome. For example, the player opens a chest
using a key. The chest’s content is conditional state.
The player will modify his private state after he
finds out the chest’s contents. To determine the
outcome, the player will reconstruct conditional or
concealed state.

Concealed state can be managed using secret
sharing and commitment protocols, as described in
(Wierzbicki, A., 2004). The protocol developed in
(Wierzbicki, A., 2004) concerned drawing from a
finite set, but can be extended to handle any public
condition. The protocol has two phases: an initial
phase and a reconstruction phase. The protocol
required a trusted entity (in our case, the
coordinator) that initializes concealed state by
dividing the state into secret shares and distributing
the shares to a fixed number of shareholders. The
protocol also uses additional secret sharing for
resilience to peer failures. Apart from the initializing
of the state, the coordinator does not participate in
its management.

The player issues a commitment of his action that
is checked by the shareholders. If the condition is
public but depends on the player’s private state, the
player decides himself whether the condition is
fulfilled (he will have to prove the condition’s
correctness during verification in the future). If the

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

130

Army:
11 T-5 tanks
12 fighters
10k troopers

BATTLE BETWEEN PLAYERS

FAIR
PLAYER

Army:
12 T-5 tanks
10 fighters
10k

Move: 2 tanks north
south
Strategic skills: 5 10

Move: 1 tank
south
Strategic skills: 8

proof F(X)
of “Move ...” for
Cheating player
Fair/unfair?

ARBITER
Verifies revealed moves

CHEATING
PLAYER

condition to access an object is secret, the condition
itself should be treated as a conditional public
object. When the player has reconstructed the object,
he must keep the shares for verification.

Note that concealed and conditional public
objects can have states that are modified by players.
If this is the case, then each state modification must
be followed by the initial phase of the protocol for
object management.

Authentication requirements
A P2P game could use many different forms of
authentication. At present, most P2P applications
use weak authentication based on nick names and IP
addresses (or IDs that are derived from such
information). However, it has been shown that such
systems are vulnerable to the Sybil attack (Douceur,
J., 2002).

Most of the mechanisms discussed in this paper
would not work if the system would be
compromised using the Sybil attack. An attacker that
can control an arbitrary number of clones under
different IDs could use these clones to cheat in a
P2P game. The only way to prevent the Sybil attack
is to use a strong form of authentication, such as
based on public-key cryptography. Public key
cryptography will be used in our trust management
architecture for authentication and digital signatures
of short messages, but not for encryption.

In a P2P game, authentication must be used
efficiently. In other words, it should not be
necessary to repeatedly authenticate peers. The use
of authentication could depend on the game type.
For instance, in a closed game, authentication could
occur only before the start of the game. Once all
players are authenticated, they could agree on a
common secret (such as a group key) that will be
used to identify game players, using a method such

as the Secure Group Layer (SGL) (Agrawal, D.,
2001). A solution that is well suited to the P2P
model is the use of threshold cryptography for
distributed PKI (Nguyen, H., 2005).

4 SECURITY ANALYSIS

In this section, the attacks illustrated in section 2
will be used to demonstrate how the proposed
protocols protect the P2P MMO game.

Private state: Self-modification
Self-modification of private state can concern the
parameters of a player, the player’s secret decisions
that affect other players, or results of random draws.
The first type of modification is prevented by the
need to undergo periodic verification of a private
player’s parameters. The verification is done by the
coordinator on the basis of an audit trail of private
state modification that must be managed by any
player. Each modification requires proof signed by
third parties (managers of other game objects,
arbiters of player interactions). Any modification
that is unaccounted for will be rejected by the
coordinator. Players may verify that their partners
are fair by checking a signature of the coordinator on
the partner’s private state. If a player tries to cheat
during an interaction with another player by
improving his parameters, he may succeed, but will
not pass the subsequent verification and will be
rejected by other players.

Modification of player’s move decisions or
results of random draws is prevented by the use of
commitment protocols. The verification is made by
an arbiter, who can be a randomly selected player
(see Fig. 2). The verification is therefore subject to

Figure 2: Preventing self-modification of private state.

TRUST MANAGEMENT WITHOUT REPUTATION IN P2P GAMES

131

TREASURY
(REGION 1)

unlocked
door

PLAYER

multicast:
{open

unlocked door}
{veto}

PENATY
FOR

CHEATING
OR

MALICIOUS
PLAYER

BYZANTINE
AGREMENT
DECISION

MALICIOUS
PLAYER

{rejected
 veto}

GAME GROUP

coalition attacks; on the other hand, making the
coordinator responsible for this verification would
unnecessarily increase his workload.

Note that in order for verification to succeed, the
coordinator must possess the public key certificates
of all players who have issued proof about the
player’s game. (If necessary, these certificates can
be obtained from the bootstrap server). However, the
players who have issued testimony need not be
online during verification.

A player may try to cheat the verification
mechanism by “forgetting” the interactions with
objects that have adversely affected the player’s
state. This approach can be defeated in the following
way. A player that wishes to access any object may
be forced to issue a commitment in a similar manner
as when a player makes a private decision. The
commitment is checked by the manager of the object
and must include the time and type of object. Since
the commitment is made prior to receiving the
object, the player cannot know that the object will
harm him. The coordinator may check the
commitments during the verification stage to
determine whether the player has submitted
information about all state changes.

Public state: Malicious modifications
We have suggested the use of Byzantine algorithms
further supported by a veto mechanism (Crusader’s
protocol) to protect public state against
illegal/malicious modifications. Any update request
on the public state shall be multicast to the whole
game group. The Byzantine verification within the
group shall only take place when at least one of the
players vetoes the update request of some other
player. The cheating player as well as the player
using the veto in unsubstantiated cases may be both
penalized by the group by exclusion from the game
(see Fig. 3). Such mechanism will act mostly as a

preventive and deterring measure, introducing the
performance penalty only on an occasional-basis.

The protection offered by Byzantine agreement
algorithms has been discussed in (Lamport, L.,
1982). It has been shown that the algorithms tolerate
up to a third of cheating players (2N+1 honest
players can tolerate N cheating players). Therefore,
any illegal update on the public state will be
excluded as long as the coalition of the players
supporting the illegal activity does not exceed third
of the game group. We believe such protection is far
more secure than coordinator-based approach of
Knutsson and tolerable in terms of performance.
Performance could be improved if hierarchical
Byzantine protocols would be used.

Attacks on P2P overlays
In our security architecture, players rarely reveal
sensitive information. A player does not disclose his
own private state, but only commitments of this
state. Concealed or conditional state is not revealed
until a player receives all shares. If the P2P overlay
is operating correctly and authentication is used to
prevent Sybil attacks, the P2P MMO game should be
resistant to eavesdropping by nodes that route
messages without resorting to strong encryption. A
secure channel is needed during the verification of a
players private state by the coordinator.

Concealed state: Attack on replication
mechanism
Concealed state, as well as any public state in the
game, must be replicated among the peers to be
protected against loss. The solution of Knutsson uses
the natural properties of the Pastry network to
provide replication. However, we have questioned
the use of this approach for concealed state, where
the replicas cannot be stored by a random peer. The
existence of concealed state has not been considered

Figure 3: Byzantine agreement / veto protection of public state updates.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

132

by Knutsson, and therefore they did not consider the
fact that replicas may reveal the concealed
information to unauthorized players.

In our approach for replication of concealed state,
replication players are selected from outside the
game group. This eliminates the benefits offered by
Pastry network. On the other hand, this approach
also eliminates the security risks. Please note that in
our approach a certain number of players must
participate to uncover specific concealed
information. Therefore, a coalition with the
replication player is not beneficial for a player
within the game group.

5 PERFORMANCE ANALYSIS

We have tried to manage trust in a P2P MMO game
without incurring a performance penalty that would
question the use of the P2P model. However, some
performance costs are associated with the proposed
mechanisms. Our initial assumption about
partitioning of game players into groups (sets of
players who are in the same region) is required for
good performance.

Byzantine protocols have a quadratic
communication cost, when a player disagrees with
the proposed decision. Therefore, their use in large
game groups may be prohibitive. This problem may
be solved by restricting the Byzantine agreement to
a group of superpeers that maintain the public state
(an approach already chosen by a few P2P
applications, such as OceanStore). Another
possibility is the use of hierarchical Byzantine
protocols that allow the reduction of cost but require
hierarchy maintenance.

Since private state is still managed by a player, it
incurs no additional cost over the method of
Knutsson. The additional cost is related to the
verification of a player’s private state by a
coordinator. The coordinator must “replay” the game
of a player, using provided information, and
verifying the proofs (signatures) of other players, as
well as the modifications of the verified private
state. This process may be costly, but note that a
coordinator need not “replay” all of the game, but
only a part (chosen at random). This may keep the
cost low, while still deterring players from self-
modification of private state.
The cost of maintenance of concealed or conditional
state is highest in the initialization phase (for a
detailed analysis, see (Wierzbicki, A., 2005)). This
stage should be carried out only when an object is
renewed. During most game operations, the cost of

concealed state management is reasonable. The
reconstruction phase has a constant const (fetching
the parts of an object). However, if the object’s state
changes, the object must be redistributed. The
expense of this protocol may be controlled by
reducing the constant number of object parts, at the
cost of decreasing security. The number of object
parts cannot be less than two.

All the proposed protocols have allowed us to
realize one goal: limit the role of the central trusted
component of the system (the coordinator). The
coordinator does not have to maintain any state for
the players. He participates in the game
occasionally, during distribution of
concealed/conditional state and during verification
of private state. The maintenance of public state
remains distributed, although it requires a higher
communication overhead.

6 RELATED WORK

Several multi-player games (MiMaze, Age of
Empires (Douceur, J., 2002)) have already been
implemented using the P2P model. However, the
scalability of such approaches is in question, as the
game state is broadcasted between all players of the
game. AMaze (Berglund, E., 1985) is an example of
an improved P2P game design, where the game state
is multicast only to nearby players. Still in both
cases, only the issue of public state maintenance has
been addressed. The questions how to deal with the
private and public concealed states have not been
answered (see section 4).

The authors of (Baughman, N., 2001) have
proposed a method of private state maintenance that
is similar to ours. They propose the use of
commitments and of a trusted “observer”, who
verifies the game online or at the end of the game.
However, the authors of (Baughman, N., 2001) have
not considered the problem of concealed or
conditional state. Therefore, their trust management
architecture is incomplete. Also, the solution
proposed in (Baughman, N., 2001) did not address
games implemented in the P2P model.

The paper on P2P support for MMO games
(Knutsson, B., 2004) offers an interesting
perspective on implementing MMO games using the
P2P model. The presented approach addresses
mostly performance and availability issues, while
leaving many security and trust issues open. In this
paper, we discuss protocols that can be applied to
considerably improve the design of Knutsson in
terms of security and trust management.

TRUST MANAGEMENT WITHOUT REPUTATION IN P2P GAMES

133

7 CONCLUSION

The use of the peer-to-peer computing model has
been restricted by problems of security and trust
management for many applications. In this paper, we
have attempted to show how a very sensitive
application (a P2P Massive Multiplayer Online
game) may be protected from unfair user behavior.
We have been forced to abandon the pure peer-to-
peer approach for a hybrid approach (or an approach
with superpeers). However, we have attempted to
minimize the role of the centralized trusted
components.

The result is a system that, in our opinion,
preserves much of the performance benefits of the
P2P approach, as exemplified by the P2P platform
for MMO games proposed by Knutsson. At the same
time, it is much more secure than the basic P2P
platform. The main drawback of the proposed
approach is complexity. While we may pursue an
implementation effort of the proposed protocols, a
wide adoption of the peer-to-peer model will require
a wide availability of development tools that include
functions such as distributed PKI, efficient
Byzantine agreement, secret sharing and
reconstruction, and commitment protocols, that will
facilitate construction of safe and fair P2P
applications.

The approach that we have tried to use for trust
management in peer-to-peer games is “trust
enforcement”. It considerably different from
previous work on trust management in P2P
computing, that has usually relied on reputation.
However, reputation systems are vulnerable to first
time cheating, and are difficult to use in P2P
computing because peers have to compute reputation
on the basis of incomplete information (unless the
reputation is maintained by superpeers). Instead, we
have attempted to use cryptographic primitives to
assure a detection of unfair behavior and to enable
trust.

The mechanisms that form our trust management
architecture work on a periodic or irregular basis
(like periodic verification of private players by the
coordinator or Byzantine agreement after a veto).
Also, the possibility of cheating is not excluded, but
rather the trust enforcement mechanisms aim to
detect cheating and punish the cheating player by
excluding him from the game. In some cases,
cheating may still not be detected (if the verification,
as proposed, is done on a random basis); however,
we believe that the existence of trust enforcement
mechanisms may be sufficient to deter players from

cheating and to enable trust, like in the real world
case of law enforcement.

REFERENCES

A.Wierzbicki, T.Kucharski: “P2P Scrabble. Can P2P
games commence?”, Fourth Int. IEEE Conference on
Peer-to-Peer Computing , Zurich, August 2004, pp.
100-107

A. Wierzbicki, T. Kucharski, Fair and Scalable P2P
Games of Turns, Eleventh International Conference on
Parallel and Distributed Systems (ICPADS'05),
Fukuoka, Japan, pp. 250-256

B. Knutsson, Honghui Lu, Wei Xu, B. Hopkins, Peer-to-
Peer Support for Massively Multiplayer Games, IEEE
INFOCOM 2004

N. E. Baughman, B. Levine, Cheat-proof playout for
centralized and distributed online games, INFOCOM
2001, pp 104-113

E.J. Berglund and D.R. Cheriton. Amaze: A multiplayer
computer game. IEEE Software, 2(1), 1985.

J. Menezes, P. C. van Oorschot, S. A. Vanstone,
Handbook of applied cryptography, CRC Press, ISBN:
0-8493-8523-7, October 1996

L. Lamport, R. Shostak, M. Pease, Byzantine Generals
Problem, ACM Trans. on Programming Laguages and
Systems, pp 382-401

M. Tompa and H. Woll, How to share a secret with
cheaters, Research Report RC 11840, IBM Research
Division, 1986

J. Douceur, The Sybil Attack, In Proc. of the IPTPS02
Workshop, Cambridge, MA (USA), 2002

D.Agrawal et al., An Integrated Solution for Secure Group
Communication in Wide-Area Netwokrs, Proc. 6th
IEEE Symposium on Comp. and Comm., 2001,

IETF, SPKI Working group
Zona Inc. Terazona: Zona application framework white

paper, 2002
H. Nguyen, H. Morino, A Key Management Scheme for

Mobile Ad Hoc Networks Based on Threshold
Cryptography or Providing Fast Authentication and
Low Signaling Load, T. Enokido et al. (Eds.): EUC
Workshops 2005, LNCS 3823, pp. 905 – 915, 2005

L. Mui, Computational Models of Trust and Reputation:
Agents, Evolutionary Games, and Social Networks,
Ph.D. Dissertation, Massachusetts Institute of
Technology, 2003

K.Aberer, Z.Despotovic (2001), Managing Trust in a Peer-
To-Peer Information System, Proc. tenth int. conf.
Information and knowledge management, 310-317

P. Gmytrasiewicz, E. Durfee, Toward a theory of honesty
and trust among communicating autonomous agents
Group Decision and Negotiation 1993. 2:237-258.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

134

