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Abstract: The Video Event Awareness System (VEAS) analyzes surveillance video from thousands of video cameras 
and automatically detects complex events in near real-time—at pace with their input video streams.  For 
events of interest to security personnel, VEAS generates and routes alerts and related video evidence to 
subscribing security personnel that facilitate decision making and timely response.  In this paper we 
introduce VEAS’s novel publish/subscribe run-time system architecture and describe VEAS’s event 
detection approach.  Event processing in VEAS is driven by user-authored awareness specifications that 
define patterns of inter-connected spatio-temporal event stream operators that consume and produce facility-
specific events described in VEAS’s surveillance ontology.  We describe how VEAS integrates and 
orchestrates continuous and tasked video analysis algorithms (e.g., for entity tracking and identification), 
how it fuses events from multiple sources and algorithms in an installation-specific entity model, how it can 
proactively seek additional information by tasking video analysis algorithms and security personnel to 
provide it, and how it deals with late arriving information due to out-of-band video analysis tasks and 
overhead.  We use examples from the physical security domain, and discuss related and future work. 

1 INTRODUCTION 

Heightened security demand for physical security 
has led to the deployment of large numbers of 
surveillance cameras.  However, the resulting large 
volumes of video will not improve security without 
the development of more advanced surveillance 
technology and new practices.  Although some 
surveillance systems currently employ limited video 
analysis automation to facilitate detection of simple 
video events (i.e., events in the view of a single 
camera, such as detected motion in a room or a 
security perimeter), virtually all existing surveillance 
systems rely mainly on human operators for the 
detection of real-world situations of interest that are 
complex events involving patterns of simple video 
events distributed in time and possibly occurring in 
different locations in a facility. Therefore, forensic 
event analysis performed by human operators is 
currently the main (often unstated) reason for 
deploying security cameras. 

One possible solution for taking advantage of the 
large volume of raw surveillance video is to increase 
dramatically the number of human operators 
monitoring a facility.  However, this solution is 
typically beyond existing organizational resources 
and budgets.  Furthermore, adding cameras and 
operators may reduce detection reliability.  This is 
because it is difficult for humans to reliably relate 
events that occur at different times and in different 
spaces in a facility, as they are typically shown in 
different video displays (as illustrated in Figure 1) 
and at different times.     

  This work was supported in part by the Advanced Research and 
Development Activity (ARDA), Video Analysis and Content 
Extraction (VACE) Program under contract HM1582-04-C-0007. 

 
Figure 1: Typical bank of monitors that security personnel 
might use for monitoring a facility. 
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The goal of the Video Event Awareness System 
(VEAS) is to analyze surveillance videos from 
thousand of cameras and other non-video sensors 
and automatically detect complex events that 
indicate situations of interest, alert humans about 
them, provide the evidence that led to the alerts, and 
do this in near real-time—at pace with their input 
video streams.   

To meet these goals, VEAS has been designed to 
solve the following engineering problems. 

• Correlating information from multiple video 
and non-video sources into a coherent picture 
of the activities of people within a facility. 

• Providing near real-time event detection from 
continuously run streaming video analysis 
algorithms. 

• Proactively seeking additional information 
when there is uncertainty or gaps, usually by 
tasking video analysis algorithms, and 
incorporating this late arriving information into 
updated alerts. 

• Enabling resource optimization so that 
expensive video analysis algorithms are run 
only when they are likely to yield useful 
information. 

• Facilitating situation understanding so that 
security personnel can grasp the circumstances 
surrounding an alert and react more 
appropriately. 

• Permitting situation-specific and installation-
specific customization so that the system can 
be effectively used in multiple installations 
whose needs may change over time. 

In this paper, we focus on VEAS’s run-time 
architecture and describe its event processing model 
and engines.  Although we only show how these 

innovations enable the automation of surveillance, 
the proposed architectures and engines are general 
enough to automate event detection and provide 
situation awareness in any sensor-based system.   
The rest of this paper is organized as follows: 
Section 2 provides an overview of the VEAS 
architecture and introduces a running example.  
Sections 3-6 discuss the main components of the 
VEAS architecture and explain how each component 
helps to address the engineering problems we 
described earlier in this section.  Related work is 
presented in Section 7, and conclusions in Section 8.  

2 VEAS OVERVIEW 

In the following sections we describe the main 
components in the VEAS architecture and present an 
example of a security policy that can be specified 
and automated by VEAS. 

2.1 VEAS Architecture 

The main contribution of this paper is the 
introduction of the novel VEAS architecture that 
meets the goals of automated near real-time facility 
surveillance. As depicted in Figure 2, the 
architecture is comprised of a sequence of 
information processing components that together 
distill vast amounts of data from video and other 
non-video sensors (e.g., RFID and badge readers) 
into useful information in the form of alerts that are 
of interest to security personnel.  The arrows in 
Figure 2 indicate the primary information flow 
between the VEAS components.  In addition to 
information flow, the arrows indicate (right to left) 
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Figure 2:  The VEAS run-time architecture. 
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client-server relationships and data subscription 
relationships between components.  The data made 
available to each component triggers its 
computation, producing data for the next component 
in the sequence.     

Live video flows from the video sources to both 
the Video Repository (VR) component and the Video 
Processing Suite (VP Suite) for real-time analysis by 
streaming video analysis algorithms.  The VR 
segments video streams into manageable file sizes 
using a time-based video segmentation approach 
(e.g., as in (Moser, et al., 1995; Aref, et al., 2002)), 
and stores them in the file system.  The VP suite 
provides video analysis algorithms (e.g., for entity 
tracking, face detection) that produce their results 
(e.g., entity tracks, video frames with faces) in near 
real-time—at pace with their input video stream.  
The VP Suite can additionally extract information 
from video segments stored in the VR upon request 
from its client components.  This approach is used 
for expensive video analysis algorithms (e.g., face 
recognition) that operate on stored video segments 
and may not produce their results in near real-time.  
The delay caused by tasking video analysis 
algorithms causes of information to be processed 
(possibly long) after the time of the real-world 
situation was captured on video.  We call such 
information late arriving. Since information from 
non-video sensors require no processing, the VEAS 
architecture lacks a processing suite for such data. 

The purpose of the Event Extraction Engine 
(EEE) is to collect video metadata and other data 
from non-video sensors, and use these to construct 
an Entity Model (EM). The EM is initialized and 
subsequently updated by the Static Facility Model 
(SFM) as depicted in Figure 2. The SFM is 
maintained by VEAS administrators. It captures site-
specific information that includes:  

• Spatial descriptions of the space hierarchy in 
the facility and  security related attributes for 
each space, such as its intended purpose (e.g., 
office, meeting room, record vault) and access 
restrictions (e.g., escorted visitors, employees 
with a specific clearance).  

• Information about known entities (e.g., 
employees, contractors) and their security 
related attributes (e.g., name, photo, office, 
security clearance). 

The Entity Model is an extensible model of the 
facility, its occupants, and their activities (e.g. 
movements, behaviors, etc.) that is continuously 
updated as new information becomes available. To 
populate the EM, VEAS’s EEE utilizes the streams 
of video data from the VP Suite and non-video 

sources (e.g., RFID tags and badge readers). 
Additional changes to the EM occur, for instance, 
when humans enter, are identified, move around, 
and leave the facility.  Each of these changes 
constitutes a facility event.  If a facility event is of 
interest to the Awareness Engine, it is forwarded to 
the AE for consumption.  

The Awareness Engine (AE) performs 
continuous detection of complex events as specified 
by event patterns called awareness specifications, 
and generates an alert when an event pattern in an 
awareness specification is matched.  Awareness 
specifications are authored in concert with the 
Surveillance Event Ontology that provides a 
semantic type system for events of interest.  
Awareness specifications and the Surveillance Event 
Ontology are stored in their respective repositories 
as illustrated in Figure 2 and they are described 
further in Section 4. 

The AE and EEE work together to process 
awareness specifications as follows: First, AE 
performs a decomposition of event patterns in 
awareness specifications to determine their 
constituent facility events, and issues subscriptions 
to these facility events from the EEE.  The EEE 
decomposes the subscribed facility events to desired 
video metadata over (video source, video analysis 
algorithm) pairs, and then performs continuous 
analysis of video streams and extraction of the 
metadata.  The AE consumes facility events to 
perform continuous detection of event patterns that 
has been specified in awareness specifications.  
Finally, the AE generates alert requests when the 
patterns are matched, which flow to the Content-
based Routing Engine.  In addition to generating 
alerts requests, the AE generates task requests for 
proactive information gathering tasks, which also 
flow to the Content-based Routing Engine.  Task 
requests are generated only in response to specific 
situations as described in an awareness specification.  
This specificity effectively limits the cases in which 
an expensive video analysis task may be run, thus 
optimizing computing resources. 

The Content-based Routing Engine (CBRE) 
interacts with the Awareness Engine to route alerts 
to appropriate security personnel.  Delivered alerts 
come with their pedigree and supporting video 
evidence so that users can understand the cause and 
greater context of the alert.  This facilitates situation 
understanding. The CBRE also tasks video 
processing algorithms that gather information 
whenever an event pattern indicates a situation 
requiring further information as indicated by the AE.   
Task Specifications are defined by VEAS 
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administrators and stored in the repository shown in 
Figure 2.  

The following section presents a security policy 
example we use throughout this paper to describe 
VEAS’s functionality. 

2.2 Example Security Policy  

Consider the detection of unescorted visitors within 
any space in a facility that requires that visitors be 
escorted.  For the sake of this example, we’ll divide 
people into the following disjoint categories:   

• employees, who must either badge-in when 
they enter the facility or they must sign-in with 
the receptionist to verify their identity and 
receive a temporary badge; and 

• visitors, who must sign in at the receptionist 
desk before they enter the rest of the facility.   

Visitors have assigned escorts, who might often 
be the employees they are visiting.  The receptionist 
checks the visitor identity and consults a log of 
expected visitors and employees to make the escort 
assignment for the visitor. 

Our example policy considers a person as 
escorted if he/she is in the same space (i.e. room) as 
one of their assigned escorts.  Not all rooms in our 
facility require visitors to be escorted.  In particular, 
the facility model designates each space in the 
facility as either prohibiting visitors, allowing 
visitors unescorted, or requiring visitor escort. 

Our example security policy defines a visitor  to 
be unescorted if (1) the visitor is in a room that 
requires visitor escorts, and (2) the visitor remains in 
this room without any designated escort for longer 
than a period of time, say 30 seconds.  Introduction 
of a time bound tolerance reduces false alarms 
because a visitor and his escort may not transition 
between rooms at the same time as they move about.   

While employees serving as escort know that 
they are responsible for escorting their visitor, they 
may not always follow the security policy.  In a 
facility with more than a few visitors, security 
personnel may have great difficulty reliably 
detecting this security violation as a visitor may be 
considered unescorted even if they are in a room 
with people who happen not to be designated 
escorts.  VEAS can reliably detect this real-world 
situation and alert security personnel appropriately.   

In the following major sections, we will describe 
the operation of VEAS’s components and we will 
use the unescorted visitor security policy to discuss 
each component’s contribution to the detection of 
security policy violations. 

3 VIDEO PROCESSING SUITE 

The Video Processing (VP) Suite is actually a 
collection of separate components, all of which 
extract video metadata from video streams or stored 
clips.  Each VP component performs two functions: 

• it integrates an existing video analysis 
algorithm so that that acts as a consumer of live 
video streams or  video segments from the 
Video Repository; and  

• it publishes its results to the Event Extraction 
Engine as it becomes available.   

Algorithms in the VP Suite can be divided into the 
following two broad categories:  

• Continuous video analysis algorithms can be 
run as video stream filters that perform video 
processing in a continuous fashion.  
Continuous video analysis algorithms are 
directly connected to the live video sources. 

• Tasked video analysis algorithms run only in 
specific circumstances and they usually take 
video segments as input.   

Regardless of whether the VP algorithms are 
continuous or tasked, they all publish their results to 
the Event Extraction Engine as they are produced.   

For VEAS to work properly, the VP Suite should 
contain at least one continuous video analysis 
algorithm for tracking entities (i.e., humans and 
other movable objects).  The number and location of 
the cameras whose video streams are processes by 
this continuous algorithm should be sufficient to 
enable VEAS to gather basic knowledge of what 
entities are in the facility and how they move about.   

For the unescorted visitor example, VEAS uses 
continuous tracking to follow entities within each 
camera’s view.  The VP publishes these single 
camera tracks as they are collected to the Event 
Extraction Engine (EEE).  The EEE continuously 
stitches these tracks together and correlates them 
with identity information gathered from other 
sources.  VEAS can determine the whereabouts of 
any visitor and his/her escorts in near real-time. 

Tasked VP Suite algorithms are assumed more 
expensive than their continuous algorithm 
counterparts.  Typically, tasked video analysis 
algorithms are run only in situations where the 
information potentially gathered by the algorithm 
justifies the computational expense of running it.  
Therefore, effective tasking a tasked video analysis 
requires any clients of the VP suite to first identify 
the situation where the algorithm might be useful 
and then perform the actual invocation of the 
algorithm for that particular situation.  The VP Suite 
handles the invocation and results publication for the 
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video analysis algorithm using a web services 
platform.   

The collection of video analysis algorithms 
actually used in the VP Suite may depend on the 
security policies of each VEAS installation, the 
availability of algorithms and computational 
resources needed to run them, and the expected costs 
of their invocations.  We are currently utilizing 
algorithms from the U.S. Government’s DTO 
(formerly ARDA) VACE program (VACE 2006). 

4 EVENT EXTRACTION ENGINE  

The purpose of the Event Extraction Engine (EEE) 
is to perform continuous analysis of video streams 
(as well as data streams from non-video information 
sources) and extract simple events about the facility 
being monitored, called facility events.  To do this, 
the EEE maintains as its primary information asset 
an Entity Model (EM).  The EM is a continuously 
extended model of the facility, its occupants, and 
their activities.   

The EM is a key VEAS innovation.  In 
particular, EM permits simple, high-level awareness 
specifications, since these are built on top of the EM 
which acts as a “world” model of the facility.  In 
addition, EM provides a simple, yet effective, 
strategy for video analysis efficiency, since it avoids 
unnecessary video analysis by combining and 
caching all known information for a facility.  

The specific information kept in the EM is 
described in Section 4.1.  The construction of EM is 
described in Section 4.2.  The use of EM by the 
Awareness Engine is discussed in Section 5. 

4.1 Information in the Entity Model  

The Entity Model maintains a dynamic record of 
entities (i.e., humans and other movable objects) and 
their movements in space and time.  In particular, 
the EM contains the following tracking and 
identification information: spaces (e.g., rooms, 
portals, etc.), entities, real world identities of people, 
current and historical relationships between these, 
and time intervals when these relationships occur. 

The EM fuses information from various video 
analysis algorithms.  More importantly, EM 
continuously builds three dimensions of facility 
information whose purpose is to allow the 
Awareness Engine (AE) to determine 
instantaneously the following: 

• the location of everyone in the facility at a 
particular time (e.g., 1:22pm); 

• the pattern of use in a particular room (e.g., 
Room 4); and 

• how a particular person (e.g., John Smith) 
moves around the facility over time. 

Based on the availability of more advanced video 
analysis algorithms in the VP Suite the EM can be 
extended easily to include additional details to make 
a broader or more detailed model of the facility.  
Possible extensions include the following: 

• Extending the spaces to larger or more 
complex sites and areas, such as battle zones, 
cities, etc. 

• Providing state information related to 
individuals under surveillance (Hongeng, et al., 
2003), e.g., body position, gestures, gaze, etc. 

• Tracking inanimate entities, such as briefcases, 
packages, vehicles, shipping containers, etc. 

• Tracking entity-entity interactions, such as 
conversations, hand-shakes, carried bags, 
vehicle collisions, etc. 

• Incorporating additional sensor information, 
such as temperature, sound, chemical or 
radiation detection, heart rate, etc.  

• Modeling normalcy such as patterns of 
individuals’ behavior, room usage statistics, 
social network analysis, etc. 

These EM extensions are beyond the scope of this 
paper, and they are not discussed further. 

4.2 Entity Model Management  

To construct the EM, the EEE does the following: 
• pulls information from the Static Facility 

Model (SFM) that has been populated by 
surveillance administrators; 

• utilizes the video metadata (produced by both 
streaming and tasked video analysis algorithms 
in the VP Suite);  

• utilizes the streams of information produced by 
non-video sources; and  

• integrates these in an incremental fashion to 
make a coherent picture of what is currently 
known about the facility and its occupants. 

 The SFM (illustrated in the VEAS architecture 
in Figure 2) is the source of many installation-
specific, space- and people-related facts in the EM.  
In particular, the SFM captures information about 
the facility, its hierarchy of spaces, boundaries 
between those spaces, camera locations and 
orientations, and identities of known people. 
Additional SFM facts include the type of each space 
(e.g., office, conference room, lab, hall way), the 
association of office spaces to individuals and shared 
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spaces to organizations, and the spaces that are off-
limits to each class of entities.  The SFM also 
provides facts about known persons.  Examples of 
information about a person include his/her name, 
employee ID (if he/she is an employee), photos for 
face recognition, etc.  

Non-video sensors (e.g. RFID readers, badge 
scanners) typically provide information as to the 
identity of moving entities and their position in the 
facility as they move about in time.  Such 
information streams can be correlated in the EM 
with similar information collected from video.   

EEE fuses all its input information in facility-
wide entity tracks, and inferences cross-track entity 
IDs even in situations where entities move through 
areas that have no camera coverage.  EEE also 
incorporates the real-world identities of the entities.   

To perform facility-wide entity tracking, the EEE 
keeps video source independent information in the 
EM concerning how entities move through the 
facility.  This information is camera independent and 
makes no assumptions about the real-world identity 
of persons.  Tracking algorithms generate entity IDs 
when they detect a moving entity.  Facility-wide 
tracking can be performed at different, predefined 
levels of spatial granularity.  Supported granularities 
in VEAS include buildings, rooms (both captured in 
the static facility model), and global (grid-based) 
coordinates.  For a given entity ID and interval of 
time, the EEE records in the EM a sequence of 
tuples indicating that the person spent a particular 
interval of time in a particular space.  The entire 
sequence also has a pedigree summarizing the 
sources considered in generating the sequence and a 
certainty measure.  Each sequence is contiguous and 
has a unique entity ID as long as the Event 
Extraction Engine has a high confidence of the 
continuity of identity. 

Cross-track entity ID inference is necessary 
when blind spots exist in the facility, e.g., rooms 
without cameras.  In this case, there may be 
circumstances where it is not known with certainty 
whether the entity ID associated with one track is the 
same as that of another track.  To infer the real-
world identity of entities the EEE may use one of the 
following solutions:   

• Correlate a person seen in a video segment 
with the time and place of a badge scan or 
RFID reading at that location.   

• Task face recognition or other identification 
algorithms in the VP Suite to determine the 
identity of persons appearing in a video 
segment through comparison to a set of known 

faces (such information for employees may be 
included in the Static Facility Model).   

• Utilize assessments made by security personnel 
tasked with determining the identity of a 
person through viewing a video segment or via 
direct interaction with the person in question.   

In the last two solutions, tasking is initiated by 
the Awareness Engine, as described in Section 4.  

For the unescorted visitor example, the EEE 
tracks the locations and identities of all people as 
they move around the facility.  The EM utilizes 
information from the Static Facility Model to 
determine how various spaces are designated as to 
whether visitor escort is required within them, and 
the real world identities of known entities, such as 
the employees.  As people enter the facility, badge 
scans and receptionist records published into the 
EEE are correlated with the video tracks of entities 
as they move around the facility.  The EM is also 
capable of recording the designated escorts for each 
visitor.  This information is provided to the EEE via 
the receptionist. 

The Event Extraction Engine publishes the EM 
incrementally, i.e., as video and non-video 
information is streamed to the EEE and is published 
within in the EM.  The Awareness Engine can 
register interest in any particular combination of 
persons, spaces, time intervals and receives updates 
in the form of facility events.   

The EM is maintained as a 3-tiered storage 
solution. In particular, the EM is kept in a main 
memory data structure that serves as a cache for an 
EM database that is also periodically archived. 
Transition of information between the EM storage 
tiers is based on installation-specific policies that 
consider the age of the information and whether it 
contributes to alerts that are still of interest to 
security personnel. 

5 AWARENESS ENGINE  

The Awareness Engine (AE), illustrated in Figure 2, 
consumes facility events published by the Event 
Extraction Engine and detects complex events.  
When it detects such events, the AE publishes alert 
requests and task requests that flow to the Content-
based Routing Engine for execution.  To detect 
complex event and compute corresponding alert and 
task requests, the AE utilizes user-authored 
awareness specifications that describe how to 
compute complex events of interest and who should 
receive an alert or perform a task. 
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In Section 5.1, we introduce VEAS’s event 
ontology and awareness specifications.  Section 5.2 
describes the types of event stream operators that 
exist in VEAS and discusses how event operator 
types can be created and extended.  Section 5.3 
describes the alert and tasking event operators.  In 
these sections, we provide a detailed example of an 
awareness specification for the unescorted visitor 
security policy.  

5.1 Awareness Specifications 

Awareness specifications are comprised of 
customized, interconnected computational units 
called event operators.  Figure 3 shows such a 
specification for detecting unescorted visitors.  

Event operators in Figure 3 appear as boxes with 
a descriptive name.  Ovals in the figure number the 
event operators for reference in this paper.  Event 
operators are connected into computational pipelines 
that operate in parallel.  Within each pipeline, events 
flow from the bottom to the top.  The inputs and 
outputs of event operators are typed streams of 
events (i.e., packets of information indicating real-
world situations).   

Event types of interest, their relationships, and 
the information computed for each event type is 
described in the Surveillance Event Ontology (not 
shown in Figure 3).  VEAS’s Surveillance Event 
Ontology (SEO) acts as a type system describing the 
events of interest for a specific installation of VEAS.  
For example, the Zone Visit event type described in 
the SEO includes information about the space within 
the facility being visited; the entity ID of the visitor; 
the real-world identity of the visitor, should the 
visitor be a person; and the time interval of the visit.  

Event operators are computational units that 
recognize more complex real-world events 
(produced on their output stream) from simpler real-
world events (consumed on their input stream(s)).  A 
connection between the output of one operator and 
the input of another is only allowed if they have 
semantically compatible event types, as described by 
the Surveillance Event Ontology.  This restriction 
helps ensure information compatibility between 
producing and consuming event operators, but it also 
ensures semantic compatibility, so that the overall 
awareness specification computes alert and task 
requests relative to the author’s understanding of the 
real-world event being specified. 

To meet the surveillance needs of a particular 
installation (e.g., to support the specific security 
policies that need to be enforced), VEAS provides a 
tool called the Awareness Specification Editor that 
permits authorized VEAS users to: 

• Customize the Surveillance Event Ontology by 
creating new/refining existing event types. 

• Author awareness specifications by inter-
connecting and customizing event operators via 
dialog boxes.  

The awareness specification in Figure 3 is shown 
in this tool.  

To aid in the development of new operators that 
cannot be produced by customizing existing ones, 
VEAS provides a programming interface. With 
proper training, new event operator types can be 
developed by a programmer in a matter of hours.   

VEAS permits the creation of installation-
specific operator palettes that are aimed to simplify 
authoring of awareness specification in each specific 
VEAS deployment. Such pallets typically include 
custom operator types with names closely 
resembling the main concepts in the security policies 
of a specific installation.  In Sections 5.2 and 5.3, we 
discuss various operators and give examples. 

5.2 Event Stream Operators 

VEAS provides two generic spatio-temporal 
operator types that use the Entity Model as their tacit 
input. These operators (and customized operators 
based on them) commonly appear as event stream 
sources within virtually all awareness specifications.  
The Qualified Zone Visit operator type allows the 
specification of simple events qualified by time, 
space, identity, or attributes thereof for instances of 
people known to be in spaces throughout the facility 
and produces events of the Zone Visit event type, 
described earlier.  A similar event operator type, 

 
Figure 3:  Example awareness specification utilizing 
operators 1-10. 
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Qualified Portal Traversal, recognizes people 
traversing specific portals within the facility. 

There are four Qualified Zone Visit event 
operators appearing in the unescorted visitor 
awareness specification in Figure 3.  These operators 
have been customized to recognize (from top to 
bottom and left to right): 

• situations where an unidentified person is in 
the lobby of the facility where the receptionist 
sits (operator 5); 

• situations where a visitor is known to be 
somewhere in the facility (operator 6); 

• situations where a visitor is known to be in a 
zone where visitor escort is required (operator 
9); and 

• situations where an employee is known to be in 
a zone where visitor escort is required 
(operator 10). 

The title of the event operator is displayed and each 
operator is customized via dialog boxes.  Events 
meeting a specification flow (upward in the 
specification) via event operator interconnections. 

VEAS provides a few set operator types that 
perform set functions over their input operator 
streams.  The Or event operator type computes a 
union of its input event streams.  The Difference 
event operator type computes a set difference of two 
input streams.  These operators are polymorphic 
with respect to their input and output event types. 

The remaining event stream operator types can 
be categorized in broad functional categories: 

• joining – combining related events from 
multiple input streams into composite events 
on the output stream;  

• filtering – culling of uninteresting events from 
the input in the output; and 

• grouping and aggregation – grouping of 
multiple input events from a single stream into 
aggregated output events. 

Join event operators behave like a join operator 
in a stream query in that they merge information 
from multiple sources.  The Accompanied Zone Visit 
operator type, for example, joins two input streams 
of Zone Visit events.  The first input stream 
describes people in zones for which accompaniment 
information is desired.  The second input stream 
describes people in zones who are possible 
accompanists.  For each event on its first input, the 
operator outputs an event that adds information 
about whether the person was accompanied, by 
whom, during what time intervals, and the intervals 
during which he or she was unaccompanied.   

For the unescorted visitor example, we created a 
variant of Accompanied Zone Visit operator type.  

The Escorted Zone Visit (operator 8) is an 
installation-specific join operator customized to find 
time intervals where both a visitor and one or more 
of his escorts are in the same zone at the same time.  
The operator computes the associated escorts, the 
escorted time intervals, and the unescorted time 
intervals, and the longest unescorted time interval as 
part of its output.  These values are computed 
regardless of whether any escorts are found for the 
visitor.  Visitor zone visits to be considered are 
provided on the first input from event operator 9.  
Possible escort zone visits to consider are input as 
the second input from event operator 10. 

Filtering operator types are the simplest category 
in that they output events from their input event 
stream that meet the filter criteria as specified by the 
event operator’s customization.  In the unescorted 
visitor example, the Unescorted Visitor (operator 7) 
is an installation-specific filter event operator that 
looks for escorted zone visits on the input with a 
longest unescorted interval that is greater than the 
specified threshold.  In this specification, the 
threshold is set to 30 seconds via a customization 
dialog box.   

An example of an aggregation is the Fleeing 
operator type (not used in the awareness 
specification in Figure 3).  The operator produces 
output events that represent episodes of people 
exiting a particular space meeting the criteria of a 
minimum count of people exiting and a minimum 
sustained exit rate over the episode.  The operator is 
used to look for mass exodus events in a facility that 
may or may not be accompanied by alarms or other 
signals known to security personnel.  The Fleeing 
event operator type is an example of an event 
operator that embodies a computation that is difficult 
or impossible to express in a stream query language.  
Its notion of grouping is beyond the capability of 
standard “group by” constructs as the group is not 
readily indexed.  It would be impossible to capture 
this notion of fleeing in a simple streaming query. 

5.3 Alert and Tasking Operators 

The Alert Delivery and Information Gathering 
operator types submit prioritized alert and 
information gathering task requests, respectively, to 
the Content-based Routing Engine.  Operators of 
these types appear as event stream sinks in 
awareness specifications.  Both alert requests and 
tasks requests have a priority value that is 
incrementally computed in these two operators by a 
threat analysis module based on the input event type 
and event instance information. 
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The Alert Delivery operator converts its input 
event stream into prioritized alert requests to be sent 
to the Content-based Routing Engine.  User 
customization of this operator effectively provides 
delivery instructions that include the target delivery 
role (of users who should receive the alert), alert 
name, and alert description.  In the unescorted 
visitor awareness specification in Figure 3, escorted 
zone visits matching the criteria (of having a 
suitably long unescorted period) are output from the 
Unescorted Zone Visit (operator 7) and flow to Alert 
Delivery event operators 3 and 4, which generate 
alerts for unescorted visitors found in the facility, 
but to different roles.  One operator alerts the 
security guard and the other operator alerts those 
people playing the situation-specific role of the 
escorts who are failing to escort their visitor. 

The Information Gathering event operator issues 
tasks (via the Content Routing Engine) to security 
personnel and the VP Suite.  User customization of 
the operator adds reference to a task specification 
and a role of users to who can perform the task.  The 
special role “VP suite” is used to task the VP suite to 
run a video analysis algorithm.  The input event 
stream to an Information Gathering operator 
effectively describes real-world events that indicate 
that more information is needed by VEAS.  The task 
specification describes an information gathering task 
to be executed for each such event.   

The Information Gathering event operator turns 
each of its input events, which describe a real world 
situation, into a corresponding request to gather 
needed information via an information gathering 
task, such as the running of video analysis 
algorithms or consulting security personnel for their 
assessments.  The eventual execution of these 
information gathering tasks by the Content-based 
Routing Engine both consume resources and create 
delays.  Thus, the Information Gathering event 
operator is a departure from the strictly incremental 
processing approach used by other event operators.  

The results produced by information gathering 
tasks do not directly flow to the Awareness Engine.  
Instead, the information flows to the Awareness 
Engine indirectly via published changes in the Entity 
Model.  There are two Information Gathering event 
operators along the top of the specification in Figure 
3.  Event operator 1 tasks the receptionist to identify 
each unknown person in the lobby.  For visitors 
known to be in the facility, event operator 2 will 
generate an automatically executed task that will 
look through an expected visitor log, determine the 
appropriate escort(s) for the visitor, and tag the 
visitor identity attribute in the Entity Model with this 

information.  This information is used by event 
operator 8 in determining whether the visitor is 
escorted. 

6 CONTENT-BASED ROUTING 
ENGINE  

The Content-based Routing Engine (CBRE) 
combines the coordination capabilities of workflow 
systems (Georgakopoulos, et al., 2000; BEA; 
TIBCO; Vitria; Georgakopoulos, 2004) with the 
content routing and syndication capabilities of 
existing content management systems (EMC; 
FatWire; FileNet; Georgakopoulos 2004).  CBRE-
provided workflow and content management 
capabilities are needed to dynamically service the 
following types of requests from the AE:  

• prioritized alert requests for alerts that must be 
delivered to security personnel; and 

• prioritized task requests for tasks that need to 
be performed for gathering more information. 

To service prioritized alert requests, the CBRE 
supports content and alert routing policies that 
determine the appropriate user (or subset of users) to 
route specific alerts and related evidence (e.g., video 
segments). In addition, CBRE provides a mechanism 
and a client tool that allows users to view alerts, and 
drill down into the video evidence for each alert.  

CBRE processes prioritized task requests by 
automatically invoking video analysis algorithms 
from the VP Suite, assigning tasks to users playing 
security personnel roles, and coordinating the 
execution of all tasks that are required by an 
awareness specification. These CBRE functions are 
discussed in more detail in the following sections. 

6.1 Processing of Tasks 

To support task assignment, coordination, and 
automation, the CBRE includes workflow 
management functionality. In particular, CBRE’s 
workflow capabilities are similar to those provided 
by CMI (Georgakopoulos, et al., 2000).  

Just like many other workflow management 
systems, CBRE’s workflow component provides for 
the automation/enactment of workflow processes.  
Workflow processes typically consist of recursively 
defined activities, and specify control flow and 
dataflow between them.  Basic activities, the leaves 
of the process specification tree, may be assigned to 
humans playing various roles, or be automatically 
executed using available computing resources.   
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The Task Specifications in Figure 2 are actually 
workflows specifications that have been defined by 
VEAS administrators to automate the tasking of 
video processing algorithms and security personnel. 
CBRE selects, instantiates, and enacts task 
specifications in response to requests from AE. 
Although CBRE’s workflow component offers 
general workflow capabilities, the tasks, data flow, 
and control flow performed by CBRE (and VEAS in 
general) are typically centered on the orchestration 
of information gathering (involving VEAS video 
analysis and people).  This permits pre-integration of 
video of the finite set of video analysis algorithms in 
the VP Suite, and the definition of typical human 
tasks for providing expert opinion and performing 
security-related activities (e.g., ask a person for an 
ID, secure a space in the facility, etc.) in a palette of 
reusable task specifications that require little or no 
customization and that can be readily utilized in 
awareness specifications.  

Tasks to be executed are specified through the 
Information Gathering event operator, described in 
Section 5.3.  In the example in Figure 3, the 
Awareness Engine issues a Determine Identity task 
request to CBRE to collect additional information.  
This task is pre-specified and implemented by a 
workflow processes consisting of several subtasks.  
The first subtask queries the Entity Model in the 
EEE to determine the time the person under 
investigation was in the restricted room.  This is 
followed by a task that involves the execution of a 
face recognition algorithm on video collected during 
this time interval.  If the face recognition algorithm 
fails to find at least one video frame with the 
person’s face, a security guard is tasked to go to the 
restricted room and question the unidentified person 
as a last resort.  Results of the Determine Identity 
flow back to the Entity Model via the Event 
Extraction Engine.  If such a task determines the 
identity of the person and his presence in this room 
is a security threat (e.g., he is a visitor alone in a 
room that requires visitors to have escorts), the 
Awareness Engine will issue an alert request to the 
CBRE which then routes the alert to the specified 
security guard (e.g., the security guard who is closer 
to the visitor’s current location). 

6.2 Alert Delivery and Drill Down 

Just like many other workflow engines 
(Georgakopoulos, et al., 2000; BEA; TIBCO; Vitria; 
Georgakopoulos, 2004), CBRE provides a worklist 
mechanism and a corresponding tool.  Alerts are 
delivered in the worklist of VEAS users.  Users may 

select a specified alert to view its properties, play 
video segments with evidence, and drill down to 
determine its causes and view related video 
evidence.  This CBRE drill-down mechanism 
involves the display of details of how the triggering 
awareness specification decided the occurrence of a 
complex event, images and animations of entities 
moving within the facility, annotated or raw videos, 
and other relevant information.   

Figure 4 shows an alert in the worklist tool in the 
backmost window.  The next window shows the 

detail of the unescorted visitor alert, which includes 
the pedigree and video evidence for the alert.  The 
unescorted visitor is seen in the right of the video 
frame within a video segment that was given as 
evidence for the alert. 

6.3 Routing Policies 

The workflow component in the Content-based 
Routing Engine automatically routes alarms and 
tasks to specific roles.  Therefore, the CBRE needs a 
mechanism to associate users and roles.  This is 
accomplished by defining CBRE-supported  routing 
policies that describe how specific users of VEAS 
correspond to the roles they might play in viewing 
specific security alerts and/or giving VEAS expert 
feedback as part of an information gathering task.  
Routing policies include: 

• Alarm delivery polices: Definition of these 
policies involves the association of VEAS 
users with specific target roles (e.g., assign 
user “John Smith” to the role “security officer 
on duty in entrance B”).  These policies are 
meaningful in a specific facility.  

 
Figure 4:  Alert drill down and video evidence. 

PROVIDING PHYSICAL SECURITY VIA VIDEO EVENT AWARENESS

249



 

• Expert feedback polices:  These associated 
VEAS users with “expert” and “security” roles 
(e.g., to review a video segment, secure a 
space, etc.). 

• Delegation and escalation polices: These 
policies define what to do when an alert or a 
request has been delivered, but it cannot 
“consumed” by a user in the assigned role.  
Policies in this category permit a user to 
delegate an alarm directed to him/her to 
another role, and redirect alarms to other roles 
when a specified timeout expires. 

7 RELATED WORK 

The most advanced commercial surveillance 
systems, e.g., (GVI), utilize multi-camera motion 
detection to detect simple predefined events, and 
they are useful for guarding a perimeter (e.g., track 
potential intruders along a fence). Unlike VEAS, 
such surveillance systems cannot detect user–
specified complex events, cannot utilize installation-
specific knowledge (e.g., know who is a visitor or an 
employee, or be aware of spaces requiring escort and 
those that do not), and cannot combine and/or task 
sophisticated video analysis algorithms.  

Early event processing systems, such as Snoop 
(Chakravarthy, 1994) developed event algebra based 
models, with generic event operators such a filter, 
sequence, and count.  CEDMOS (Baker, et al., 1999) 
moved toward self-contained events and the 
computation of event parameters for complex 
events.  Although these systems explored ideas that 
have been adopted by VEAS and stream databases, 
usability and efficiency were not addressed. 

Stream databases, e.g., STREAM (Stanford 
University), Aurora (Abadi, et al., 2003), TinyDB 
(UC Berkeley), Borealis (Borealis Project; Abadi, et 
al., 2005), and Streambase (Streambase System), 
utilize a relational model with SQL enhanced with 
time-based windows for data streams.  Operators are 
based on generic relational operators, i.e., selection, 
projection, join, aggregates, and group-by.   

The VEAS model and language, which builds on 
ideas from our earlier awareness work (Baker et al., 
2002), includes surveillance-specific operators are 
built on a dynamic Entity Model.  They are 
specializations spatial operators (e.g., in Meeting 
room 2), temporal operators (e.g., workweek, 
holiday, 3rd shift), entity identification operators 
(e.g., visitor, employee in a specific organization), 
and relational algebra operators.  

To perform event processing, stream databases 
(e.g., STREAM (Stanford University), Aurora 
(Abadi, et al., 2003), TinyDB (UC Berkeley), and 
Borealis (Borealis Project; Abadi, et al., 2005)) 
require use of time windows for stream queries and 
assume that there is no late arriving information.  
Optimization is performed assuming that input 
information is readily available and no information 
extraction cost is considered. 

In contrast, VEAS requires no time windows 
(which is a requirement in video surveillance due to 
arbitrarily late arriving information).  It performs 
incremental computation, and deals with information 
arriving late.  These capabilities permit awareness 
specifications to take into account and reduce the 
cost of video analysis tasks. 

Stream databases have no tasking and 
information gathering capabilities.  In contrast, 
VEAS proactively gathers information that is 
missing to confirm or refute a partially matched 
event pattern within an awareness specification.  
VEAS is capable of tasking and executing video 
analysis algorithms and/or involve human (e.g., 
subject matter expert) to collect needed information 
and decision making. 

The CBRE combines the coordination 
capabilities of workflow systems (Georgakopoulos, 
et al., 2000; BEA; TIBCO; Vitria; Georgakopoulos, 
2004) with the content routing and syndication 
capabilities of existing content management systems 
(EMC; FatWire; FileNet; Georgakopoulos, 2004).  
In addition, CBRE provides a novel drill down 
capability for determining the evidence of and 
pedigree of each alert in support of situation 
understanding by end-users, as shown in Figure 4. 

8 CONCLUSION 

VEAS helps automate surveillance by analyzing 
surveillance video from potentially thousands of 
cameras and other non-video sensors and 
automatically detecting complex events that indicate 
situations of interest, alerting humans about them, 
providing the evidence that led to the alerts, and do 
this in near real-time—at pace with their input video 
streams.  When information is missing or uncertain, 
VEAS has the capability to gather additional 
information proactively to make the appropriate 
determinations.  In this paper, we focused in the 
presentation of VEAS’s novel runtime architecture 
and event processing capabilities, and described the 
application of these in the video surveillance 
domain.  The novel capabilities and key benefits of 
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VEAS are increased alert accuracy (by narrowing 
the video analysis problem via installation-specific 
customization), proactive gathering of additional 
information, and the ability to monitor any facility of 
interest, and to do so inexpensively and in near real-
time.  VEAS is scalable and does not require adding 
more humans to monitor the additional security 
cameras when a facility is expanded.  

Although in this paper we focused on video 
surveillance, VEAS can effectively utilize non-video 
sensors and/or be applied in other domains. Our 
directions for future work include applying VEAS to 
support complex event detection in domains related 
to meetings and conferences. We are also working to 
extend VEAS capabilities for managing non-video 
sensors, such as RFID readers, badge scanners, and 
intelligent locks aimed at providing Critical 
Infrastructure Protection (CIP) without relying on 
video.  We are also experimenting with algorithms 
for learning of normal event patterns to enable 
VEAS to automatically detect anomalous events that 
have not been anticipated. 
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