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Abstract: Motion estimation (ME) is computationally the most challenging part of the video encoding process. It has a 
direct impact on speed and qualitative performance of the encoder. Consequently, many sub-optimal but 
faster ME algorithms have been developed till date. In particular, the Three Step Search (TSS) and Four 
Step Search (FSS) algorithms have become popular because of their ease of implementation. The TSS 
algorithm is a uniformly spaced block matching algorithm, which performs better in case of large motion. 
On the other hand, the New Three Step Search (NTSS) and FSS are center-biased algorithms that 
outperform TSS in case of smooth correlated motion. Later, another center-biased search technique namely, 
the Diamond Search (DS) algorithm was introduced which was proved to deliver a faster convergence than 
FSS in case of smooth motion scenarios. However, the performance of the center-biased algorithms 
degrades in sequences having consistently large or uncorrelated motion as they become susceptible to 
getting trapped in local minima near the center. In this paper, two novel ME algorithms, namely, dual square 
search (DSS) and dual diamond search (DDS) are proposed in order to strike a balance between the center-
biased and uniformly spaced search techniques. The proposed algorithms suggest that a decision to shift the 
search center should be delayed till the candidates on a coarse as well as fine grid are evaluated. Moreover, 
these algorithms are modeled to exploit motion vector distribution found in most of the real world video 
sequences by giving more precedence to candidates near the center, followed by the candidates in the 
horizontal and vertical directions than those in the diagonal direction. The performance of the proposed 
algorithms is compared with TSS and FSS algorithms in terms of computational speed, motion 
compensation error and the compression achieved for various kinds of video sequences. The tested 
sequences show that both these algorithms can be substantially faster than TSS and FSS. The proposed ME 
algorithms promise to achieve a balanced tradeoff amongst ‘speed - bit rate - quality’ for different kinds of 
motion sequences. 

1 INTRODUCTION 

The main objective of the Motion Estimation (ME) 
module is to exploit the temporal redundancy 
between successive frames of a video sequence in 
order to reduce the number of bits required for 
coding. In this paper, we focus on the block 
matching ME algorithms. In these block based 
coding schemes, the moving regions across the 
frames are analyzed by subdividing the frames into 
smaller units called blocks. The video standards 
such as H.26x and MPEG series (H263, 1998; 
MPEG4, 1999) specify block based coding 
techniques. The block based ME algorithms try to 
find the best matching block, the one giving the least 
Block Distortion Measure (BDM), in the reference 

frame for every block in the current frame. The idea 
is to encode the error data between the current block 
and the best matching block along with its 
displacement. The displacement is known as the 
motion vector (MV). The range of motion vectors is 
generally restricted to the certain region specified by 
the standard. This region is also known as search 
window. Most of the fast ME algorithms work under 
the assumption that the error surface is monotonic. 
The term error surface indicates a surface defined by 
the block distortion measured between the current 
block and every candidate block in the search 
window of a reference frame. The error surface is 
monotonic if there is a distinct trough at the global 
minimum and it increases monotonically as the 
checking point moves away from the global 
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minimum. But for most of the real video 
applications or fast motion sequences, the error 
surface may not be always monotonic. Instead there 
could be multiple local minima in the search area. 
However, the assumption of monotonic surface 
facilitates the development of search patterns and 
hence most of the fast ME algorithms are developed 
under this assumption. The FS algorithm does an 
exhaustive search and evaluates each and every 
candidate in the search window to reach at the 
candidate with minimum BDM that may be called as 
the global minimum for that current block. 

Let [-W, +W] be the maximum range allowed for 
motion vectors in horizontal and vertical direction 
[i.e. search window size = (2W+1)]. We have done 
the comparative analysis for some of the popular 
ME algorithms for W = 7, i.e. for search area of 15 x 
15 pixels around the center. The FS algorithm does 
an exhaustive search demanding (2W+1) 2 = 225 
BDM computations per block. Hence, various sub-
optimal and fast ME algorithms are developed in an 
attempt to devise a mechanism of choosing the 
suitable subset of these 225 candidates. The TSS 
algorithm starts with the 8 search points at large step 
size, typically half the search range. At every stage, 
the search center is moved to the best match in the 
previous step and the stepsize is reduced by half. 
Therefore, TSS always demands fixed 25 search 
points to trace any point within W = 7 window. For 
most of the real world video sequences, the motion 
vector distribution is observed to be prominently 
biased towards the zero motion. The various center-
biased algorithms such as NTSS (Zeng et al., 1994, 
pp.438-442), FSS (Po and Ma, 1996, pp.313-317) 
and DS (Tham et al., 1996, pp.369-377) were 
developed to exploit this fact in order to efficiently 
detect small motions appearing in stationary or 
quasi-stationary (within a region of +/- 2 pixels) 
blocks. As compared to TSS, the NTSS algorithm 
ensures the fast detection of quasi-stationary blocks 
by using a half way stop technique. However, NTSS 

demands worst case 33 search points for large 
motion blocks, 8 more than TSS. The FSS algorithm 
is a center-biased algorithm as it typically starts on a 
fine grid of step size 2. The center-biased strategy of 
FSS makes it far more efficient than NTSS while 
providing the same quality as that of NTSS. Later, 
another center-biased algorithm, namely, the 
diamond search [DS] was proposed to speed up the 
motion estimation of stationary and quasi-stationary 
blocks. Even though, both the algorithms - FSS and 
DS, perform their best for slow motion sequences, 
DS is proved to be faster in terms of required 
number of search points. However, the work done 
by Tham et al. (1996) mentions that FSS can be 
more efficient than DS beyond +/- 3 region. 
Moreover, this best-case analysis assumes that the 
error surface is monotonic. But in practice, FSS and 
DS might take larger number of block comparisons 
than the best possible theoretical numbers. In 
general, it is observed that the performance of 
center-biased algorithms degrades as compared to 
that of TSS if the majority of motion vectors lie 
beyond +/- 3 region. With these observations 
mentioned here and with the due consideration to the 
space constraints, we have limited the comparison of 
the proposed algorithms in our simulation 
experiments to TSS and FSS algorithms. 

The figure 1 illustrates the best-case number of 
search points required to be evaluated for TSS and 
FSS algorithms in order to converge at a particular 
location. The comparative numbers are shown only 
for the motion vectors restricted within a region of 
+/- 4 pixels around the center [i.e. |MV| <= 4 
region]. As mentioned earlier, for the given window 
size W = 7, TSS always requires fixed 25 number of 
search points to trace any location. In case of FSS, 
the number of search points required to reach at a 
particular location varies with its distance from the 
center. Compared to TSS, FSS is faster for near 
center locations, but the number of block 
comparisons required increases with the increase in  

 
                                       (a) TSS                            (b) FSS 

Figure 1: Best-case analysis for TSS and FSS. 
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distance from the center. It can be perceived that 
within |MV| <= 4 region, FSS outperforms TSS but 
beyond that, TSS is the clear winner. 

The best-case analysis of the above-mentioned 
popular algorithms helps to evaluate the 
performance of the proposed algorithms. This paper 
is organized as follows. In section 2 of the paper, 
two ME algorithms are proposed and their 
performance is theoretically analyzed in terms of 
computational requirement. The section 3 presents 
the simulation results in order to evaluate the 
performance of the proposed ME algorithms in 
comparison with TSS and FSS. The conclusions are 
drawn in section 4. 

2 ME ALGORITHMS 

As discussed earlier, the TSS is a coarse to fine 
search algorithm that performs better in cases where 
the best match is located far from the center whereas 
FSS and DS are center-biased search algorithms 
which yields faster convergence when the best 
match is located near the center of the search. For 
the sequences having consistent large or 
uncorrelated motion, the center-biased algorithms 
might maintain faster convergence than TSS but 
they seem to get trapped in nearby local minima, 
thereby giving a high speed but poor compression, 
affecting the quality (Alkanhal et al., 1999). 

The interesting observation in TSS, FSS and DS 
algorithms is that the center is immediately moved 
after all the candidates at the same step size (might 
be coarse or fine) gets evaluated in stage1. This is 
critical to these algorithms as they can get trapped in 
local minima (Turaga and Chen, 2001). To minimize 
this intricacy, the proposed algorithms suggest that a 
decision to shift the search center should be delayed 
till the candidates on a coarse as well as fine grid are 
evaluated. This makes the proposed algorithms more 
robust giving a better starting point for the 
succeeding stage and hence promises to enhance the 
chances of reaching global minima quickly. The 
work presented by Cheung and Po (2002, pp.1168-

1177) mentions that the majority percentage of 
motion vectors are typically enclosed within the 
central 5x5 area, i.e. a region of +/-2 pixels around 
the zero motion position. Also it is known that even 
though the block displacement of real world video 
sequences can be in any direction, the motion is 
predominant in the horizontal or vertical direction. 
The algorithms proposed in this section exploit these 
two facts giving less priority to candidates in a 
diagonal direction. The proposed algorithms can 
trace the maximum motion displacement of  +/- 7 
pixels (i.e. W=7). 

2.1 Algorithm I: Dual Square 
Search 

As the probability of finding the best match within 
an area of  +/-2 pixels around the zero motion vector 
is very high, the number of search points required to 
converge at these points becomes an important issue. 
Hence, the proposed algorithm aims to maintain the 
advantage of the center-biased algorithms by 
ensuring fast convergence within this area. The basic 
square search configuration used in dual square 
search (DSS) algorithm is indicated in figure 2. This 
configuration is used to localize the search within 
5x5 window (or +/2 region) of the selected center. 

Let, ‘C’ be the block in a current frame whose 
best match is to be found in the reference frame. The 
figure 3 indicates the candidates from a reference 
frame chosen for searching the best match. The 
algorithm involves two square shaped patterns, a 
short square at step size 1 and a long square at step 
size 5. The algorithm starts with BDM calculation of 
5 candidates in step 1 using basic square search 
configuration at the center. If the minimum BDM 
point is found at the center, only 4 additional block 
comparisons are needed to stop the search. If the 
minimum BDM point is found on the short square 
then the center is not immediately moved to this 
point. The key is to evaluate 4 candidates on a 
distant grid, 2 in horizontal direction and 2 in 

 
                     ( a )              b )            ( c ) 

Figure 2: (a) Basic square search configuration. (b) Next step if center is the best match. (c) Next step if the candidate of a 
square is the best match. 
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L: Long Square S: Short Square 

Figure 3: Dual Square Search. 

vertical direction and only then take a decision to 
move the center of the search in a direction of the 
best match. This is the center corrective step to make 
the algorithm more robust minimizing the chances of 
being trapped in local minima. The further 
convergence path will be clearer with the following 
explanatory steps. 
Step 1: Use basic square search to evaluate 4 
candidates of a short square along with the co-
located block. If the center C is the point of 
minimum BDM, evaluate just 4 candidates on a ‘+’ 
sign of stepsize 1 and the best match amongst these 
candidates will be the final integer motion vector. 
Step 2: If the best match in step 1 is found at the 
short square candidate, evaluate L2, L4, L6 and L8 
as a center corrective measure. Even after these 
comparisons, the short square candidate is proved to 
be the minimum BDM point then move the center to 
this point for the next stage and calculate the block 
distortion for the 7 valid points of a square of 
stepsize one around this newly shifted center to find 
the final best match candidate. 
Step 3: If step 2 delivers minimum BDM at one of 
the long square candidates (amongst L2, L4, L6, 
L8), then evaluate two points in a diagonal direction 
lying in the relevant zone of the motion field. For 
e.g. if step 2 yields L2 as the best match, then 
evaluate L1, L3 and only then take a decision to shift 
the search center. Once the center is shifted to the 
minimum BDM point, the final best match is found 
out by doing a basic square search at that point. 
 

From the algorithm, it can be perceived that the 
search technique uses two-tier strategy each time 

before shifting the center. It tries to exploit the 
features of both, the center-biased and non center-
biased search algorithms.  
Computational Complexity: 
With the DSS algorithm, any candidate within 15 x 
15 window is traceable. The total number of search 
points is varied from (5 + 4) = 9 in the best-case to 
(5+4+2+4+7) = 22 in the worst case. The figure 4 
depicts the number of search points required to reach 
a particular location within |MV| <= 4 area. 

 
Figure: 4 Best-case analysis for DSS. 

It can be clearly seen that the algorithm promises 
faster convergence than TSS and FSS to converge at 
any point within W=7 region. The ability to detect 
stationary and quasi-stationary blocks with just 9 or 
16 search points and to detect large motion blocks 
with maximum of 22 search points makes DSS a far 
more efficient algorithm than the previous search 
techniques. 

2.2 Algorithm II: Dual Diamond 
Search 

As mentioned earlier, the motion in real video 
scenarios is predominant in the vertical and 
horizontal directions. The fact that the motion in the 
diagonal direction is very rare is evident by the 
‘probability matrix of MV distribution’ presented in 
the work of Cheung and Po (2002). This fact has 
inspired the direction biased – dual diamond search 
(DDS) algorithm to achieve faster convergence 
along the horizontal and vertical directions at the 
expense of higher computational cost to converge in 
the diagonal direction. The search pattern of the 
proposed algorithm involves a combination of both 
the techniques, center-biased as well as uniformly 
spaced search technique. The algorithm still 
maintains the two-tier strategy to evaluate 
candidates on finer as well as coarser grid before 
shifting the search center. 
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S : Short Diamond  L : Long Diamond 

Figure 5: Dual Diamond Search. 

The search pattern used in the DDS algorithm 
involves two shapes: small diamond shaped pattern 
and long diamond shaped pattern. In true sense, the 
outer shape is octagonal, but it will be referred as a 
long diamond in this text. In the very first step, the 
DDS algorithm evaluates 4 candidates of a short 
diamond at stepsize 3 along with the co-located 
block. If the center C is the best match, evaluate 8 
candidates of a square of stepsize 1 around the 
center. The minimum BDM point will indicate the 
final integer MV. Let this process of evaluating 8 
candidates of a square of stepsize 1 around the 
selected center be designated as ‘short square 
search’. If step 1 yields the best match on the short 
diamond then take a center corrective step like in 
DSS to evaluate 4 candidates on a distant grid, 
namely, L2, L6 in the horizontal direction and L4, 
L8 in the vertical direction. If a short diamond point 
still holds to be the point of minimum BDM, move 
the search center at this point and do a short square 
search to find the final best match. Otherwise if the 
minimum BDM point is found on the long diamond 
then evaluate the two diagonal candidates in the 
probable zone of the motion field. If the best match 
is amongst L2, L4, L6 and L8 then the final best 
candidate is traced by a short square search 
technique at that point. In case of the minimum 
BDM point being found in a diagonal direction, a 
technique similar to TSS is employed to search the 
best matching candidate. The DDS algorithm is 
summarized as follows. 
Step 1: Compute block distortion for co-located 
block and 4 candidates of a short diamond. If the 
center C is the point of minimum BDM, apply short 

square search technique at the center to find the final 
integer motion vector. 
Step 2: If the best match in step 1 is amongst the 
short diamond candidates, evaluate L2, L4, L6 and 
L8 as a center corrective measure. After these 
comparisons, if the short diamond candidate is 
proved to be the point of minimum BDM then the 
decision to move the search center to this point is 
taken. This shift of a search center is then followed 
by a short square search to find the final best match 
candidate. 
Step 3: If step 2 delivers minimum BDM at one of 
the long diamond candidates (amongst L2, L4, L6, 
L8), then evaluate two points in a diagonal direction 
lying in the relevant zone of a motion field. For e.g. 
if step 2 yields L8 as the best match, then evaluate 
L1, L7 and only then take a decision to shift the 
search center. After evaluation of two relevant 
diagonal candidates, if minimum BDM point is still 
found at the previously shortlisted horizontal/vertical 
candidate then the center of the search is shifted to 
this point. The final best match is found out by doing 
a short square search at that point. 
 Step 4: If the diagonal candidate proves to be the 
best match in step 3 then the center is moved to this 
point and a search pattern similar to TSS is 
employed to finalize the integer MV. Here, 8 
candidates at a stepsize of 2 from the center are 
evaluated and in the next step, center is moved to the 
minimum BDM point and step size is halved to 1. In 
the last step, 8 candidates around this new center are 
evaluated to deliver the final MV location.  

From the above explanations, it is apparent that 
the algorithm is well modeled to exploit the 
probability distribution of motion vectors. The 
details about the probability distribution of motion 
vectors can be found in the work of Cheung and Po 
(2002). The DDS algorithm is direction biased as it 
gives the highest preference to the candidates near 
zero motion location followed by the candidates in 
the horizontal and vertical directions. The algorithm 
takes longer time to converge in a diagonal 
direction, as the motion in this direction is rare in 
practical scenarios. Like DSS, the DDS algorithm 
attempts to combine the features of both the center-
biased and uniformly spaced search strategies. The 
center corrective approach in DDS helps to maintain 
the robustness by minimizing the chances of getting 
seized in the local minima. Unlike DSS, DDS speeds 
up the motion estimation of blocks moving largely 
in the horizontal and vertical directions. This might 
be crucial for the CIF sequences compared to QCIF 
sequences as the CIF sequences typically manifests 
larger motion due to scale up effect.  
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Computational Complexity: 
The DDS algorithm can trace any candidate within 
15x15 search window. The total number of search 
points in the best-case are (5 + 8) = 13. The DDS 
algorithm exhibits a noticeable faster convergence 
along the horizontal and vertical directions by 
demanding maximum of 17 BDM computations for 
|MV| <= 4 and 19 BDM computations for |MV| > 4. 
However, if the best match lies in a diagonal 
direction then the algorithm demands worst case 27 
search points, two more than TSS. The fig. 6 depicts 
the number of search points required to reach a 
particular location within |MV| <= 4 area. 

 
Figure 6: Best-case analysis for DDS. 

The analysis shown in fig. 6 indicates that the 
DDS algorithm exploits the MV distribution found 
in the real world sequences. For the blocks having 
motion within +/- 1 region, the DDS algorithm 
performance is better than that of TSS, NTSS, FSS 
and more or less the same (if not better) as that of 
DS. The point to be noted is that any candidate in 
horizontal and vertical direction beyond +/- 1 region 
can be traced with just 17 or 19 BDM computations. 
The algorithm is more efficient than other 
algorithms in case the best match consistently lies in 
near center region or in the horizontal/vertical 
direction. Nevertheless, the 27 BDM computations 
required to reach a location in the diagonal direction 
seems like an expensive penalty. But given the fact 
that it is very unlikely to find consistent motion in a 
diagonal direction for real world scenarios, the DDS 
algorithm maintains its performance across various 
kinds of motion sequences.  

3 EXPERIMENTAL RESULTS 

We have summarized the results of our simulation 
experiments in this section. The algorithms have 
been analyzed in MPEG4 framework for a large 
number of QCIF/CIF test sequences. However, with 
due regards to the space limitations, the results are 
tabulated only for five CIF sequences representing 

different types of motion content. These are the 
YUV420 sequences captured at 15 fps. The 
algorithms have been analyzed for the block size, N 
= 16 and search window, W = 7. The error measure 
namely, ‘Sum of absolute difference’ (SAD) is used 
as a BDM for a block matching criterion. For block 
size = N, One SAD computation demands [2N2 
Load, N2 Sub, N2 Abs, (N2 - 1) Add] operations. The 
tools like - unrestricted motion vectors and 
macroblock skipping are disabled.   

The performance is analyzed based on the 
following three parameters: 
1. Speed:  Average number of search points per 

block.  
2. Quality: The quality of the motion estimation is 

analyzed in terms of mean square error (MSE) 
between the original frames and the motion 
estimated frames. 

3. Compression: The number of bits required to 
code a particular sequence conveys practically 
the most significant information. This is 
analyzed in terms of the average number of bits 
required per block. The rate control module is 
disabled, rather kept as VBR (variable bit-rate) 
in order to see the direct impact of motion 
estimation algorithms on the size of the bit 
streams. 

From the table 1, it can be seen that for the low 
motion sequences like Akiyo and Hall, all the 
algorithms perform equally good in terms of quality 
and compression. However, in terms of speed, DSS 
clearly out-shadows the other algorithms, as it 
demands nearly half the BDM computations as 
compared to that of FSS. For the selected sequences, 
FSS is observed to be always faster than the TSS 
algorithm. However, when compared for the 
sequences with greater motion content like 
coastguard, foreman, and football the FSS fails to 
find good matches and thereby it shows degradation 
in terms of MSE and the number of bits needed. For 
these fast motion sequences, the DSS algorithm 
maintains its significant speed efficiency at the cost 
of some more quality degradation compared to that 
of FSS. This is where the DDS algorithm 
outperforms the other algorithms by exhibiting a 
good ‘speed-quality’ tradeoff. Compared to DSS, the 
DDS algorithm takes slightly more number of search 
points, still less than FSS and tries to achieve the 
qualitative solution as close as that of TSS. Most of 
the center-biased algorithms show considerable 
degradation in their performance for large motion 
sequences. Our simulation results show that, DDS 
can offer a better solution to counteract this problem 
common to most of the center-biased algorithms. 
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Table 1: Performance Analysis for CIF Test cases. 

Test 
Sequence 

Algorithm Avg. no. of search points 
per block. 

Average MSE Average number 
of bits per block 

FS 225 19.64 14.547 
TSS 25 19.92 14.485 
FSS 15.86 19.9 14.458 
DSS 8.51 20.11 14.413 

Akiyo  
[Slow motion] 

DDS 12.22 20.03 14.512 
FS 225 42.69 36.495 

TSS 25 43.36 35.151 
FSS 16.02 44.09 35.062 
DSS 8.68 45.33 35.000 

Hall 
[Moderate & 

correlated motion] 

DDS 12.39 43.84 35.268 
FS 225 129.95 154.738 

TSS 25 138.68 160.515 
FSS 18.94 148.95 166.596 
DSS 11.2 163.92 186.681 

Coastguard 
[Large & 

correlated motion] 

DDS 14.98 138.07 160.105 
FS 225 222.05 123.412 

TSS 25 230.94 126.467 
FSS 19.53 243.08 129.055 
DSS 13.72 252.43 131.806 

Foreman  
[Moderate & 

uncorrelated motion] 

DDS 15.39 240.88 127.503 
FS 225 335.67 209.184 

TSS 25 353.58 216.811 
FSS 20.76 385.58 229.513 
DSS 15.36 393.5 231.831 

Football  
        [Fast Motion] 

DDS 17.15 377.7 220.6 
 

 
Frame Number 

(a) 

 
Frame Number 

(b) 
Figure 7: Comparison of TSS, FSS, DSS and DDS in terms of average search points and MSE for the foreman sequence. 
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It can be seen that, especially for the fast motion 
sequences, the performance of DDS algorithm is 
better than FSS with regards to all the three 
parameters - speed, quality and compression. 

The figure 7 shows the performance of each of 
the search techniques for the foreman sequence on a 
frame-by-frame basis. The foreman sequence is 
selected because it has some fast, uncorrelated 
motion and it doesn’t favor center-biased or non-
center-biased search pattern in particular. It can be 
seen that the DSS algorithm substantially improves 
the speed efficiency at the cost of marginal increase 
in the distortion. Thus, the DSS can be justified as 
the natural choice for many time critical 
applications. Otherwise, DDS gives an option of 
trading off some speed compared to DSS for the 
improvement in quality.  

4 CONCLUSIONS 

The two sub-optimal block matching algorithms, 
namely, Dual Square Search (DSS) and Dual 
Diamond Search (DDS) are proposed in this paper. 
The number of search points required to trace a 
particular position varies depending on the direction 
of the position with respect to the center. The 
algorithms give the highest preference to the 
candidates near the center and the least preference to 
the candidates in the diagonal direction. Both the 
algorithms are based on the principle that the 
candidates on a finer grid and those on a coarser grid 
should be evaluated before taking a decision to 
move the search center. This center corrective 
approach makes these algorithms more robust 
minimizing the chances of getting trapped in local 
minima. The DDS algorithm goes one step further to 
model its search strategy in order to exploit the MV 
distribution of most of the real world video 
sequences. With regards to the computational speed, 
both the proposed algorithms, DSS and DDS clearly 
outperform TSS and FSS algorithms. For large or 
uncorrelated motion sequences, DSS may suffer 
from more degradation in terms of quality. 
Nevertheless, DSS enjoys the privilege of being the 
fastest algorithm amongst these algorithms. Between 
the two proposed algorithms, DSS is more effective 
than DDS algorithm for smooth and small motion 
sequences thereby promising to work at its best in 
videoconference kind of applications. Moreover, the 
DSS algorithm possesses the features like regularity 
and simplicity that might be helpful for hardware 
implementations. However, DDS is the one that 
combines the efficient center-biased nature of FSS 

with the advantage of TSS to find good matches for 
large motion sequences. Compared to DSS, the DDS 
algorithm has an ability to tradeoff some speed in 
order to maintain its performance in terms of quality 
and compression regardless of the motion content. 
Clearly, the proposed algorithms try to blend the 
best features of the center-biased and uniform search 
strategies so as to provide good performance in 
terms of ‘speed-quality-bit rate tradeoff’ when 
considered across different kinds of motion 
sequences including panning, zooming, smooth, 
correlated, uncorrelated and fast motions. 
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