
DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND
SERVICES OVER A PEER-TO-PEER MULTIOVERLAY

NETWORK

Jia-Ming Chen, Jenq-Shiou Leu, Hsin-Wen Wei, Li-Ping Tung, Yen-Ting Chou, Wei-Kuan Shih
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Keywords: Peer-to-Peer, Video-on-Demand, Overlay Network.

Abstract: Video-on-Demand (VoD) services using peer-to-peer (P2P) technologies benefit by balancing load among
clients and maximizing their bandwidth utilization to reduce the burden on central video servers with the
single point of failure. Conventional P2P techniques for realizing VoD services only consider data between
active peers in the same VoD session. They never consider those inactive peers that have left the session but
may still hold partial media content in their local storage. In this article, we propose a novel architecture to
construct a fully decentralized P2P overlay network for VoD streaming services based on a multioverlay
concept. The architecture is referred to as MegaDrop. It not only takes the types of peers into consideration
but also provides mechanisms for discovering nodes that may contain desired media objects. Such a P2P-
based scheme can distribute media among peers, allow peers to search for a specific media object over the
entire network efficiently, and stream the media object from a group of the peers. We employ a layered ar-
chitecture consisting of four major tiers: Peer Discovery Layer, Content Lookup Layer, Media Streaming
Layer, and Playback Control Layer. The evaluation results show that our architecture is particularly efficient
for huge media delivery and multiuser streaming sessions.

1 INTRODUCTION

Video-on-demand (VoD) services generally rely on
one or only a small number of video servers to de-
liver video content. This topology places a heavy
processing load on video servers, with the client–
server paths representing a heavy network burden.
Conventional techniques such as batching, patching
(Kien, 2003), broadcasting, IP multicasting, proxy
caching, and content distribution networks rely on
centralized servers for delivering media. Peer-to-
peer (P2P) computing represents another possible
solution to such problems in media streaming.

The peers in P2P communications interact with
others without the use of intermediaries, and can
thereby reduce the burden on the servers delivering
the media and increase bandwidth utilization. To the
best of our knowledge, the Chaining technique
(Simon, 1997) is the first to apply the P2P concept to
VoD streaming. Each client in Chaining has a fixed-
size buffer to cache the most recent content of the
video stream it has received, but this scheme does
not provide a recovery protocol in case of failures.

DirectStream (Yang, 2003a) constructs tree struc-
tures to deliver video based on an interval-caching
scheme similar to Chaining. However, the directory
server in DirectStream represents a possible single
point of failure. P2Cast (Yang, 2003b) is derived
from the traditional patching technique with unicast
connections among peers, but it is vulnerable to dis-
ruption due to server bottlenecks at the source.
P2VoD (Tai, 2004) works similarly to P2Cast, and
makes a late client obtain the initial missing part of a
video (namely, a patch) not only from the server but
also from other clients, and handles failures locally
without the involvement of the source. The major
disadvantage of P2VoD is a possible long recovery
time due to a client having an out-of-date list of its
siblings’ IP addresses.

The aforementioned schemes do not consider
those inactive peers that have left the session but
may still hold some of the media content in their
local storage. Involving these inactive users in a
VoD session for streaming the video content they
still hold will provide peers with more potential re-
sources in the same session, which could increase

33
Chen J., Leu J., Wei H., Tung L., Chou Y. and Shih W. (2006).
DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND SERVICES OVER A PEER-TO-PEER MULTIOVERLAY NETWORK.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 33-41
DOI: 10.5220/0001570100330041
Copyright c© SciTePress

the effectiveness and efficiency of the VoD system.
This scheme requires a mechanism for a requesting
user to find video objects among both active and
inactive users, which may be possible using generic
P2P architectures with efficient lookup algorithms.

Based on the above, we aimed to design a new
architecture supporting VoD streaming services. The
proposed architecture, referred to as MegaDrop, is
based on a multioverlay network. The first overlay
network is used to find a specific object, and the
second overlay network is used to stream media
data. The architecture is fully decentralized without
any central administrative points. To define the ser-
vice boundary at different levels, we further partition
the architecture into four tiers: Peer Discovery Layer
(PDL), Content Lookup Layer (CLL), Media
Streaming Layer (MSL), and Playback Control
Layer (PCL). The PDL is responsible for finding
peers and constructing the first overlay network. The
CLL generates a unique identifier for a media object
and provides a content-matching capability. The
MSL transmits media between peers and constructs
the second overlay network. The PCL interacts with
end users by providing the interface of control op-
erations. Finally, we performed a series of experi-
ments on the MegaDrop system to evaluate the
startup delay, efficiency of bandwidth utilization,
and effectiveness of peer bandwidth aggregation.
The result shows that the aggregate bandwidth avail-
able to peers increases with the number of peers
participating in a session, which thereby reduces the
average streaming time.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the media representations
to properly fulfill the characteristics of a VoD
streaming environment stated above. Section 3 pro-
vides an overview of the MegaDrop system, and the
detailed design and implementation of the various
components in the architecture are described in Sec-
tion 4. Section 5 presents a performance evaluation
of the MegaDrop system, and Section 6 proposes
some ideas about how to consolidate this system.
Finally, concluding remarks are made in Section 7.

2 MEDIA REPRESENTATIONS

According to the aforementioned characteristics, we
devise a media representation that breaks the content
of a typical media object (usually a media file) into
media blocks based on a group of pictures (or
frames). It allows both active and inactive peers to
potentially share their (incomplete) media content to
form media streaming, or each peer to only hold

some of the media data and gather the remaining
required media data from multiple peers. The pro-
posed media representation provides several advan-
tages: (i) the loss of some of the media blocks during
media transmission would not damage the media
object or make it undecodable, (ii) the amount of
data involved in the error recovery or retransmission
of the media data under certain conditions of unreli-
ability can be reduced to the unit of a media block,
and (iii) it is easy to implement certain VCR-like
interactions (e.g., fast forward, fast rewind, and
jump forward/backward) at multiples of the normal
playback speed by skipping media data on the basis
of multiple media blocks.

A single media object may be spread over multi-
ple peers, and hence the receiving peer must know
how to gather multiple portions of the media blocks
from other peers. We therefore introduced an origi-
nal structure, called media-info, to provide a unique
identifier for a specific media object that allows it to
be located and restored by a receiving peer. Basi-
cally, media-info provides the global information of
a media object, such as the frame rate, video codec,
media title, creation time, author information, and
copyright information, and is followed by hashed
information. In the following subsections, we first
describe the hashing procedure to generate the
hashed information, called media-hash, and then use
this to construct the original media-info.

2.1 Media-Hash

As depicted in Figure 1, media-hash is produced by
a two-step hash scheme. First, a specific hash func-
tion H(x) (e.g., SHA1, CRC32, or MD5) is applied
to each media block to produce a hashed block.
Then, those hashed blocks together with media size,
hash scheme, and hash size are hashed again by H(x)
to generate the media-hash, which uniquely repre-
sents a media object. In Figure 1, Bn denotes the n-th
media block, where 1 ≤ n ≤ BN. Blen represents the
length of a media block, which generally would be
chosen as 128, 256, 512, or 1024 kB. Thus BN can be
computed as ⎡Mlen/Blen⎤, where Mlen is the size of the
media object (in bytes) and ⎡ ⎤ denotes the ceiling
operation. Furthermore, HBn, and Hlen (in bytes) in-
dicate the value and length of the hashed data for
media block Bn, respectively (i.e., HBn = H(Bn) and
Hlen = length of HBn). Note that zero values are pad-
ded to the last media block if its size is less than Blen.
Obviously, before applying the second step of hash-
ing, the hash size could be calculated as Hlen × BN,
the media size equals to Mlen, and the field of hash
scheme merely specifies the hash function used in

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

34

this procedure. In particular, since we only choose
one hash function in this two-step hash scheme pro-
cedure, the size of produced media-hash also equals
Hlen.

block 2 block 3 block BNblock 1

H(x) H(x) H(x) H(x)

H(x)

media content

hashed blocks

hash 1 hash 2 hash 3 hash BNmedia size hash scheme hash size

1. Media content is divided into media
blocks (for a media object).

2. Each media block is hashed by the
hash function, H(x),

3. media-hash is produced by taking the
hashed blocks, media size, hash
scheme, and hash size as inputs to
H(x).

Blen

media-hash

Mlen

Mlen Hlen × BN

Hlen

The length of a media-hash is also Hlen.

Figure 1: The flow for generating hashed blocks and me-
dia-hash.

2.2 Media-Info

Media-info is created to provide not only the unique
identifier for a specific media object through media-
hash, but also the sufficient information for a receiv-
ing peer to know (i) where the media object is
stored; (ii) how to gather and stream the media ob-
ject; (iii) what characteristics of a media object owns
for decoding and rendering. Consequently, a media-
info should be retrieved before a streaming session
starts. Figure 2 shows the structure of a media-info.
The fields of media title, date time, creator, and
comments are extracted from original header of a
media object, which are provided by media-info op-
tionally. Note that media-info contains hashed
blocks as well, which could be used to verify the
correctness of each retrieved media block for the
purpose of error recovery. Additionally, the field of
brokers informs the receiving peer how to gather and
stream the media blocks, which may probably
spread among multiple peers. The detailed usage of
this field is described in Section 3.3.

hash 1 hash 2 hash BNhash scheme hash size

media title date time comments creator

media size

hashed blocks

mandatory fields media header fields hashed blocks

collected from original media header

media-hash

brokers

brokers’ IP addresses

Figure 2: The structure of a media-info.

Especially, the size of the media-info highly de-
pends on the choice of the size for each media block.
Equation (1) expresses this relation, where Mlen, Blen,

Hlen are the symbols as stated in Section 2.1, Ilen is
the size of media-info, and NFlen, OFlen represent the
size of mandatory fields (including brokers field)
and media header fields in Figure 2, respectively.
Compact size of media-info tends toward larger Blen.
However, larger Blen produces smaller amount of
media blocks, which potentially reduces the degree
of concurrence for media transmission among multi-
ple peers.

lenlenlen
len

len
len OFNFH

B
MI ++×⎥

⎥

⎤
⎢
⎢

⎡
= (1)

Based on the designed media representation, we
now present the proposed architecture for providing
VoD streaming services in a P2P environment.

3 MULTIOVERLAY
ARCHITECTURE

In order to make VoD functions such as locate,
stream, and control-playback for a media object be-
have smoothly with the abovementioned media rep-
resentations, we devise the MegaDrop system,
which has a multioverlay architecture with the four
layers mentioned in Section 1, as shown in Figure 3.

Figure 3: MegaDrop architecture.

3.1 Peer Discovery Layer

The PDL, as its name implies, provides an efficient
peer lookup service such that upper layers can
search for desired media objects propitiously. It con-
tains several major functions: routing messages be-
tween peers, filtering out unnecessary messages,
caching queries within peers, and maintaining peer
information. Especially, The PDL is not restricted to
a specific P2P network, that is, any typical P2P over-
lay networks such as Gnutella (Justine, 2000), Pastry

DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND SERVICES OVER A PEER-TO-PEER
MULTIOVERLAY NETWORK

35

(Rowstron, 2001), Chord (Ion, 2001a), and CAN
(Ion 2001b) can be adopted and wrapped in this
layer as well.

3.2 Content Lookup Layer

The CLL plays the mediator for the PDL and the
MSL. At least, two basic operations should be han-
dled in this layer: (i) when a peer is willing to share
a media object, a corresponding media-info has to be
generated by the CLL, e.g., the CLL keeps a media
pool for maintaining the media-infos of shared me-
dia objects; (ii) it should help content search for que-
ries received by the PDL, so as to allow the PDL to
focus on routing messages/queries to ignore process-
ing the media content at all. Optionally, a mecha-
nism for error recovery to ensure the completeness
of received media blocks could be designed in this
layer.

3.3 Media Streaming Layer

Media transmissions between peers are handled by
this layer. Since the MSL has no idea of which peers
media objects are located in, it must rely on the co-
operation between the CLL and the PDL to find out
these peers. In the MegaDrop system, overall peers
could be classified as three types: suppliers, brokers,
and droppers. A supplier is a peer that has a com-
plete media object. A dropper, in contrast, is a peer
that has an incomplete media object and still needs
to retrieve missing media blocks from other peers.
Therefore, for a specific media object, a supplier is
always capable of providing any portions of media
blocks, while a dropper only provide partial media
blocks. Furthermore, a broker is an intermediate peer
that assists suppliers and droppers in exchanging
peer information (via the field of brokers in a media-
info as mentioned in Section 2.2).

As Figure 4 displayed, during a media session in
the MSL, several peers can form a cluster virtually,
where some peers act as suppliers and the others act
as droppers. Among these peers, one peer would be
treated as a broker, which is connected by other
peers to periodically maintain the list of sending
peers. Note that in this virtual cluster, there should
be existed at least either one supplier or several
droppers containing exclusive media blocks to re-
store an entire media object.

Furthermore, providing buffer management for
caching the most up-to-date media blocks of a media
object is also necessary. In addition, concerning
problems of fairness, or freeriding that exists in
common P2P environments due to unequal contribu-

tion among peers, it is better to equip a bartering
technique to raise incentive of contributing media
objects by each peer.

Session 1

Session 2
Suppliers

Brokers

Droppers

Peers that have the
whole media
contents

Peers that exchange
peer information
only

Peers that have partial
media content only

The boundary of a
session
Brokering Links

Media Streaming Links

Figure 4: The Media Streaming Layer.

3.4 Playback Control Layer

In VoD streaming services, the PCL is designed to
directly interact with end users and exposes a user
interface for administrating and controlling opera-
tions, e.g., providing VCR-like interactions, such as
playing, pausing, stopping, seeking, fast-forwarding,
and so on. Depending on users’ behaviors, the PCL
cooperates with the MSL to change caching policy
(via buffer management). For example, when a user
issue a seeking operation to change current play
point, the PCL needs to notify the MSL to acquire
the media blocks starting at the new play point first
because the MSL never knows the occurrence of
such an event without this notification. Besides, for
the convenience of controlling playback, the PCL
should apparently provide the status of monitoring
and operational statistics for users to manage the
overall system performance.

4 IMPLEMENTATION

In this section, we present the comprehensive im-
plementation of crucial operations in each layer to
realize the MegaDrop system.

4.1 Peer Discovery Layer

The PDL is implemented from modifying an LGPL
library, GnucDNA (GnucDNA, 2000), which is
based on Gnutella2 (Gnutella2, 2005) overlay net-
work. Figure 5 shows the topology. In experience,
this topology benefits from minimizing searching
and routing traffic to reserve network bandwidth for
media transmission. Theoretically, the adequate

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

36

amount of trunks could maintain the ability for a
peer to find desired media blocks located anywhere
on the network.

Trunk Nodes

Branch Nodes

 Routing
 Caching
 Filtering
 Querying

 Querying

Figure 5: Overlay network with tree-like topology.

The following major operations are implemented
in the PDL. First, bootstrapping allows a peer to
participate in the MegaDrop system. We utilized
GWebCache (GWebCache, 2003) to allow a peer to
discover which active peers are currently available
for connection. Second, after obtaining several IP
addresses via a bootstrapping procedure, a peer be-
comes a trunk or branch by handshaking with these
IP addresses. We adopt a common three-way hand-
shaking mechanism to develop this protocol. Third,
the communications between peers are unified by
replicating a subset of the messaging system in the
Gnutella2 protocol (Gnutella2, 2005). Likewise,
query hash tables are utilized to facilitate the query-
routing protocol, which is implemented by modify-
ing Prinkey’s scheme (Prinkey, 2001).

4.2 Content Lookup Layer

Any behaviors reliant on the media content could be
implemented in the CLL. Here we have imple-
mented three major operations. The first is generat-
ing media-info. We used the SHA1 algorithm as our
hash scheme, which generated each hashed block in
20 bytes. The construction methodology is detailed
in Section 2. Second, the CLL implements content
searching/matching based on the media content
rather than keyword searching by the PDL. Provid-
ing content searches in advance can complement
keyword searches because media objects are usually
not uniquely identified by keywords. Third, data
integrity is ensured by hashing and comparing a re-
ceived media according to the information provided
by media-info. Thereafter, the CLL can cooperate

with the MSL to decide whether to drop or retrans-
mit a received media block that is corrupted.

4.3 Media Streaming Layer

Within a media session, the MSL performs media
transmission across multiple sending peers. We em-
ploy a variant of BitTorrent protocol (Bram, 2001;
Bram, 2003) to accomplish the most parts of this
layer, and several operations are implemented: (i)
Media-info requesting: the MSL needs this informa-
tion before establishing a media session; (ii) Broker-
ing: due to versatile status of active peers in P2P
environment, a receiving peer can periodically up-
date the list of sending peers from the broker
through brokering mechanism. (Remind that a bro-
ker maintains a global view to aggregate a media
object). This protocol is simply realized by HTTP
conventions; (iii) Media streaming: this procedure
enables a receiving peer maintaining TCP/IP con-
nections to sending peers. In our implementation,
this procedure contains three sub-functions, (a)
handshaking, which is designed to ensure that
whether a sending peer is serving the desired media
object or not before a TCP/IP connection is estab-
lished, (b) connection state guarding, which tracks
remote peers’ states (in three modes: chocking,
unchoking, or interesting) to monitor this connec-
tion, and (c) message/media data communication,
which delivers control or media data between both
peers; (iv) Buffer management: in order to deliver
media blocks efficiently, in the MSL, every media
block can further decompose into a bunch of smaller
units called media piece, such that a media piece
could be treated as the smallest transmission unit
during a media session. Therefore, a buffer space
provided by sending and receiving peers could act as
a cache to manage these media pieces. However,
because media pieces of a media block may not al-
ways delivered in order or the play point of video
may jump randomly due to users’ behaviors, we
used a request-on-demand policy to handle this is-
sue; We omit the detail explanations here due to
limit space; and last, (v) Bartering: a variant of tit-
for-tat scheme is used to implement this technique.
Finally, a typical access flow of the MSL is shown
in Figure 6.

4.4 Playback Control Layer

We implemented the PCL via the Microsoft™ Di-
rectShow media framework (Microsoft, 2006). Di-
rectShow is essentially built on a group of filters,
each of which performs a specific operation for

DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND SERVICES OVER A PEER-TO-PEER
MULTIOVERLAY NETWORK

37

streaming a media file. Connecting several filters via
input/output ports results in a filter graph. In this
implementation, we additionally introduce a high-
level component, called the Filter Graph Manager,
to control the flow of a filter graph. Figure 7 dis-
plays the topology, where a source filter directs the
media data that may come from local storage, the
network, or capture devices to the transform filter,
which could be decoders, encoders, splitters, or mul-
tiplexers. Then, the media data are output to display
devices via rendering filters. This topology can
make the MegaDrop system suitable for a variety of
codecs (e.g., MPEG series, H.264, WMV series),
thereby increasing its flexibility.

Instead of implementing these filters from
scratch, we based them on filters provided by Micro-
soft™ SDK. Actually, we merely design a custom-
ized source filter to collaborate with the MSL, such
that buffer management with a request-on-demand
policy could be seamlessly connected to the source
filter. A transform filter was added to aid the MSL in
gathering or splitting the media pieces. Finally, the
overall VCR-like operations were implemented
through the IMediaControl interface in DirectShow.
Our implementation of PCL not only supports play-
back operations within the MegaDrop system, but
also could be executed as a purely local media
player.

peer1 peer2

Brokering

broker

Handshaking

Message
Communication

*

*

query
hitter

Request media-info

peer1 peer2

Brokering

broker

Handshaking

Message
Communication

*

*

query
hitter

Request media-info

Figure 6: Access flows of the Media Streaming.

Filter Graph Manager

Source

Filter

Rendering

Filter

Transform

Filter

media blocks media blocks

output pin input pin output pin input pin
Figure 7: Topology of a DirectShow filter graph.

5 EVALUATION

In this section, we show that the MegaDrop system
is particularly efficient of huge amount of media
data and multiuser streaming sessions by evaluating
it from three essential metrics: (i) the startup delay
versus the size of the media-info before starting a
media transmission; (ii) efficiency of bandwidth
utilizations by measuring the overheads induced
from network traffics other than real transmitted
media blocks; and (iii) effectiveness of bandwidth
aggregations among multiple peers.

5.1 Startup Delay

Delivering media-info merely relies on communica-
tion between a broker peer and the receiving peer,
making it easy to measure the startup transmission
delay. Assume that the maximum startup delay for a
media session is D (in seconds) and the average
network speed is BS (in bytes/second), from equa-
tion (1) listed in Section 2.2 we can derive the
minimal size of the media block, Blen, required to
satisfy the maximum tolerable startup delay D:

lenlen

lenlen
len OFNFDBS

HMB
−−×

×
≥ (2)

Figure 8 illustrates the relationship between the
number of media blocks, the size of media-info, and
media size for various media objects, and reveals
that the length of media block should be carefully
chosen based on the media size.

5.2 Efficiency of Bandwidth
Utilization

The transmission of data in the system other than
media blocks is treated as traffic overhead, such as
that for media-info structures, messages for broker-
ing, and other control messages within the PDL. We
can use this criterion to evaluate the efficiency of the
MegaDrop system. The results shown in Figure 9
indicate that the overhead ratio arises significantly
only when the media object is smaller than 10 kB,
but even then is still very low at less than 2.4%.
Given that almost all media objects are significantly
larger than 10 kB, the MegaDrop system exhibits
high bandwidth utilization.

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

38

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000
3,000,000
3,500,000
4,000,000
4,500,000
5,000,000

64
 k

B

12
8

 kB

25
6

 kB

51
2

 kB

10
24

 k
B

20
48

 k
B

40
96

 k
B

81
92

 k
B

16
38

4
 kB

32
76

8
 kB

65
53

6
kB

13
10

72
 k

B

Block Length

Si
ze

 o
f M

ed
ia

-in
fo

 (b
yt

es
)

100 MB
300 MB
600 MB
1 GB
1.5 GB
2 GB
3 GB
5 GB
10 GB
100 GB
500 GB
1 TB

Figure 8: Size of media-info versus media block and
media size.

5
kB

10
0

kB

50
0

kB

3
M

B

50
 M

B

30
0

M
B

1
G

B

2
G

B

5
G

B

10
0

G
B

1
TB

64 kB

2048 kB

65536 kB
0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

2.4%

O
ve

rh
ea

d
R

at
io

Media Size

Block Length

2.00%-2.40%
1.60%-2.00%
1.20%-1.60%
.80%-1.20%
.40%-.80%
.00%-.40%

Figure 9: Overheads versus media size.

5.3 Effectiveness of Bandwidth
Aggregation

To investigate effectiveness of bandwidth aggregat-
ing among peers, we setup an environment with four
PCs in different specifications as shown in Table 1.
Moreover, in this simulation, there are five video
clips with various sizes, ranging from 200 MB to
1000 MB, and the length of each media block is
fixed at 256 kB for each video clips. During the
simulation, up to 16 peers are constructed to join a
media session by selecting PCs in sequence order of
Table 1. That is, if a media session contains 11
peers, then PCA6, PCA1, and PCP4 acts as three
peers, individually while NBP3 only acts as two
peers. We select PCA6 as the broker in all scenarios
due to its superior equipments. Besides, to approach
the reality of the scenario, we have limited the total
uplink bandwidth to 1000 kB and uplink bandwidth
to 200 kB per media connection for each peer, such
that bartering mechanism will be triggered while
bandwidth is running out. Therefore, during a media
session, the join time of a peer, denoted as TJi, can

be determined by equation (3), where N is the total
number of peers in each test case.

⎪⎩

⎪
⎨

⎧

≤≤
−××

−×
=

=
Ni

N
iMLen

, i
TJi 3 when ,

)1(1024200
)2(

21when, 0
 (3)

Table 1: Specifications of the simulation environment.

Name PCA6 PCA1 PCP4 NBP3

Platform Desktop PC Desktop PC Desktop PC Notebook

CPU
AMD Athlon XP

1.6 GHz
AMD Athlon XP

1 GHz
Intel P4

 1.5 GHz
Intel P3 Mobile

1.06 GHz

RAM DDR 512 MB DDR 256 MB DDR 384 MB SD 256 MB

OS
Microsoft

Windows XP
Professional SP2

Microsoft
Windows XP

Professional SP1

Microsoft
Windows 2000

Workstation SP4

Microsoft
Windows XP

Home SP2

Network Ethernet 100 Mb Ethernet 100 Mb Ethernet 100 Mb Ethernet 100 Mb

Media Size

0

1000

2000

3000

4000

5000

6000

2 4 6 8 10 12 14 16
Number of Peers

St
re

am
in

g
Ti

m
e (

se
co

nd
s)

200 MB

400 MB

600 MB

800 MB

1000 MB

Figure 10: Average transmission time versus number of
joined peers with various media size.

Figure 10 shows the results of the simulations.
As we expected, the average transmission time per
media session is reduced when more peers partici-
pated in it since this enlarged the degree of band-
width aggregation. Especially for a large media ob-
ject, the descending slope is more significantly but is
retarded at a certain constant level, indicating that
the effects of bandwidth aggregation are limited by
the uplink bandwidth setting in the simulation sce-
nario.

6 EXTENSIONS TO THE
MEGADROP SYSTEM

Error recovery is implemented in the current
MegaDrop system by simply dropping or retransmit-
ting a received media block that is corrupted. As

DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND SERVICES OVER A PEER-TO-PEER
MULTIOVERLAY NETWORK

39

mentioned in Section 2, this simple scheme does
prevent a video from being undecodable or dam-
aged, but it may induce video glitches or longer
transmission delay. To solve this problem, path di-
versity with Multiple Description Coding (MDC)
technique (Frank, 2005; Ivan, 2005) can be adopted
to combine with the originated media representa-
tions in the MegaDrop system. Basic idea is that, for
a media object, every media block can be further
decomposed into two or more sub media blocks
based on MDC technique. For example, each media
block can be divided into two sub media blocks,
consisting even and odd video frames separately.
Then in the MSL, every original media session can
be split into multiple sub media sessions to deliver
these sub media blocks accordingly through path
diversity technique. Therefore, through this method-
ology, the probability of the occurrence in video
glitches and longer transmission delay can greatly
reduce by conceding to video quality. Besides, we
leave several challenges such as security and QoS
management for the readers, as the further re-
searches to extend and consolidate the MegaDrop
system.

7 CONCLUSIONS

In this paper we propose a novel layered architecture
to realize VoD streaming services in a P2P environ-
ment. The proposed architecture implements a fully
decentralized system running on a P2P multioverlay
network. Unlike existing mechanisms in which cer-
tain video servers must be deployed in advance, the
proposed architecture does not rely on any central-
ized resource allocation. Instead, every media object
is delivered and propagated over the network, and
every peer in the network retrieves media content
from as well as forwards it to other peers, thereby
acting as a miniserver. The processing and sharing
of the same media objects by multiple peers results
in the formation of virtual server clusters. Major
advantages of the proposed architecture are that it
can balance the load among peers and efficiently
utilize the network bandwidth.

The experimental results revealed that our ap-
proach is appropriate for serving VoD streaming,
especially in the delivery of huge amounts of media
data. Moreover, the participation of more peers in a
media session can result in higher bandwidth aggre-
gation, result in a decrease in the average time re-
quired to stream a given media object.

Finally, we have presented methods for reducing
the probabilities of video glitches and longer trans-

mission delays by combining our original media
representations with the promising MDC and path-
diversity techniques. These concepts are recom-
mended as topics for future research to extend and
consolidate the MegaDrop system.

REFERENCES

Bram Cohen (2001), BitTorrent Protocol, [Online], Avail-
able: http://www.bittorrent.com/protocol.html.

Bram Cohen (2003) ‘Incentives build robustness in Bit-
Torrent’, in Proceedings of the First Workshop on the
Economics of Peer-to-Peer Systems, Berkeley, CA.

Christofer Rohrs (2001) ‘Query routing for the Gnutella
network’, [Online], Available: http://rfc-
gnutella.sourceforge.net/.

GnucDNA (2000), [Online], Available:
http://www.gnucleus.com/GnucDNA/.

Gnutella2 (2005), [Online], Available:
http://www.gnutella2.com/.

GWebCache (2003) ‘Gnutella Web Caching System,
[Online], Available:
http://www.gnucleus.com/gwebcache/.

Frank. H.P. Fitzek, Basak Can, Ramjee Prasad and Marcos
Katz (2005) ‘Traffic analysis and video quality evalua-
tion of multiple description coded video services for
fourth generation wireless IP networks’, in Special Is-
sue of the International Journal on Wireless Personal
Communications.

Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek and Hari Balakrishnan (2001a) ‘Chord: A
scalable Peer-to-peer Lookup Service for Internet Ap-
plications’, in Proceedings of ACM SIGCOMM 2001,
San Diego, CA, USA.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek,
and Hari Balakrishnan (2001b) ‘Chord: A scalable
contentaddressable network’, in Proceedings of the
ACM SIGCOMM 2001, San Diego, CA, USA.

Ivan Lee and Ling Guan (2005) ‘Reliable Video Commu-
nication with Multi-Path Streaming Using MDC’, in
Proceedings of the IEEE International Conference on
Multimedia & Expo, pp. 711-714.

Justine Frankel and Tom Pepper (2000) Gnutella,
[Online], Available: http://www.gnutella.com/.

Kien A. Hua, and Mounir Tantaoui (2003) ‘Cost effective
and scalable video streaming techniques’, in B. Furht
and O. Marques (ed.) Handbook of Video Databases,
Abingdon: CRC Press.

Microsoft Corporation (2006) ‘Microsoft Developer Net-
work (MSDN)’, [Online], Available:
http://msdn.microsoft.com/.

Simon Sheu, Kien A. Hua and Wallapak Tavanapong,
(1997) ‘Chaining: A generalized batching technique
for Video-on-Demand Systems’, in Proceedings of the
IEEE International Conference on Multimedia Com-
puting and System, Ottawa, Canada, pp. 110-117.

Yang Guo, Kyoungwon Suh, Jim Kurose and Don
Towsley (2003a) ‘A Peer-to-peer On-Demand stream-

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

40

ing service and its performance evaluation’, in Pro-
ceedings of the IEEE International Conference on
Multimedia & Expo, Baltimore, MD, pp. II-649-652.

Yang Guo, Kyoungwon Suh, Jim Kurose and Don
Towsley (2003b) ‘P2Cast: Peer-to-Peer patching
scheme for VoD service’, in Proceeding of the 12th In-
ternational World Wide Web Conference, Budapest,
Hungary, pp. 301-309.

Tai T. Do, Kien A. Hua and Mounir Tantaoui (2004)
‘P2VoD: Providing fault tolerant Video-on-Demand
streaming in Peer-to-peer environment’, in Proceed-
ings of IEEE International Conference on Communi-
cations, Paris, pp.1467-1472.

Rowstron A. and Druschel P. (2001) ‘Pastry: scalable,
decentralized object location and routing for large-
scale Peer-to-peer systems’, in Proceedings of the 18th
IFIP/ACM International Conference on Distributed
Systems Platforms, Heidelberg, Germany.

Prinkey M. T. (2001) ’An efficient scheme for query proc-
essing on peer-to-peer networks’, [Online], Available:
http://aeolusres.homestead.com/files/index.html

DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND SERVICES OVER A PEER-TO-PEER
MULTIOVERLAY NETWORK

41

