
DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND 
SERVICES OVER A PEER-TO-PEER MULTIOVERLAY 

NETWORK 

Jia-Ming Chen, Jenq-Shiou Leu, Hsin-Wen Wei, Li-Ping Tung, Yen-Ting Chou, Wei-Kuan Shih 
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 

Keywords: Peer-to-Peer, Video-on-Demand, Overlay Network. 

Abstract: Video-on-Demand (VoD) services using peer-to-peer (P2P) technologies benefit by balancing load among 
clients and maximizing their bandwidth utilization to reduce the burden on central video servers with the 
single point of failure. Conventional P2P techniques for realizing VoD services only consider data between 
active peers in the same VoD session. They never consider those inactive peers that have left the session but 
may still hold partial media content in their local storage. In this article, we propose a novel architecture to 
construct a fully decentralized P2P overlay network for VoD streaming services based on a multioverlay 
concept. The architecture is referred to as MegaDrop. It not only takes the types of peers into consideration 
but also provides mechanisms for discovering nodes that may contain desired media objects. Such a P2P-
based scheme can distribute media among peers, allow peers to search for a specific media object over the 
entire network efficiently, and stream the media object from a group of the peers. We employ a layered ar-
chitecture consisting of four major tiers: Peer Discovery Layer, Content Lookup Layer, Media Streaming 
Layer, and Playback Control Layer. The evaluation results show that our architecture is particularly efficient 
for huge media delivery and multiuser streaming sessions. 

1 INTRODUCTION 

Video-on-demand (VoD) services generally rely on 
one or only a small number of video servers to de-
liver video content. This topology places a heavy 
processing load on video servers, with the client–
server paths representing a heavy network burden. 
Conventional techniques such as batching, patching 
(Kien, 2003), broadcasting, IP multicasting, proxy 
caching, and content distribution networks rely on 
centralized servers for delivering media. Peer-to-
peer (P2P) computing represents another possible 
solution to such problems in media streaming. 

The peers in P2P communications interact with 
others without the use of intermediaries, and can 
thereby reduce the burden on the servers delivering 
the media and increase bandwidth utilization. To the 
best of our knowledge, the Chaining technique 
(Simon, 1997) is the first to apply the P2P concept to 
VoD streaming. Each client in Chaining has a fixed-
size buffer to cache the most recent content of the 
video stream it has received, but this scheme does 
not provide a recovery protocol in case of failures. 

DirectStream (Yang, 2003a) constructs tree struc-
tures to deliver video based on an interval-caching 
scheme similar to Chaining. However, the directory 
server in DirectStream represents a possible single 
point of failure. P2Cast (Yang, 2003b) is derived 
from the traditional patching technique with unicast 
connections among peers, but it is vulnerable to dis-
ruption due to server bottlenecks at the source. 
P2VoD (Tai, 2004) works similarly to P2Cast, and 
makes a late client obtain the initial missing part of a 
video (namely, a patch) not only from the server but 
also from other clients, and handles failures locally 
without the involvement of the source. The major 
disadvantage of P2VoD is a possible long recovery 
time due to a client having an out-of-date list of its 
siblings’ IP addresses.  

The aforementioned schemes do not consider 
those inactive peers that have left the session but 
may still hold some of the media content in their 
local storage. Involving these inactive users in a 
VoD session for streaming the video content they 
still hold will provide peers with more potential re-
sources in the same session, which could increase 
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the effectiveness and efficiency of the VoD system. 
This scheme requires a mechanism for a requesting 
user to find video objects among both active and 
inactive users, which may be possible using generic 
P2P architectures with efficient lookup algorithms. 

Based on the above, we aimed to design a new 
architecture supporting VoD streaming services. The 
proposed architecture, referred to as MegaDrop, is 
based on a multioverlay network. The first overlay 
network is used to find a specific object, and the 
second overlay network is used to stream media 
data. The architecture is fully decentralized without 
any central administrative points. To define the ser-
vice boundary at different levels, we further partition 
the architecture into four tiers: Peer Discovery Layer 
(PDL), Content Lookup Layer (CLL), Media 
Streaming Layer (MSL), and Playback Control 
Layer (PCL). The PDL is responsible for finding 
peers and constructing the first overlay network. The 
CLL generates a unique identifier for a media object 
and provides a content-matching capability. The 
MSL transmits media between peers and constructs 
the second overlay network. The PCL interacts with 
end users by providing the interface of control op-
erations. Finally, we performed a series of experi-
ments on the MegaDrop system to evaluate the 
startup delay, efficiency of bandwidth utilization, 
and effectiveness of peer bandwidth aggregation. 
The result shows that the aggregate bandwidth avail-
able to peers increases with the number of peers 
participating in a session, which thereby reduces the 
average streaming time.  

The remainder of this paper is organized as fol-
lows. Section 2 introduces the media representations 
to properly fulfill the characteristics of a VoD 
streaming environment stated above. Section 3 pro-
vides an overview of the MegaDrop system, and the 
detailed design and implementation of the various 
components in the architecture are described in Sec-
tion 4. Section 5 presents a performance evaluation 
of the MegaDrop system, and Section 6 proposes 
some ideas about how to consolidate this system. 
Finally, concluding remarks are made in Section 7. 

2 MEDIA REPRESENTATIONS 

According to the aforementioned characteristics, we 
devise a media representation that breaks the content 
of a typical media object (usually a media file) into 
media blocks based on a group of pictures (or 
frames). It allows both active and inactive peers to 
potentially share their (incomplete) media content to 
form media streaming, or each peer to only hold 

some of the media data and gather the remaining 
required media data from multiple peers. The pro-
posed media representation provides several advan-
tages: (i) the loss of some of the media blocks during 
media transmission would not damage the media 
object or make it undecodable, (ii) the amount of 
data involved in the error recovery or retransmission 
of the media data under certain conditions of unreli-
ability can be reduced to the unit of a media block, 
and (iii) it is easy to implement certain VCR-like 
interactions (e.g., fast forward, fast rewind, and 
jump forward/backward) at multiples of the normal 
playback speed by skipping media data on the basis 
of multiple media blocks. 

A single media object may be spread over multi-
ple peers, and hence the receiving peer must know 
how to gather multiple portions of the media blocks 
from other peers. We therefore introduced an origi-
nal structure, called media-info, to provide a unique 
identifier for a specific media object that allows it to 
be located and restored by a receiving peer. Basi-
cally, media-info provides the global information of 
a media object, such as the frame rate, video codec, 
media title, creation time, author information, and 
copyright information, and is followed by hashed 
information. In the following subsections, we first 
describe the hashing procedure to generate the 
hashed information, called media-hash, and then use 
this to construct the original media-info. 

2.1 Media-Hash 

As depicted in Figure 1, media-hash is produced by 
a two-step hash scheme. First, a specific hash func-
tion H(x) (e.g., SHA1, CRC32, or MD5) is applied 
to each media block to produce a hashed block. 
Then, those hashed blocks together with media size, 
hash scheme, and hash size are hashed again by H(x) 
to generate the media-hash, which uniquely repre-
sents a media object. In Figure 1, Bn denotes the n-th 
media block, where 1 ≤ n ≤ BN. Blen represents the 
length of a media block, which generally would be 
chosen as 128, 256, 512, or 1024 kB. Thus BN can be 
computed as ⎡Mlen/Blen⎤, where Mlen is the size of the 
media object (in bytes) and ⎡ ⎤ denotes the ceiling 
operation. Furthermore, HBn, and Hlen (in bytes) in-
dicate the value and length of the hashed data for 
media block Bn, respectively (i.e., HBn = H(Bn) and 
Hlen = length of HBn). Note that zero values are pad-
ded to the last media block if its size is less than Blen. 
Obviously, before applying the second step of hash-
ing, the hash size could be calculated as Hlen × BN, 
the media size equals to Mlen, and the field of hash 
scheme merely specifies the hash function used in 
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this procedure. In particular, since we only choose 
one hash function in this two-step hash scheme pro-
cedure, the size of produced media-hash also equals 
Hlen. 

 

block 2 block 3 block BNblock 1

H(x) H(x) H(x) H(x)

H(x)

media content

hashed blocks

hash 1 hash 2 hash 3 hash BNmedia size hash scheme hash size 

1. Media content is divided into media 
blocks (for a media object). 

2. Each media block is hashed by the 
hash function, H(x), 

3. media-hash is produced by taking the 
hashed blocks, media size, hash 
scheme, and hash size as inputs to 
H(x). 

Blen 

media-hash 

Mlen 

Mlen Hlen × BN 

Hlen 

The length of a media-hash is also Hlen. 

 
Figure 1: The flow for generating hashed blocks and me-
dia-hash. 

2.2 Media-Info 

Media-info is created to provide not only the unique 
identifier for a specific media object through media-
hash, but also the sufficient information for a receiv-
ing peer to know (i) where the media object is 
stored; (ii) how to gather and stream the media ob-
ject; (iii) what characteristics of a media object owns 
for decoding and rendering. Consequently, a media-
info should be retrieved before a streaming session 
starts. Figure 2 shows the structure of a media-info. 
The fields of media title, date time, creator, and 
comments are extracted from original header of a 
media object, which are provided by media-info op-
tionally. Note that media-info contains hashed 
blocks as well, which could be used to verify the 
correctness of each retrieved media block for the 
purpose of error recovery. Additionally, the field of 
brokers informs the receiving peer how to gather and 
stream the media blocks, which may probably 
spread among multiple peers. The detailed usage of 
this field is described in Section 3.3. 

 

hash 1 hash 2 hash BNhash scheme hash size

media title date time comments creator

media size 

hashed blocks 

mandatory fields media header fields hashed blocks

collected from original media header 

media-hash 

brokers 

brokers’ IP addresses 

 
Figure 2: The structure of a media-info. 

Especially, the size of the media-info highly de-
pends on the choice of the size for each media block. 
Equation (1) expresses this relation, where Mlen, Blen, 

Hlen are the symbols as stated in Section 2.1, Ilen is 
the size of media-info, and NFlen, OFlen represent the 
size of mandatory fields (including brokers field) 
and media header fields in Figure 2, respectively. 
Compact size of media-info tends toward larger Blen. 
However, larger Blen produces smaller amount of 
media blocks, which potentially reduces the degree 
of concurrence for media transmission among multi-
ple peers. 
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Based on the designed media representation, we 
now present the proposed architecture for providing 
VoD streaming services in a P2P environment. 

3 MULTIOVERLAY  
ARCHITECTURE 

In order to make VoD functions such as locate, 
stream, and control-playback for a media object be-
have smoothly with the abovementioned media rep-
resentations, we devise the MegaDrop system, 
which has a multioverlay architecture with the four 
layers mentioned in Section 1, as shown in Figure 3. 

 
Figure 3: MegaDrop architecture. 

3.1 Peer Discovery Layer  

The PDL, as its name implies, provides an efficient 
peer lookup service such that upper layers can 
search for desired media objects propitiously. It con-
tains several major functions: routing messages be-
tween peers, filtering out unnecessary messages, 
caching queries within peers, and maintaining peer 
information. Especially, The PDL is not restricted to 
a specific P2P network, that is, any typical P2P over-
lay networks such as Gnutella (Justine, 2000), Pastry 
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(Rowstron, 2001), Chord (Ion, 2001a), and CAN 
(Ion 2001b) can be adopted and wrapped in this 
layer as well. 

3.2 Content Lookup Layer 

The CLL plays the mediator for the PDL and the 
MSL. At least, two basic operations should be han-
dled in this layer: (i) when a peer is willing to share 
a media object, a corresponding media-info has to be 
generated by the CLL, e.g., the CLL keeps a media 
pool for maintaining the media-infos of shared me-
dia objects; (ii) it should help content search for que-
ries received by the PDL, so as to allow the PDL to 
focus on routing messages/queries to ignore process-
ing the media content at all. Optionally, a mecha-
nism for error recovery to ensure the completeness 
of received media blocks could be designed in this 
layer. 

3.3 Media Streaming Layer 

Media transmissions between peers are handled by 
this layer. Since the MSL has no idea of which peers 
media objects are located in, it must rely on the co-
operation between the CLL and the PDL to find out 
these peers. In the MegaDrop system, overall peers 
could be classified as three types: suppliers, brokers, 
and droppers. A supplier is a peer that has a com-
plete media object. A dropper, in contrast, is a peer 
that has an incomplete media object and still needs 
to retrieve missing media blocks from other peers. 
Therefore, for a specific media object, a supplier is 
always capable of providing any portions of media 
blocks, while a dropper only provide partial media 
blocks. Furthermore, a broker is an intermediate peer 
that assists suppliers and droppers in exchanging 
peer information (via the field of brokers in a media-
info as mentioned in Section 2.2). 

As Figure 4 displayed, during a media session in 
the MSL, several peers can form a cluster virtually, 
where some peers act as suppliers and the others act 
as droppers. Among these peers, one peer would be 
treated as a broker, which is connected by other 
peers to periodically maintain the list of sending 
peers. Note that in this virtual cluster, there should 
be existed at least either one supplier or several 
droppers containing exclusive media blocks to re-
store an entire media object. 

Furthermore, providing buffer management for 
caching the most up-to-date media blocks of a media 
object is also necessary. In addition, concerning 
problems of fairness, or freeriding that exists in 
common P2P environments due to unequal contribu-

tion among peers, it is better to equip a bartering 
technique to raise incentive of contributing media 
objects by each peer. 

 

Session 1

Session 2 
Suppliers 

Brokers 

Droppers 

Peers that have the 
whole media  
contents 

Peers that exchange 
peer information 
only 

Peers that have partial 
media content only 

The boundary of a 
session 
Brokering Links 

Media Streaming Links 

 
Figure 4: The Media Streaming Layer. 

3.4 Playback Control Layer 

In VoD streaming services, the PCL is designed to 
directly interact with end users and exposes a user 
interface for administrating and controlling opera-
tions, e.g., providing VCR-like interactions, such as 
playing, pausing, stopping, seeking, fast-forwarding, 
and so on. Depending on users’ behaviors, the PCL 
cooperates with the MSL to change caching policy 
(via buffer management). For example, when a user 
issue a seeking operation to change current play 
point, the PCL needs to notify the MSL to acquire 
the media blocks starting at the new play point first 
because the MSL never knows the occurrence of 
such an event without this notification. Besides, for 
the convenience of controlling playback, the PCL 
should apparently provide the status of monitoring 
and operational statistics for users to manage the 
overall system performance. 

4 IMPLEMENTATION 

In this section, we present the comprehensive im-
plementation of crucial operations in each layer to 
realize the MegaDrop system. 

4.1 Peer Discovery Layer 

The PDL is implemented from modifying an LGPL 
library, GnucDNA (GnucDNA, 2000), which is 
based on Gnutella2 (Gnutella2, 2005) overlay net-
work. Figure 5 shows the topology. In experience, 
this topology benefits from minimizing searching 
and routing traffic to reserve network bandwidth for 
media transmission. Theoretically, the adequate 
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amount of trunks could maintain the ability for a 
peer to find desired media blocks located anywhere 
on the network. 

 

Trunk Nodes 

Branch Nodes 

 Routing 
 Caching 
 Filtering 
 Querying 

 Querying 

 
Figure 5: Overlay network with tree-like topology. 

The following major operations are implemented 
in the PDL. First, bootstrapping allows a peer to 
participate in the MegaDrop system. We utilized 
GWebCache (GWebCache, 2003) to allow a peer to 
discover which active peers are currently available 
for connection. Second, after obtaining several IP 
addresses via a bootstrapping procedure, a peer be-
comes a trunk or branch by handshaking with these 
IP addresses. We adopt a common three-way hand-
shaking mechanism to develop this protocol. Third, 
the communications between peers are unified by 
replicating a subset of the messaging system in the 
Gnutella2 protocol (Gnutella2, 2005). Likewise, 
query hash tables are utilized to facilitate the query-
routing protocol, which is implemented by modify-
ing Prinkey’s scheme (Prinkey, 2001). 

4.2 Content Lookup Layer 

Any behaviors reliant on the media content could be 
implemented in the CLL. Here we have imple-
mented three major operations. The first is generat-
ing media-info. We used the SHA1 algorithm as our 
hash scheme, which generated each hashed block in 
20 bytes. The construction methodology is detailed 
in Section 2. Second, the CLL implements content 
searching/matching based on the media content 
rather than keyword searching by the PDL. Provid-
ing content searches in advance can complement 
keyword searches because media objects are usually 
not uniquely identified by keywords. Third, data 
integrity is ensured by hashing and comparing a re-
ceived media according to the information provided 
by media-info. Thereafter, the CLL can cooperate 

with the MSL to decide whether to drop or retrans-
mit a received media block that is corrupted. 

4.3 Media Streaming Layer 

Within a media session, the MSL performs media 
transmission across multiple sending peers. We em-
ploy a variant of BitTorrent protocol (Bram, 2001; 
Bram, 2003) to accomplish the most parts of this 
layer, and several operations are implemented: (i) 
Media-info requesting: the MSL needs this informa-
tion before establishing a media session; (ii) Broker-
ing: due to versatile status of active peers in P2P 
environment, a receiving peer can periodically up-
date the list of sending peers from the broker 
through brokering mechanism. (Remind that a bro-
ker maintains a global view to aggregate a media 
object). This protocol is simply realized by HTTP 
conventions; (iii) Media streaming: this procedure 
enables a receiving peer maintaining TCP/IP con-
nections to sending peers. In our implementation, 
this procedure contains three sub-functions, (a) 
handshaking, which is designed to ensure that 
whether a sending peer is serving the desired media 
object or not before a TCP/IP connection is estab-
lished, (b) connection state guarding, which tracks 
remote peers’ states (in three modes: chocking, 
unchoking, or interesting) to monitor this connec-
tion, and (c) message/media data communication, 
which delivers control or media data between both 
peers; (iv) Buffer management: in order to deliver 
media blocks efficiently, in the MSL, every media 
block can further decompose into a bunch of smaller 
units called media piece, such that a media piece 
could be treated as the smallest transmission unit 
during a media session. Therefore, a buffer space 
provided by sending and receiving peers could act as 
a cache to manage these media pieces. However, 
because media pieces of a media block may not al-
ways delivered in order or the play point of video 
may jump randomly due to users’ behaviors, we 
used a request-on-demand policy to handle this is-
sue; We omit the detail explanations here due to 
limit space; and last, (v) Bartering: a variant of tit-
for-tat scheme is used to implement this technique. 
Finally, a typical access flow of the MSL is shown 
in Figure 6. 

4.4 Playback Control Layer 

We implemented the PCL via the Microsoft™ Di-
rectShow media framework (Microsoft, 2006). Di-
rectShow is essentially built on a group of filters, 
each of which performs a specific operation for 

DESIGN AND IMPLEMENTATION OF VIDEO ON DEMAND SERVICES OVER A PEER-TO-PEER
MULTIOVERLAY NETWORK

37



 

streaming a media file. Connecting several filters via 
input/output ports results in a filter graph. In this 
implementation, we additionally introduce a high-
level component, called the Filter Graph Manager, 
to control the flow of a filter graph. Figure 7 dis-
plays the topology, where a source filter directs the 
media data that may come from local storage, the 
network, or capture devices to the transform filter, 
which could be decoders, encoders, splitters, or mul-
tiplexers. Then, the media data are output to display 
devices via rendering filters. This topology can 
make the MegaDrop system suitable for a variety of 
codecs (e.g., MPEG series, H.264, WMV series), 
thereby increasing its flexibility. 

Instead of implementing these filters from 
scratch, we based them on filters provided by Micro-
soft™ SDK. Actually, we merely design a custom-
ized source filter to collaborate with the MSL, such 
that buffer management with a request-on-demand 
policy could be seamlessly connected to the source 
filter. A transform filter was added to aid the MSL in 
gathering or splitting the media pieces. Finally, the 
overall VCR-like operations were implemented 
through the IMediaControl interface in DirectShow. 
Our implementation of PCL not only supports play-
back operations within the MegaDrop system, but 
also could be executed as a purely local media 
player. 

peer1 peer2

Brokering

broker

Handshaking

Message 
Communication

*

*

query
hitter

Request media-info

peer1 peer2

Brokering

broker

Handshaking

Message 
Communication

*

*

query
hitter

Request media-info

 
Figure 6: Access flows of the Media Streaming. 

Filter Graph Manager 

Source 

Filter 

Rendering 

Filter 

Transform 

Filter 

media blocks media blocks 

output pin input pin output pin input pin  
Figure 7: Topology of a DirectShow filter graph. 

5 EVALUATION 

In this section, we show that the MegaDrop system 
is particularly efficient of huge amount of media 
data and multiuser streaming sessions by evaluating 
it from three essential metrics: (i) the startup delay 
versus the size of the media-info before starting a 
media transmission; (ii) efficiency of bandwidth 
utilizations by measuring the overheads induced 
from network traffics other than real transmitted 
media blocks; and (iii) effectiveness of bandwidth 
aggregations among multiple peers. 

5.1 Startup Delay 

Delivering media-info merely relies on communica-
tion between a broker peer and the receiving peer, 
making it easy to measure the startup transmission 
delay. Assume that the maximum startup delay for a 
media session is D (in seconds) and the average 
network speed is BS (in bytes/second), from equa-
tion (1) listed in Section 2.2 we can derive the 
minimal size of the media block, Blen, required to 
satisfy the maximum tolerable startup delay D: 

lenlen

lenlen
len OFNFDBS

HMB
−−×

×
≥                           (2) 

Figure 8 illustrates the relationship between the 
number of media blocks, the size of media-info, and 
media size for various media objects, and reveals 
that the length of media block should be carefully 
chosen based on the media size. 

5.2 Efficiency of Bandwidth  
Utilization 

The transmission of data in the system other than 
media blocks is treated as traffic overhead, such as 
that for media-info structures, messages for broker-
ing, and other control messages within the PDL. We 
can use this criterion to evaluate the efficiency of the 
MegaDrop system. The results shown in Figure 9 
indicate that the overhead ratio arises significantly 
only when the media object is smaller than 10 kB, 
but even then is still very low at less than 2.4%. 
Given that almost all media objects are significantly 
larger than 10 kB, the MegaDrop system exhibits 
high bandwidth utilization. 
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Figure 8: Size of media-info versus media block and  
media size. 
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Figure 9: Overheads versus media size. 

5.3 Effectiveness of Bandwidth  
Aggregation 

To investigate effectiveness of bandwidth aggregat-
ing among peers, we setup an environment with four 
PCs in different specifications as shown in Table 1. 
Moreover, in this simulation, there are five video 
clips with various sizes, ranging from 200 MB to 
1000 MB, and the length of each media block is 
fixed at 256 kB for each video clips. During the 
simulation, up to 16 peers are constructed to join a 
media session by selecting PCs in sequence order of 
Table 1. That is, if a media session contains 11 
peers, then PCA6, PCA1, and PCP4 acts as three 
peers, individually while NBP3 only acts as two 
peers. We select PCA6 as the broker in all scenarios 
due to its superior equipments. Besides, to approach 
the reality of the scenario, we have limited the total 
uplink bandwidth to 1000 kB and uplink bandwidth 
to 200 kB per media connection for each peer, such 
that bartering mechanism will be triggered while 
bandwidth is running out. Therefore, during a media 
session, the join time of a peer, denoted as TJi, can 

be determined by equation (3), where N is the total 
number of peers in each test case. 

⎪⎩

⎪
⎨

⎧

≤≤
−××

−×
=

=
Ni

N
iMLen

, i
TJi 3 when ,   

)1(1024200
)2(

21when,                                 0
   (3) 

Table 1: Specifications of the simulation environment. 

Name PCA6 PCA1 PCP4 NBP3

Platform Desktop PC Desktop PC Desktop PC Notebook

CPU
AMD Athlon XP

1.6 GHz
AMD Athlon XP

1 GHz
Intel P4

 1.5 GHz
Intel P3 Mobile

1.06 GHz

RAM DDR 512 MB DDR 256 MB DDR 384 MB SD 256 MB

OS
Microsoft

Windows XP
Professional SP2

Microsoft
Windows XP

Professional SP1

Microsoft
Windows 2000

Workstation SP4

Microsoft
Windows XP

Home SP2

Network Ethernet 100 Mb Ethernet 100 Mb Ethernet 100 Mb Ethernet 100 Mb
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Figure 10: Average transmission time versus number of 
joined peers with various media size. 

Figure 10 shows the results of the simulations. 
As we expected, the average transmission time per 
media session is reduced when more peers partici-
pated in it since this enlarged the degree of band-
width aggregation. Especially for a large media ob-
ject, the descending slope is more significantly but is 
retarded at a certain constant level, indicating that 
the effects of bandwidth aggregation are limited by 
the uplink bandwidth setting in the simulation sce-
nario. 

6 EXTENSIONS TO THE 
MEGADROP SYSTEM 

Error recovery is implemented in the current 
MegaDrop system by simply dropping or retransmit-
ting a received media block that is corrupted. As 
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mentioned in Section 2, this simple scheme does 
prevent a video from being undecodable or dam-
aged, but it may induce video glitches or longer 
transmission delay. To solve this problem, path di-
versity with Multiple Description Coding (MDC) 
technique (Frank, 2005; Ivan, 2005) can be adopted 
to combine with the originated media representa-
tions in the MegaDrop system. Basic idea is that, for 
a media object, every media block can be further 
decomposed into two or more sub media blocks 
based on MDC technique. For example, each media 
block can be divided into two sub media blocks, 
consisting even and odd video frames separately. 
Then in the MSL, every original media session can 
be split into multiple sub media sessions to deliver 
these sub media blocks accordingly through path 
diversity technique. Therefore, through this method-
ology, the probability of the occurrence in video 
glitches and longer transmission delay can greatly 
reduce by conceding to video quality. Besides, we 
leave several challenges such as security and QoS 
management for the readers, as the further re-
searches to extend and consolidate the MegaDrop 
system. 

7 CONCLUSIONS 

In this paper we propose a novel layered architecture 
to realize VoD streaming services in a P2P environ-
ment. The proposed architecture implements a fully 
decentralized system running on a P2P multioverlay 
network. Unlike existing mechanisms in which cer-
tain video servers must be deployed in advance, the 
proposed architecture does not rely on any central-
ized resource allocation. Instead, every media object 
is delivered and propagated over the network, and 
every peer in the network retrieves media content 
from as well as forwards it to other peers, thereby 
acting as a miniserver. The processing and sharing 
of the same media objects by multiple peers results 
in the formation of virtual server clusters. Major 
advantages of the proposed architecture are that it 
can balance the load among peers and efficiently 
utilize the network bandwidth. 

The experimental results revealed that our ap-
proach is appropriate for serving VoD streaming, 
especially in the delivery of huge amounts of media 
data. Moreover, the participation of more peers in a 
media session can result in higher bandwidth aggre-
gation, result in a decrease in the average time re-
quired to stream a given media object. 

Finally, we have presented methods for reducing 
the probabilities of video glitches and longer trans-

mission delays by combining our original media 
representations with the promising MDC and path-
diversity techniques. These concepts are recom-
mended as topics for future research to extend and 
consolidate the MegaDrop system. 
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