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Abstract: Detecting moving objects is very important in many application contexts such as people detection, visual 
surveillance, automatic generation of video effects, and so on. The first and fundamental step of all motion 
detection algorithms is the background modeling. The goal of the methodology here proposed is to create a 
background model substantially independent from each hypothesis about the training phase, as the presence 
of moving persons, moving background objects, and changing (sudden or gradual) light conditions. We 
propose an  unsupervised approach that combines the results of temporal analysis of pixel intensity with a 
sliding window procedure to preserve the model from the presence of foreground moving objects during the 
building phase. Moreover, a multilayered approach has been implemented to handle small movements in 
background objects. The algorithm has been tested in many different contexts, in both indoor and outdoor 
environments. Finally, it has been tested even on the CAVIAR 2005 dataset. 

1 INTRODUCTION 

Many computer vision tasks require robust 
segmentation of foreground objects from dynamic 
scenes; this general assertion is particularly true for 
video surveillance applications. The most used 
algorithms for moving objects detection are based on 
background subtraction: the foreground objects are 
extracted by subtracting the current image from a 
reference background model. Therefore, the first and 
crucial step of these kind of algorithms is the 
background creation.  

Many algorithms proposed in literature in the last 
years present some common characteristics. Usually, 
independently from the applicative context, the main 
features that each background modeling algorithm 
has to handle are: 

• Presence of foreground and/or moving 
background objects during the model 
building phase; 

• Gradual and/or sudden variations in 
illumination conditions. 

Many authors have dealt with the problem of 
background modeling, as both a stand-alone task or 
a module in a complete motion detection system.  

A first group of algorithms uses  statistical 
approaches to model background pixels. In 

(Wren,1997 and Kanade,1998) a pixel-wise gaussian 
distribution was assumed to model the background. 
In (Wren,1997) the algorithm was used for an indoor 
motion detection system, whereas in (Kanade,1998) 
the authors tested the algorithm in outdoor contexts. 
However, the presence of foreground objects during 
the building phase could cause the creation of an 
unreliable model, such as in presence of light 
movements in the background objects, or sudden 
light changes. These observations suggest that 
probably the proposed algorithms work well in 
presence of a supervised training, during which ideal 
conditions are granted by the human interaction.  

The natural evolution of these approaches was 
proposed in (Stauffer,1999). In this work a 
generalized mixture of gaussians was used to model 
complex non-static background. In this way the 
great drawback of the moving background objects 
was solved by using many gaussians to model 
crucial pixels in that regions. However, the presence 
of foreground objects during this phase could 
heavily alter the reliability of the model immediately 
after the creation phase, like happened under sudden 
light changes.  

The approach proposed in (Haritaoglu,1998) was 
conceptually similar to that proposed in 
(Wren,1997). But in this work the authors did not 
construct a real gaussian distribution, while they 

422
Spagnolo P., D’Orazio T., Leo M., Mosca N. and Nitti M. (2006).
A BACKGROUND MODELLING ALGORITHM BASED ON ENERGY EVALUATION.
In Proceedings of the First International Conference on Computer Vision Theory and Applications, pages 422-427
DOI: 10.5220/0001373404220427
Copyright c© SciTePress



 

preferred to maintain general statistics for each point 
(minimum and maximum values registered, max 
difference between two consecutive values). In this 
way they cope with the movements in background 
objects, even if they waive a correct segmentation of 
foreground objects in those regions. However, like 
previous works, they could encounter misdetection 
in presence of foreground objects during the 
modeling phase. The natural improvement of this 
approach was proposed in (Kim,2004): the basic 
idea of (Haritaoglu,1998) was iterated in order to 
build a codebook for each point, providing a set of 
different possible values for each point. This 
algorithm was conceptually similar to the mixture of 
gaussians proposed in (Stauffer,1999), and the 
experimental results proposed by the authors 
appeared interesting. 

All previous approaches use statistical 
information, at different complexity level, for the 
background modeling.  

A different category is composed by the 
approaches that use filters for temporal analysis. In 
(Koller,2004) authors used a Kalman-filter approach 
for modeling the state dynamics for a given pixel. In 
(Elgammal,2000) a non-parametric technique was 
developed for estimating background probabilities at 
each pixel from many recent samples over time 
using Kernel density estimation. In (Doretto,2003) 
an autoregressive model was proposed to capture the 
properties of dynamic scenes. A modified version of 
this algorithm was implemented in (Monnet,2003, 
and Zhong,2003) to address the modelling of 
dynamic backgrounds and perform foreground 
detection. In (Toyama,1999) a modified version of 
the Kalman filter, the Weiner filter, was used 
directly on the data. The common assumption of 
these techniques was that the observation time series 
were independent at each pixel.  

All the approaches above presented were tested 
on real sequences, producing interesting results, 
even if each of them suffered in almost one of the 
critical situations listed above. The approaches that 
apparently were able to work well in every 
conditions implicitly require a supervised 
background model construction, in order to prevent, 
critical situations.  

In this work we present a background modeling 
algorithm able to face all the crucial situations 
typical of a motion detection system with an 
unsupervised approach; no assumptions about the 
presence/absence of foreground objects and changes 
in light conditions was required. The main idea is to 
exploit the pixels energy information in order to 
distinguish static points from moving ones. To make 

the system more reliable and robust, this procedure 
has been integrated in a sliding windows approach, 
that is incrementally maintained during the training 
phase; in this way the presence of sudden light 
changes and foreground objects is correctly handled, 
and it does not alter the final background model. In 
order to cope with the presence of moving 
background objects, a multilayered modeling 
approach has been implemented, combining 
temporal and energetic information. 

In the rest of the paper the details of the whole 
procedure will be explained, and then the 
experimental results obtained on real image 
sequences will be reported. 

2 BACKGROUND MODEL 

The main goal of a modeling algorithm is to create a 
reliable model limiting the memory requirements. In 
an ideal case the best background model could  be 
created by observing a-posteriori all the frames of 
the training phase; however this solution is not 
reasonable then one of the constraint of our 
approach is to work in an incrementally mode, to 
reduce hardware requirements, without losing the 
reliability.The implemented background modeling 
algorithm is based on two distinct phases; each of 
them tries to solve a particular modeling problem 
(see par. 1). 

Firstly, the energy information of each image 
point, evaluated in a small sliding temporal window, 
is used to distinguish static points from moving 
ones. In this way we are able to obtain a statistical 
background model with only the contribution of 
background points, without the effects of foreground 
objects. However, with this proposed technique, the 
small movements of the background objects are not 
included in the model. 

3 ENERGY INFORMATION 

One of the main problems of background modeling 
algorithm is their sensitiveness to the presence of 
moving foreground objects in the scene.  

The proposed algorithm exploits the temporal 
analysis of the energy of each point, evaluated by 
means of sliding temporal windows. The basic idea 
is to analyze in a small temporal window the energy 
information for each point: the statistical values 
relative to slow energy points are used for the 
background model, while they are discarded for high 
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energy points. In the current temporal window, a 
point with a small amount of energy is considered as 
a static point, that is a point whose intensity value is 
substantially unchanged in the entire window; 
otherwise it corresponds to a non static point, in 
particular it could be: 

• a foreground point belonging to a 
foreground object present in the scene; 

• a background point corresponding to a 
moving background object. 

At this level, these two different cases will be 
treated similarly, while in the next section a more 
complex multilayer approach will be introduced in 
order to correctly distinguish between them. 

A coarse-to-fine approach for the background 
modeling, is applied in a sliding window of size W 
(number of frames). The first image of each window 
is the coarse background model. In order to have an 
algorithm able to create at runtime the required 
model, instead of building the model at the end of a 
training period, as proposed in (Lipton,2002), the 
mean (1) and standard deviation (2) is evaluated at 
each frame; then, the energy content of each point is 
evaluated over the whole sliding window, to 
distinguish real background points from the other 
ones. Formally, for each frame the algorithm 
evaluates mean and standard deviation, as proposed 
in (Kanade,1998): 

1)1(),(),( −−+= ttt yxyx μααμμ       (1) 
1)1(|),(),(|),( −−+−= tttt yxyxyx σαμμασ    (2) 

only if the intensity value of that point is 
substantially unchanged with respect to the coarse 
background model, that is: 
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where th is a threshold experimentally selected and 
It(x,y) is the intensity value of point (x,y) at time t.. 

In this way, at the end of the analysis if the first 
W frames, for each point the algorithm evaluates the 
energy content as follows: 
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A low energy content means that the considered 
point is a static one and the corresponding statistics 
are included in the background model, whereas high 
energy points, corresponding to foreground or 
moving background objects cannot contribute to the 
model. The whole procedure is iterated on another 

sequence of W frames, starting from the frame W+1. 
The coarse model of the background is now the 
frame W+1, and the new statistical values (1) and 
(2) are evaluated for each point, like as the new 
energy content (4). The relevant difference with (5) 
is that now the new statistical parameters are 
averaged with the previous values, if they are 
present; otherwise, they become the new statistical 
background model values. Formally, the new 
formulation of (5) become: 
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The parameter β is the classic updating parameter 
introduced in several works on background 
subtraction ((Wren,1997), (Kanade,1998), 
(Haritaoglu,1998)). It allows to update the existent 
background model values to the new light conditions 
in the scene. 

The whole procedure is iterated N times, where N 
could be a predefined value experimentally selected 
to ensure the complete coverage of all pixels. 
Otherwise, to make the system less dependent from 
any a-priori assumption, a dynamic termination 
criteria is introduced and easily verified; the 
modeling procedure stops when a great number of 
background points have meaningful values: 

0)),((# ≅= φyxBF           (7) 

4 MULTILAYER ANALYSIS 

The approach described above allows the creation of 
a reliable statistical model for each point of the 
image, even if temporarily covered by moving 
objects. However, it is not able to distinguish 
movements of the background objects (for example, 
a tree blowing in the wind) from foreground objects. 
So, the resulting model is very sensitive to the 
presence of small movements in the background 
objects, and this is a crucial problem, especially in 
outdoor contexts. 

The solution we propose uses a temporal analysis 
of the training phase in order to automatically learn 
if the detected movement is due to the presence of a 
foreground or a moving background object. The 
starting point is the observation that, if a foreground 
object appears in the scene, the variation in the pixel 
intensity levels is unpredictable, without any logic 
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and/or temporal meaning. Otherwise, in presence of 
a moving background object, there will be many 
variations of approximately the same magnitude, 
even if these variations will not have a fixed period 
(this automatically excludes the possibility to use 
frequency-based approaches, i.e. Fourier analysis). 

In order to motivate this assumption, we have 
analysed the mean values registered in some points 
belonging to the different image regions over a long 
observation period (in fig. 1 some images of this 
sequence are reported). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: some images of the examined sequence. 

The first group is composed by static background 
points (zone A in the first image of fig. 1), while the 
second (B) is composed by moving background 
points (background points that are temporarily 
covered by a moving tree). The third group (C) 
corresponds to some static adjacent background 
points that are covered by both moving people and a 
moving tree. Finally, the last region (D) corresponds 
to a region covered by only foreground objects. We 
have chosen to select a group of points for each class 
instead of a single point to reduce the effects of 
noise; on the other hand, for each group, the selected 
points are very spatially closed, because of their 
intensity values need to be similar for a correct 
analysis of their variations comprehension. Indeed, 
the values assumed by each point in the same group 
have been averaged, and in figure 2 the temporal 
trend of each group of that zones is plotted. 

The static points (first graph) assume values that 
can be considered constant over the entire 
observation period (apart from the natural light 
changes). Points corresponding to static background 
(last graph), but covered by a foreground object (in 
this case, a person moving in the scene) assume, for 
a certain period, values that differs from the standard 
background value, but in an unpredictable way. On 
the other hand, static points that sometimes are 
covered by moving background objects (second 
graph), assume values that return many times in the 
whole observation period, even if they have not a 

fixed frequency. In the third graph the trend of a 
background point covered by both moving 
background objects and foreground ones is 
represented. Some values are admissible since they 
return several times, while some others are 
occasional, so they need to be discarded. 

Starting from this assumption, the goal of this 
step is to use a multilayer approach for the 
modelling, with the aim of discarding layers that 
correspond to variation exhibited only a few times 
for a given point. Differently, layers that in the 
observation period return more times will be taken 
(they probably correspond to static points covered 
by background moving objects). 

Formally, the main idea proposed in the previous 
section remains unchanged, but it is now applied to 
all the background layers. The concept of mean and 
standard deviation proposed in (1) and (2) become: 
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where i changes in the range (1…K), and K is the 
total number of layers. Similarly, for each frame of 
the examined sequence, the decision rule proposed 
in (3) for the updating of the parameters becomes 

thyxByxI i
C
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where the notation i indicates the examined 
layer. It should be noted that, initially, there is only 
one layer for each point, the coarse background 
model (that correspond to the first frame). 

Starting from frame #2, if the condition (10) is 
not verified, a new layer is created. In this way, at 
the end of the observation period, for each point the 
algorithm builds a statistical model given by a 
serious of couple (μ,σ) for each layer. The criteria 
for selecting or discarding these values is based 
again on the evaluation of the energy content, but 
now the equation (4) is evaluated for each layer i: 

2
),(),(),( ∫

∈

−=
Wt

i
C

ti yxByxIyxE      (11) 

Different layers are created only for those values 
that occur a certain number of times in the 
observation period. However, in this way both 
foreground objects and moving background ones 
contribute to the layer creation. 
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Region A 

Region B 

 
Region C 

Region D 
Figure 2: the position of the examined regions in the 
whole image (first line) and the trend observed in 
these regions. Red points correspond to layers that do 
not belong to the correct model, while blue points 
correspond to correct background layers. 

 
In order to distinguish these two different cases, 

and maintain only information about moving 
background objects, the overall occurrence is 
evaluated for each layer: 

ilayertheofstatistics

thetoscontributethatyxWyxOi   ),(#),( = (12) 

Oi(x,y) counts the number of sliding windows that 
contributes to the creation of the statistic values for 
the layer i. At this point, the first K layers with the 
highest overall occurrences belong to the 
background model, while the others are discarded. 

After the examination of all the points with (12), 
the background model contains only information 
about the static background and moving background 
objects, while layers corresponding to spot noise or 
foreground objects are discarded since they occur 
only in a small number of sliding windows.  

The use of sliding windows allows to greatly 
reduce the memory requirements; the trade-off 
between goodness and hardware requirements seems 
to be very interesting with respect to the others 
proposed in (Monnet,2003) and (Lipton,2002). 

5 EXPERIMENTAL RESULTS  

We have tested the proposed algorithm on different 
sequences, in different conditions, in both indoor 
and outdoor environments. In table 1 the 
characteristics of each test sequence are reported. 
Some sequences from the CAVIAR dataset 
(http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIA
RDATA1/) have also been considered.  

Each sequence represents a different real 
situation, and different frame rates demonstrate the 
relative independency from the size of the sliding 
window (in our experiments, we have chosen to use 
a sliding window containing 100 frames, 
independently from the considered context and the 
camera frame rate). 

The first test was carried out to evaluate the 
number of layers necessary for a given situation. In 
table 2 the mean number of layers for each context is 
reported. This value is smaller for more structured 
contexts (laboratory, soccer stadium), while it is 
higher in generic outdoor contexts (archeological 
site, CAVIAR seq. 1). The maximum number of 
layers in our experiments has been fixed to 5. 

Table 1: Characteristics of the test sequences. 

Test Sequence Context Frame 
rate Size 

Archeological site Outdoor 30 768X576 
Laboratory Indoor 30 532X512 
Museum Indoor 15 640X480 
Soccer stadium Outdoor 200 1600X900
Beach Outdoor 20 720X576 
CAVIAR seq. 1 Outdoor 25 384X288 
CAVIAR seq. 2 Indoor 40 384X288 
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The presence of moving background objects in 
the beach and archeological site contexts increases 
the number of layers. In more controlled 
environments, like the laboratory, probably the 
multilayer approach can be avoided. 
Table 2: the mean number of layers for each of the 
examined different contexts. 

Test Sequence Mean number of 
layers 

Archeological site 3.12 
Laboratory 1.23 
Museum 2.05 
Soccer Stadium 1.92 
Beach 4.33 
CAVIAR seq. 1 2.28 
CAVIAR seq. 2 1.54 

 
In order to have a quantitative representation of 

the reliability of the background models, we have 
chosen to test them by using a standard, consolidated 
motion detection algorithm, proposed in 
(Kanade,1998). A point will be considered as a 
foreground point if it differs from the mean value 
more than two times the standard deviation: 

),(2),(),( yxVyxByxI ii ∗>−       (13) 

A quantitative estimation of the error, 
characterized by the Detection Rate (DR) and the 
False Alarm Rate (FAR), has been used as suggested 
in (Jaraba,2003): 

FNTP
TPDR
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FPTP

FPFAR
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where TP (true positive) are the detected regions that 
correspond to moving objects; FP (false positive) are 
the detected regions that do not correspond to a 
moving object; and FN (false negative) are moving 
objects not detected. In table 3 we can see the results 
obtained on the seven test sequences after a manual 
segmentation of the ground truth. The FAR 
parameter is always under the 6%, and it is higher 
for more complex environments (i.e. beach, 
museum), while it assumes small values in more 
controlled contexts (i.e. soccer stadium). 

We have preferred to propose our experimental 
results instead of compare them with the same 
obtained by others because of we consider that 
implementation of algorithms of other authors can 
be not perfect, so the obtained results could be 
corrupted by this incorrect implementation. 

As a future work, we are including the 
background modelling algorithm in a complete 
motion detection system, able to take advantage of 
the main characteristics of the proposed algorithm. 

Table 3: Rates to measure the confidence. 
Test sequence DR (%) FAR (%) 

Archeological site 87.46 3.72 
Laboratory 93.81 4.16 
Museum 89.12 4.83 
Soccer stadium 94.31 2.26 
Beach 88.56 5.26 
CAVIAR seq. 1 89.18 3.24 
CAVIAR seq. 2 91.15 3.85 
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