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Abstract: Image rectification is the process of transforming stereo-images as if they were captured using a canonical 
stereo-system. Computationally intensive tasks, like dense stereo matching, are greatly simplified if 
performed on rectified images. We developed an efficient pipeline hardware machine which performs real-
time image rectification. The design was implemented using VHDL, thus allowing portability on many 
hardware platforms. The architecture was highly optimized, both in terms of time and resources needed. To 
increase its flexibility, the design was described based on generics (configuration parameters), which allow 
reconfiguring different characteristics and behaviour, such as: image size, number of precision bits, memory 
cache complexity. We also analyze the performance of the implemented solution on a VirtexE600 FPGA 
device. 

1 INTRODUCTION 

The process of generating dense disparity maps 
using stereo-images is a computationally intensive 
task. It involves finding for every pixel in one 
image, the correspondent pixel in the other image(s). 
Correct corresponding point is defined as the pixel 
representing the same physical point in the scene. 
Normally this is a 2-D search problem, but it can be 
reduced to a 1-D search problem if the images were 
captured using a canonical stereo-system, almost 
impossible to obtain in practice. However it is 
possible to apply a rectification process over the 
images, which will make them appear as if they 
were captured using a canonical configuration. The 
rectified images can be thought of as captured by a 
new stereo-system, obtained by rotating the original 
cameras around their optical centers. 

Image rectification consists in transforming the 
images so that the epipolar lines are aligned 
horizontally or vertically. 

The rectification process can be divided in two 
major steps: 

1. offline calculation of rectification matrices 
for each camera – performed once for a 
given calibrated stereo-system; 

2. online image rectification from sequence to 
sequence. 

As the second phase is time consuming, a need to 
be performed by additional hardware is encountered. 
In this purpose, current paper introduces a pipeline 
oriented hardware architecture, which was 
implemented in a FPGA module and performs 
online image rectification. The hardware 
architecture is described using VHDL, the image 
resolution can be dynamically set using generics 
(configuration parameters) and the entire module is 
technology independent though it can be ported on 
any FPGA device. In this context we are able to take 
advantage of the great speed technology that appears 
on market, processing time being strictly dependent 
on it. 

2 RELATED WORK 

Most of the previously stereovision hardware 
machines that appeared in literature had as purpose 
other tasks which involved image rectification as a 
pre-processing step. Moreover they don’t really 
mention any details about the rectification method 
used within this step, nor specific description about 
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the hardware design. However, Fusiello, Trucco and 
Verri (1997) and Fusiello (1998b) present a 
rectification process based on constraints imposed 
on the rectified images: principal point in position 
(0,0), equal focal lengths, unchanged optical centers. 
A similar method was presented later (Fusiello, 
Trucco and Verri, 1998a), (Fusiello, Trucco and 
Verri, 2000). It has the same principles as the 
previous one, but the constraints differ a little.  

A general purpose reconfigurable computer, the 
PARTS system (Woodfill and Herzen, 1997), consists 
of 16 tightly coupled Xilinx 4025 FPGAs and 16 
1MB SRAMs. Used for the task of stereovision, the 
system achieves a performance of 42 fps at 
computing 24 disparities on 320x240 pixel images.  

The team from Tyzx developed a hardware 
system for stereo depth computation implemented in 
ASIC (Woodfill, Gordon and Buck, 2004). The 
design is based on a highly parallel pipelined 
architecture. It uses a pair of two stereo cameras 
which connect directly to the board, though the 
latency is reduced and the PCI Bus and memory are 
not burdened with image data. Each camera is 
calibrated to define basic imager and lens 
parameters, which are used to rectify the images.  

Jia et al (2004) introduce a miniature 
stereovision system which generates high-resolution 
disparity maps using a trinocular system attached to 
a hardware module implemented in FPGA. Its 
frequency is 60 MHz, reaching up to 30 fps. The 
depth is calculated using 64 disparity levels and 256 
disparity levels with interpolation. Epipolar 
rectification is used in order to simplify the stereo 
correspondence. 

3 IMAGE RECTIFICATION 
METHODOLOGY 

The idea behind image rectification consists in 
calculating a rectification matrix, for each camera, 
based on the Perspective Projection Matrices 
characterizing both original (Po) and defined 
canonical (Pc) stereo systems. Knowing the point 
coordinates in the original image ( oi ) and the optical 
centre (c) of the camera, its correspondent point in 
World Reference Frame (WRF) is: 

oo iQcw ⋅+= −1             (1) 
where: 
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Considering the projection formula from WRF 
onto the rectified image (obtained without moving 

the optical centre of the camera), the new position of 
the image point becomes: 
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where: 
T

rrrr Svu ],,[=i  
0=+⋅ cc qcQ  – optical centre is projected in (0,0) 

In this way the corresponding position in 
rectified image can be calculated for each pixel from 
original image: 

ooocr iTiQQi ⋅=⋅⋅= −1            (3) 
where: 

1−⋅= oc QQT  – rectification matrix 
It has to be stated that rectifying an image is not 

a simple product between the rectification matrix 
and the vector representing the current pixel 
coordinates in the image. Practically the image 
coordinates are integer values and the elements of 
the rectifying matrix are real numbers. The 
approximation of the corresponding points 
coordinates could distort the rectified image. So for 
each integer coordinate of the rectified image the 
corresponding point onto the original image is 
computed using the inverse of the rectifying matrix: 
uo = t11*ur + t12*vr + t13           (4) 
vo = t21*ur + t22*vr + t23           (5) 
where: 
io = (uo, vo, 1)T – point coordinates in original image 
ir = (ur, vr, 1)T – point coordinates in rectified image 
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Such a point will have real coordinates and will 
be situated between four pixels (fig. 1). In order to 
maintain clarity, a bilinear interpolation of the four 
neighbouring pixels’ intensities will give the 
resulting intensity in the rectified image: 
uo = u + du            (6) 
vo = v + dv             (7) 
Ir(ur,vr) = Io(u,v)*(1-du)*(1-dv) + Io(u+1,v)*du*(1-dv) 
+ Io(u,v+1)*(1-du)*dv + Io(u+1,v+1)*du*dv         (8) 
where: 
Ir – rectified image intensity bitmap 
Io – original image intensity bitmap 
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Figure 1: Image rectification methodology. 

4 HARDWARE DESIGN 

There are some issues to be discussed before giving 
any details about the hardware architecture. First of 
all the entire architecture was described using 
VHDL. For that reason, some features could be 
described using generics: image dimension, image 
area to be rectified, precision. The inverse of 
rectification matrix is also given using generics. The 
design can be optimized in matters of speed and 
resources to be used inside the FPGA device. Using 
generics, one can choose for a complex design 
handling more situations, giving greater precision in 
results, or choose for a simpler design which would 
need fewer resources, but would handle less 
situations or even worse precision. 

The input consists in the original image and the 
output will be the rectified image. Practically, the 
process consists in parsing the rectified image pixel 
by pixel and applying the equations (4), (5) and (8) 
in order to determine their intensity. The hardware 
architecture was divided in three major parts (fig. 2): 

• coordinate generator and 2-D 
transformation block; 

• source image reader; 
• interpolator. 

4.1 Communication Protocol 

Each of the three blocks is an independent pipeline 
module. They communicate using a very simple 
one-way communication protocol called DFLOW 
(Data FLOW – fig. 3).  

The handshaking is simple: when source has 
valid data, it outputs the data onto the DATA bus 
and enables the WEN signal; when destination is 
ready to receive data it sets the RDY signal high; 
when both RDY and WEN are set, data transfers 

take place on each clock cycle. In this way, 
continuous transfer is possible. 
 

 
Figure 2: Image rectification hardware architecture. 

 
Figure 3: DFLOW communication protocol. 

 

4.2 Coordinate Generator and 2-D 
Transformation Block 

This part of the architecture has as purpose the 
calculation of u, v, du and dv using formulas (4) and 
(5). As the relations are similar, the same hardware 
unit can be duplicated to perform all operations. We 
will discuss further how to implement relation (4).  

It can be noticed that only adders and multipliers 
should be involved, but multipliers are slow and 
complex modules. Another observation is that ur and 
vr are increasing by 1 and rectification matrix 
elements are real number constants, though it is 
possible to perform multiplication by using repeated 
sums, on each clock cycle and storing the temporary 
result in a buffer (see fig. 4).  

Any unit of the module, which is driven by a 
clock signal, contains a register on the output. Such 
a measurement was taken in order to insert fast 
stages in the pipeline. As the entire architecture was 
designed to work with integers, generics like t11, t12, 
t13 had to be shifted to the left with a certain number 
of precision bits. This number varies depending on 
the stage of the pipeline architecture. For example, 
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in the first stage where t11 and t12 are summed 
repeatedly for a certain number of times, more 
precision bits are needed than the stage where t13 is 
added. The idea is to use only k precision bits when 
calculating ur*t11 and vr*t12 and only l (smaller than 
k) precision bits when performing the rest of the 
sums. In this way a lot of FPGA resources will be 
saved for other purposes. It can be proved that for f 
precision bits wanted in the final result, k and l 
should respect the following relations, so as to 
obtain the optimal solution in terms of resources 
required: 
l = f + 4             (9) 
k = f + 2 + log2(W + H)         (10) 
where: 
W, H – image weight and height 

 

Figure 4: Coordinate generator and 2-D transformation 
block. 
 

The design in figure 4 is configured using a set 
of generics: 

• t11, t12, t13 – first raw of rectification matrix; 
• i – number of bits to represent the integer 

part of the result; 
• f – number of bits to represent the fractional 

part of the result; 
• image width. 

The output lines are: 

• Finished – is asserted when the entire 
image was rectified; 

• Overflow – is asserted when the resulting 
position in the original image is outside; 

• Result – represents the result data bus; it is 
represented using i + f bits. 

4.3 Source Image Reader 

The large amount of storage space needed for 
memorizing the acquired frames in a stereo vision 
system well exceeds the capabilities of internal 
BRAM units. The solution is to use external 
memories, which, in most cases, are either SRAM or 
SDRAM. The former has the advantage of 
simplified access, while the latter has a higher 
capacity. Since many of the FPGA-PCI boards 
present on the market today provide SDRAM 
modules for external storage, we designed a 
component that can efficiently fetch the pixels to be 
used as the input for the interpolator. 

The input of the image reader component 
consists of a stream of pairs of pixels coordinates in 
the image space. For each such pair of coordinates, 
the image reader should provide as output a tuple of 
4 pixel intensities, corresponding to a 2x2 window 
whose top-left corner is located at these coordinates 
in the image that is stored inside the external 
storage. 

The difficulty of the task resides not in fetching 
the pixel values, but rather doing this in an efficient 
manner. It can be noticed that while the window 
sweeps the image, it usually does so by moving in 
successive partially overlapping positions. Even 
more conveniently, data is stored inside the SDRAM 
in 32-bit words, that is, 4 successive pixels are 
accessible by performing one read operation. As a 
consequence, it is possible to build an efficient cache 
that can both provide pixels at a much higher rate 
and can also significantly reduce the memory load.  

The cache will store a window of 2x2 32-bit 
words (16 pixels) from the image. The operations 
performed by the cache will be: 

• read a 32 bit word into one of the positions 
of the cache; 

• shift the cache in one of the 8 possible 
directions; 

• send the contents of a 2x2 pixel window 
over the output port. 

The phases of the computation performed inside 
the image reader module are described in what 
follows (fig. 5): 
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Window tracking involves detecting the direction 
in which the 2x2 pixel window moves relative to its 
previous position. It is a two stage pipeline process, 
in which the difference between the new and old 
coordinates is computed on a per-axis basis. 
Differences corresponding to -1, 0 and +1 are 
detected and encoded using a direction encoder, 
described in table 1. 
 

Table 1: Direction encoding. 
 

RST U- U0 U+ V- V0 V+ DIR 
1 X X X X X X NEW 
0 0 1 0 0 1 0 SAME 
0 0 0 1 0 1 0 00 
0 0 0 1 1 0 0 450 
0 0 1 0 1 0 0 900 
0 1 0 0 1 0 0 1350 
0 1 0 0 0 1 0 1800 
0 1 0 0 0 0 1 2250 
0 0 1 0 0 0 1 2700 
0 0 0 1 0 0 1 3150 
0 Otherwise NEW 

 

 
Figure 6: The internal structure of the cache. 

 

Based on the coordinates of the window and the 
movement direction provided by the window tracker 
pipeline, command generation block has the task to 
create the set of parallelized commands that should 
be carried out by the cache in order to make 
available all the pixels inside the window. The 
output of the command generator will be: 

• read – a vector of 4 bits, read(i) being set if 
it is necessary to perform a read operation 

for word number i in the cache (word 
numbering inside the cache is depicted in 
figure 6); 

• shift – one of the 8 shift directions or 
SHIFT_NONE if no shift needs to be 
carried out; 

• offset – the offset of the 2x2 pixel window 
inside the cache. This will be needed for 
carrying out the sending operation. 

At most 4 read operations may result after the 
command generation phase, corresponding to the 4 
32-bit word positions in the cache. The addresses for 
the 4 words can be immediately derived from the 
coordinates of the 2x2 pixel window, by obtaining 
the byte address (v x img_width + u) and rounding it 
down to the nearest 32-bit word (fig. 7). 
 

 
Figure 7:  Read addresses computation. 

 

Based on this observation, it is possible to 
compute the addresses in parallel with the window 
tracking and command generation phase, thus 
reducing the overall pipeline length. As address 
computation involves the use of one constant-
argument pipeline multiplier, we developed a highly 
optimized component based on Booth's Algorithm.  

The Address Generation branch and Window 
Tracking + Command Generation branch (fig. 5) 
might not have the same number of stages. For that 
reason, a Pipeline Synchronizer based on DFLOW 
handshaking protocol was introduced. 

Some of the commands may not be executed in 
parallel by the cache. This problem is solved using a 

Figure 5: Flow Diagram for Image Reader module.
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Command Serialization unit. The following 
constraints must be met: 

• only one read may be performed per clock 
cycle; 

• cache shifting must take place before or in 
the same clock cycle as the first read 
operation; 

• send operation must be performed after the 
last read for current window position is 
completed and before or in the same clock 
cycle as the first read or shift for the next 
window position takes place. 

Due to the fact not all commands will involve a 
read operation from memory, using a Command 
FIFO unit will allow them to be executed while 
SDRAM Controller performs readings for other 
commands. The result is a speedup in the process.  

The final stage of the image reader pipeline is the 
cache. Its function is to process the serialized 
commands coming from the Command Serialization 
unit through the Command FIFO together with the 
data values coming from the SDRAM Controller. 
The control logic will always schedule the shift 
operation in the first clock cycle after a command is 
loaded (if there is no pending send command), since 
it is always possible to execute it. Read operations 
are scheduled as soon as the data from SDRAM 
Controller becomes available. Send operations are 
scheduled last, after the last read operation has been 
completed. Send operations will actually be 
executed some time after the last read operation, 
when the output becomes ready. However, in order 
to ensure continuous operation of the cache, a send 
command may be pending while another command 
is being loaded into the input buffers, allowing the 
sending of data to be overlapped with the arrival of 
the next command. Nevertheless, if the sending 
operation continues to remain pending because the 
destination is not ready to receive data, the next 
command will not start execution. The cached data 
is kept in registers which are capable of executing 
the shift and read operations. The input of each of 
the four 32-bit registers is connected, through a 
multiplexer, to each of the other 3 registers and to 
the data buffer. This is, the most expensive part of 
the image reader component both in terms of 
resources and propagation delay. Further 
optimizations can be carried out by noticing that, in 
applications like image rectification, the cache will 
not be performing shift operations in all of the 8 
directions, though some of the logic may be 
eliminated. Boolean generics, for each window 
movement direction, were introduced in the VHDL 
description, to allow flexible design configuration. 

4.4 Bilinear Interpolator 

This is the final stage of the image rectification 
architecture. It performs the bilinear interpolation of 
the four neighboring intensities from the original 
image, according to du, dv offsets. 

This part includes a set o adders and 
multiplication modules. We modified formula (8) in 
such a way that that the number of multiplication 
units decrease to minimum possible. The reason is 
that a multiplication module requires a lot of 
pipeline stages. The more consecutive multipliers we 
have, the greater the number of pipeline stages we 
get. An optimized solution is presented in what 
follows.  

Consider the following bilinear interpolation 
formula: 
P = a*(1-du)*(1-dv) + b*du*(1-dv) + c*(1-du)*dv +  
         d*du*dv          (11) 

This could be written as: 
P1 = a*(1-du) + b*du = a + (b-a)*du        (12) 
P2 = c*(1-du) + d*du = c + (d-c)*du        (13) 
P = P1*(1-dv) + P2*dv = P1 + (P2-P1)*dv       (14) 

As formulas (12) and (13) can be performed in 
parallel, the interpolation process was optimized to 
only two consecutive multiplication stages. Also, the 
number of needed resources was reduced because 
the number of multiplication units decreased from 8 
to 3. 

4.5 Top-level of the Architecture 

The entire rectification process was designed to have 
two major phases: 

1. image load into memory; 
2. image transformation. 

First phase consists in loading the image from 
the software module into the SDRAM through the 
PCI bus. For that reason, a counter generating the 
address for the SDRAM is used. Communication 
with memory is performed using the DFLOW 
protocol. Second phase is designated for rectifying 
the image in memory. The Address Generator 
module is disabled and the Image Transformation 
module is put at work. A description of the top-level 
control unit and dataflow is presented in figure 8. 
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(b) 

 

Figure 8: Top-level view of Image Rectification System: 
a) control unit; b) dataflow. 

5 EXPERIMENTAL RESULTS 

The hardware design was tested using a Strathnuey 
board equipped with a Ballyderl DIME module 
containing a Virtex FPGA (model V600EFG680) 
and 128MB SDRAM. The images (640x512 pixels) 
were sent from PC through the PCI bus and the 
rectified images were read back into the PC, 
registering a total time of 17.5 ms (57 fps). Such 
amount of time is due to the fact the PCI 
communication between PC and FPGA-PCI board is 
very slow. Practically, the design working at a 
frequency of 80 MHz, waits until the image 
download and upload through PCI is performed. On 
the other hand, the time required only for rectifying 
the image (no upload and download) is about 4.5 ms 
(222 fps). Download time can be eliminated if 
images will be captured directly from camera and 
not through PCI. 

The resulting images were tested against those 
obtained with a software reference implementation. 
The similitude between both solutions can be seen in 
figure 9 (dark patterns on the margins represent 
pixels from the rectified image with correspondents 
outside the original image). 

We performed several tests concerning chip area 
usage statistics. For example, by reducing the 
number of possible window movement directions, 
the amount of chip area and operating frequency can 
be improved. In the case of the image rectification 

task, the image is swept using successive lines. This 
implies that the window movement direction can 
take at most 3 values of the 8 possible ones. The 
improvement in performance is shown in figure 10. 
Chip area improvement is the most significant, from 
around 11% down to around 7%.  

 
(a) 

 
(b) 

Figure 9: Rectified images: a) hardware results; b) 
software results. 
 

 
Figure 10: Performance can be improved by removing 
unused window movement directions. 

To test the performance of the Image Reader 
design, different image rotation matrices have been 
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used. Figure 11 shows the variation of the 
throughput (megapixels/second) as a function of the 
rotation angle, measured at a 75 MHz frequency 
(memory controller operating at the same 
frequency). 
 

 
 

Figure 11: The throughput of the image reader as a 
function of image rotation angle at a frequency of 75 
MHz. 

 

The variation of the throughput is 14% of the 
maximum value, with a minimum of 43 Mb/s 
(obtained at 1500 and 2100) and a maximum of 50.6 
Mb/s (for 900 and 2700). It can also be noticed that 
the performance for a 00 angle is less than the one 
obtained at 900. The reason is that, in the first case, 
when a cache miss is found, two read operations 
(corresponding to words 1 and 3 of the cache) are 
requested at once by the Command Generator and 
the cache must stall for one clock cycle, to perform 
the second read. In the second case, a miss will 
usually generate one read operation (words 2 and 3), 
and will not stall the pipeline (with the exception 
being the situation in which the window is in the 
middle of the cache - offset 3 - in which both words 
2 and 3 will require reading). 

6 CONCLUSIONS AND FUTURE 
WORK 

A flexible and scalable solution has been developed 
for the problem of image rectification, providing 
real-time results with configurable parameters such 
as: image resolution, number of precision bits to be 
used in calculus. The possible window movement 
directions can be freely configured as to reduce chip 
area usage and increase accepted clock frequency.  

Image quality results proved to be very close to 
the ones obtained using a reference software 
implementation. The description was made 
independent of the underlying technology, though it 
can be ported easily on other platforms.  

The processing time is very small, but the 
transfer of images through the PCI bus proved to be 
the weakest part (tests were performed with a slow 
FPGA from VirtexE family). A solution to eliminate 

such inconvenience would be to link the camera 
directly to the FPGA board and implement, inside 
the chip, an architecture which knows the 
communication protocol with the camera. In this 
way, only resulting images will have to be 
transferred through the PCI, thus saving a lot of 
time.  

An alternative solution to be investigated in the 
future consists in replacing the Coordinate Generator 
and 2-D Transformation blocks with a lookup table 
containing (with sub-pixel precision) the position in 
original image, of each pixel from rectified image. 
In this case the memory workload will increase 
inefficiently, though several SDRAM/SRAM 
modules would be needed to avoid such 
inconvenience. On the other hand, a lookup table 
based system might be used for more complex 
processes, like image rectification combined with 
image un-distortion or ground plane stereo-
correction, which require extremely complex 
operations, difficult to be implemented in a fast 
pipeline fashion. 
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