
ENGINEERING A COMPONENT LANGUAGE: COMPJAVA

Hans Albrecht Schmid, Marco Pfeifer
University of Applied Sciences Konstanz, Brauneggerstr. 55, D - 78462 Konstanz, Germany

Keywords: Components, Component language, Component composition, Component fragment, Connections.

Abstract: After first great enthusiasm about the new generation of component languages like ArchJava, ComponentJ
and ACOEL, a closer inspection and use of these languages identified together with their strong points
some smaller, but disturbing drawbacks. These might impede a wider acceptance of component languages,
which would be harmful since the integration of architecture description with a programming language
increases the emphasis on, and consequently the quality of application architecture. Therefore, we took an
engineering approach to the construction of a new Java-based component language without these
drawbacks. That means, we derived general component language requirements; designed a first language
version meeting the requirements and developed a compiler; used it in several projects; and re-iterated three
times through the same cycle with improved language versions. The result, called CompJava, which should
be fairly stable by now, is presented in the paper.

1 INTRODUCTION

The new generation of component languages, like
ArchJava (Aldrich, May 2002) (Aldrich, 2002),
ComponentJ (Seco, 2000), ACOEL (Sreedhar,
2002), and to a smaller degree, KOALA (van
Ommering, 2000) (van Ommering, 2002) made
enthusiastic about the new way of program
construction without reference handling. These
languages integrate architecture description with a
programming language. Thus, they push the more
abstract architecture-description-language (ADL)
based approach (see ADL classification framework
(Medvidovic, 2000), (Medvidovic, 1999)) forward
towards a direct use. Our experience confirms that
this increases the emphasis on, and consequently the
quality of application architecture.

However, a closer inspection and use of
component languages identified together with their
strong points some small, but disturbing drawbacks.

For example, ArchJava components behave like
classes with regard to some aspects. A component
class generates implicitly its type, and inheritance is
defined primarily as implementation inheritance
among components. Further, though a component is
not a class, it may inherit implementation from a
class. ArchJava re-defines constructs for concepts,
like interfaces, which it shares with Java. ACOEL
shows no symmetry with regard to the attachment of
code to provided and required interfaces. More
drawbacks and details are given in section 2.

It seems that these drawbacks might impede a
larger acceptance and broader use of component
languages. Therefore, we designed a new
component language that does not have these
drawbacks, following a sound engineering approach.
We derived a list of component language
requirements from the identified drawbacks. We
constructed a component language that covers the
requirements (the first version being available fall
2003). Then, we used the language in projects, and
had three iterations with improved language
definitions. Now, the language will be quite stable.

Section 3 gives an overview about distinguishing
structuring principles of CompJava, and section 4
introduces its type concept. Section 5 shows how
components are composed in a structured way from
component fragments, and section 6 shows how they
are composed from subcomponents. Section 7
presents dynamic architectures using a Web server
example.

2 LANGUAGE REQUIREMENTS

This section describes drawbacks identified in
component languages and derives specific
requirements from them. These component language
requirements complement general, but unlisted
requirements, defined by a kind of intersection of
the features of existing languages.

98
Albrecht Schmid H. and Pfeifer M. (2006).
ENGINEERING A COMPONENT LANGUAGE: COMPJAVA.
In Proceedings of the First International Conference on Software and Data Technologies, pages 98-106
DOI: 10.5220/0001320100980106
Copyright c© SciTePress

Embedded OO-Programming Language
A component language embeds a programming
language and uses its constructs to implement
components. ArchJava which embeds Java has ports
with both provided and required interfaces. It
defines the interfaces of a port either by listing, after
the keyword provides or requires, operation
specifications, or by listing method
implementations. But you cannot define the
interfaces of a port using Java interfaces. Thus, the
identical concept “interface” is described by
different constructs in the component language and
the OO-language, which is certainly a drawback.

On the other hand, ArchJava allows to derive
components from classes, like the worker
component from the class Thread (Aldrich, May
2002). But how can a component, which is not a
class, but a first-class citizen of its own, inherit
implementation from a class?

Therefore, requirement 1 is: a component
language should not reinvent constructs for concepts
it shares with its programming language. On the
other hand, it should not intermingle differing
concepts in the component language and
programming language.
Component Inheritance
ArchJava transfers the type concept of class-based
languages directly to components. It defines a
component type implicitly as the type that is
generated by a component class, and it defines
inheritance in such a way that a derived component
inherits from a base component both the component
type and its implementation.

This has two drawbacks. A definition of a
component type that is independent from the
implementation is required to define e.g. a product
line architecture or a component framework. A
product line architecture defines product component
types which are implemented by different product
components. Similarly, a component framework
defines a set of collaborating component types
which are implemented by different components.
Second, a component should not inherit the
implementation from another component, but should
be composed with the other component in order to
reuse its functionality. Therefore, requirement 2 is
that the definition of component types and
inheritance among them should be provided, but
implementation inheritance among components
should be disallowed.
Component Encapsulation
ArchJava allows that a parent component invokes
directly internal methods of a subcomponent which

are not defined by a provided port. This breaks the
encapsulation of the subcomponent. Further, a
graceful evolution is inhibited since it is not possible
that a sibling subcomponent invokes these methods
instead of the parent component at a later point of
the evolution. On the other hand, ACOEL allows
that a parent component exposes a reference to a
subcomponent in a port. When it passes that
component reference to a sibling component, ports
of the sibling component may be connected to ports
of the subcomponent. That means a component may
be at the same time a subcomponent of two different
components. This breaks a sound architectural
structure.

Requirement 3 is that a component should be
completely encapsulated, i.e. it should collaborate
only via its ports with external code. As a
consequence, a subcomponent of a component must
not collaborate with other components outside of its
parent component. Therefore, the passing of
component or port references should be restricted or
prohibited.
Interface Symmetry
ArchJava has a complete symmetry among provided
and required interfaces with regard to their
definition and their use, since a port may comprise
both of them. ACOEL (Sreedhar, 2002) has a
symmetry with regard to their definition, but not
with regard to their use. A mix-in allows to put a
filter between a provided port and the implementing
class. But it does not allow to put a filter between
the implementing class and a required port.

Requirement 4 is that the definition and the
handling of provided and required ports should be
symmetrical.
Ports and Connectors
An ArchJava port may combine a provided and a
required interface, like:
 port port1 provides m1, m2 requires m3, m4;

As usual, a port with a required interface I1 may
be connected to a port with a provided interface I2
when I2 is a subtype of I1. But an ArchJava
connector may fork the calls from a required
interface I1 to several provided interfaces like I2 and
I3 if each is a supertype of I1, and their union is a
subtype of I1, and their intersection with regard to I1
is empty. For example, with port2 and port3:
 port port2 provides m3, m6 requires m1, m5;
 port port3 provides m4, m5, m6 requires m2, m3;

ArchJava allows to connect port1, port2, and
port3 by a connect statement. If port1 would require
additionally m6 the connection would not be correct
and rejected. This is not easy to check and

ENGINEERING A COMPONENT LANGUAGE: COMPJAVA

99

understand for a programmer; it might be considered
as a new kind of spaghetti problem (without dining
philosophers). Though it is easy for a compiler to
check what happens, we should disallow it.

Requirement 5 is that the definition of ports and
connectors should be made in a way that is easily
understandable to a programmer.
Collaboration of Subcomponent Ports with Code
ArchJava defines private ports in order to connect
component code with a port of a subcomponent.
However, a private port is a contradiction in itself
since the ports of a component define its interfaces
to the outside, i.e. the points of collaboration with
external code: So what is the semantics of a private
port? It is even more confusing that ArchJava allows
to connect two private ports; what does that mean?
Our conclusion is that the concept of private ports is
questionable. Requirement 6 is that an adequate
construct should connect component code with a
port of a subcomponent.
Implementation Isomorphy with OO-Based
Approach
ArchJava generates one component class which lists
the provided methods of all public and private ports
of the component. The generated code does not
group together the methods which implement the
operations of the same port. Similarly, the required
operation of all ports are always invoked from that
list of methods. There is no way to group the
methods that invoke the operations of the same port.
This is in contrast to the usual OO-based
implementation of a component where the provided
methods of each port are implemented by a different
class, and the required methods of each port are
usually invoked by methods from different classes.

Therefore, requirement 7 is that the code
generated from a component should have at least
some isomorpy with corresponding code written in
class-based OO-languages.
Implementation Efficiency
The efficiency of the code generated from a
component language may not be a primary concern
when large architectural components with powerful
operations are realized. But in many cases, the
efficiency of a frequently performed operation
invocation matters. Consider e.g. a scanner, used
e.g. as a subcomponent of a compiler, which is
certainly not a lightweight component. If it fetches
the next character from a source file over a required
interface with a getCharacter-operation (compare
section 6), the efficiency of that frequently
performed operation invocation has a strong
influence on the scanner overall performance.

Requirement 8 is that the code generated from a
component language should have about the same
efficiency for basic constructs, like e.g. operation
invocation over connected ports, as an equivalent
(but not tricky) class-based implementation. We
state that requirement due to its importance for a
wide acceptance of component languages, though
we cannot cover it in this paper for space reasons.

3 COMPJAVA OVERVIEW

Distinguishing features of CompJava are, besides
the definition of component types and component
type inheritance, its structuring facilities for
component construction. CompJava allows not only,
like the new generation of component languages, to
compose components from subcomponents in a
structured way. It allows to compose them also in
the same way from code building blocks, or from a
combination of subcomponents and filters formed
by code building blocks.

CompJava has code building blocks called
component fragments. A component fragment might
be considered as a simply structured light-weight
component without ports: it provides exactly one
interface, and it requires usually one interface. The
provided interface of a component fragment is
explicitly indicated in the form of a Java interface;
the required interfaces of a component fragment are
implicitly given by the visible ports and plugs of the
enclosing component. There are three
implementation variants of a component fragment:
anonymous class, inner class and method block;
from which a user may select the suitable one.

CompJava introduces plugs which are used
mainly for connecting component fragments with
subcomponent ports.

Ports of subcomponents are connected with the
connect-statement to other ports or plugs.
Component fragments are attached to the inside of
the component ports or to plugs with an attach-
statement. Thus, CompJava allows to compose
1. a low-level component from component

fragments, as illustrated by Figure 1 a)
2. a high-level component from subcomponents,

as illustrated by Figure 1 b)
3. a medium/high-level component from a

combination of subcomponents and component
fragments that are used as filters, as illustrated
by Figure 1 c)

in a clear, clean and structured way.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

100

For a graphical depiction of the composition of a
component, we have enriched UML 2 component
diagrams with component fragments and plugs
(depicted by a diamond). A component fragment is
represented according to the selected
implementation as an anonymous class, an inner
class or as a method block (depicted like an
anonymous class without class head).

Comp1

(a)

«comp
fragment»

«comp
fragment»

(b)

Comp1

Comp2

Comp3

Comp4

Comp1

«comp
fragment»

«comp
fragment»

Comp2

Comp3

«comp
fragment»

(c)
Figure 1: Composition of a component from component
fragments (a), from subcomponents (b), and from a
combination of them (c).

The first version of the CompJava compiler has
been available since winter 2003/2004, three more
versions followed. The new version to be available
in fall 2006 will be integrated in Eclipse. The
CompJava Designer is a graphical design tool that
allows to draw enriched CompJava component
diagrams and to generate component code skeletons.
It is an Eclipse-plugin and in prototype stage, to be
available spring 2007.

The following sections introduce the CompJava
language and shows that their constructs satisfy the
requirements. We use a compiler as a running
example. The compiler component is composed
from a scanner, parser and other subcomponents.

4 COMPONENT TYPES

Let us consider first the scanner component. We
define the provided interface of the scanner as a
Java interface. It includes all scanner-related
responsibilities, like setting the file name of the

source file to be processed, and fetching the next
token from it.

interface ScannerIF {
 Token getNext();
 void setSource(String sourceName);
}

Since the ScannerIF interface includes all source
file processing related responsibilities, the
component type ScannerType is defined with a
single provided port.

component type r1Type { Scanne
 port in provides ScannerIF;
}

A component type defines all interfaces of a
component. That means components are completely
encapsulated: all methods in a component, except
for the main method, can be invoked from outside
only via provided ports, and all methods can invoke
an outside method only via required ports.

A port has either a provided, a required or an
event interface. A port declaration gives the port
name and after the corresponding keyword the
associated interface. An event port is similar to a
required port, but its operations must not have
results, and several provided ports of event listeners
may be connected to it. As we show in section 7, a
component type may also define port arrays or port
vectors.

A component type may extend another
component type, like an interface may extend
another one. It inherits all ports, and it may extend
the interface of inherited provided ports or may add
provided ports.

5 LOW-LEVEL COMPONENTS

This section shows how low-level components are
composed from component fragments.

Implementing Provided Ports
A component has a component type (indicated by
the ofType-clause). It implements all the provided
ports, and may invoke operations from the required
ports specified by its component type. In the
Scanner1 component (see Figure 2), an attach-
statement attaches the inside of the provided port in
to a component fragment, an anonymous class
implementing the ScannerIF interface.

ENGINEERING A COMPONENT LANGUAGE: COMPJAVA

101

Scanner1
ScannerIF

ScannerIF

in

component Scanner1 ofType Scanner1Type{
 //port in provides ScannerIF;
 attach This.in to new ScannerIF {
 private File sourceFile;
 void setSource(String name){//open sourceFile}
 char getChar(){//next char from sourceFile}
 Token getNext(){
 Token current = new Token();
 char c = getChar();
 while (c != separator){
 current.append(c);
 c = getChar(); }
 return current; }
 };
}

Figure 2: The Scanner1 component with port in providing
the ScannerIF implemented by a anonymous class.

An attach-statement may be used to attach the
inside of a provided port to a component fragment
that implements an interface I. The condition is that
I extends (including equals) the port interface; it is
checked at compile time. A component fragment
may be a Java construct: an instance of an
anonymous class, as shown, or an instance of an
inner class. The inside of a port is indicated by the
keyword This, which stands for the component
instance, followed by the port name. The declaration
of inner and anonymous classes follows the Java
standard; the only difference is that they are used
inside of a component instead of a class.

When a component, like Scanner1, is quite small
and not composed from other components, it might
be a disadvantage that its implementation generates
two object instances: one of the application-specific
component fragment and another one of the
component class. Therefore, CompJava allows also
that a component fragment is formed by a method
block. A method block is a sequence of methods that
implement a given interface (see Figure 3). A
method block is not a Java construct, but an
analogon to a Java block, which is a sequence of
statements. When different provided ports are each
attached to a method block, there is the restriction
that their interfaces must have an empty intersection.

Consequently, CompJava provides component
fragments which include method blocks, inner
classes or anonymous classes, in order to structure
the implementation of a component.

Accessing Required Ports
The Scanner mixes up two different concerns,
scanning the program character stream, and handling
of the source file to be parsed. Similarly, the

ScannerIF interface mixes up two different
concerns, accessing the tokens which the scanner
creates, and determining the source file to be parsed.
We should separate the different concerns, scanning
and source file handling. To this purpose, we define
two interfaces, TokenIF and SourceAccess:

interface TokenIF {
 Token getNext();
}
interface SourceAccess {
 char getChar();
}

The new scanner component does not include the
source file handling but fetches the source file
characters via a required interface. We define the
component type Scanner2Type with a provided
interface TokenIF and a required interface
SourceAccess:

component type Scanner2Type {
 port token provides TokenIF;
 port source requires SourceAccess;
}

The Scanner2 component attaches the token port
to a component fragment, a method block. It
implements the TokenIF and scans the source file in
order to determine the next token. When it needs the
next character from the source file, it simply invokes
the getChar-operation defined in the SourceAccess
interface via the inside of the required port source.

Scanner2

TokenIF
TokenIF

token

source

Source
Access

component Scanner2 ofType Scanner2Type {
 //port token provides TokenIF;
 //port source requires SourceAccess;
 attach This.token to TokenIF {
 Token getNext(){
 Token current = new Token();
 char c = This.source.getChar();
 while (c != separator){
 current.append(c);
 This.source.getChar(); } c =
 return current; }
 };
}

Figure 3: The Scanner2 component with port token
providing the TokenIF implemented by a method block,
and port source requiring the SourceAccess interface.

6 COMPONENT COMPOSITION

A compiler is a top-level component that is
composed from a scanner, a parser etc. For that

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

102

reason, we declare its type without any ports. The
type of the parser defines a required interface
TokenIF, and other ones which we do not consider.

component type CompilerType {}
component type ParserType {
 port ...;
 port getToken requires TokenIF;
}

Subcomponents
A component may be composed from
subcomponents. E.g. the Compiler1 component (see
Figure 4) is composed from a scanner, a parser, and
other subcomponents like a code-generator which
we disregard.

Compiler1

Parser Scanner2

«comp fragment»

main()

getToken

TokenIF

token source

Source
Access

Source
Handling

sourceHandler

interface SourceFile {
 void setSource(String sourceName);
}
interface SourceHandling extends
 SourceFile, SourceAccess { }
component Compiler1 ofType CompilerType {
 ParserType myParser = new Parser();
 Scanner2Type myScanner = new Scanner2();
 connect myParser.getToken to myScanner.token;
 plug<SourceHandling> sourceHandler;
 connect myScanner.source to sourceHandler;
 attach sourceHandler to new SourceHandling{
 private File sourceFile;
 void setSource(String name){//open sourceFile}
 char getChar(){
 //read next char from sourceFile
 }
 };
 public void main(String[] args)
 { String sourceName = args[1];
 new Compiler1();
 This.sourceHandler.setSource(sourceName);
 //start parser via a plug and port not shown
 }
}

Figure 4: Component Compiler1 composed from
subcomponents Parser and Scanner2 and a component
fragment implementing the interface SourceHandling.

A component may contain subcomponent
declarations and connect-statements that are
processed with the initialization of the component.

 A subcomponent declaration declares a
subcomponent variable, like myParser and
myScanner, of a component type; it may assign to it
an instance of a matching component created with
the new operator and the component constructor,
like a Parser resp. a Scanner2 instance.

A connect-statement connects a required port of
a subcomponent (instance), like getToken of Parser,
to a provided port of a subcomponent (instance),
like token of Scanner2, as Figure 4 shows. A
constraint checked by the compiler is that a required
port can be connected to only one provided port; but
many required ports may be connected to the same
provided port. An event port may be connected to
many provided ports. The compilation of a connect-
statement includes port-matching, i.e. checking if
the provided port interface extends (incl. equals) the
required port interface. We may use a connect-
statement also to connect a port of a subcomponent
directly with the inside of a matching port of the
(parent) component.

Connecting Subcomponent Ports with Plugs
The Compiler1 component contains a component
fragment, an anonymous class implementing the
interface SourceHandling, which the source port of
the Scanner2 should invoke. However, a connect-
statement does not allow to connect a subcomponent
port with a component fragment. Therefore, we
introduce plugs which replace private ports of
ArchJava.

A plug is a generic construct that exceeds the
generic possibilities provided by parametric
interfaces or classes. The generic expression
“plug<interface>” generates a plug of the interface
type. It might be considered as a variable on which
only a very limited set of operations may be
executed: it may be used in connect- and attach-
statements, or it may be used in a component
fragment to invoke an operation defined in the plug
interface.

The Compiler component (see Figure 4) declares
a plug of the interface type SourceHandling named
sourceHandler. The plug is used to pass operation
invocations from the required port of the scanner
subcomponent to a component fragment of the
compiler component, which does all handling of the
source file.

A connect-statement connects the required port
source of the scanner with that plug, matching at
compile time whether the plug interface extends the
required port interface. The main method, which
gets the filename of the source file passed as a
parameter, invokes the setSource-operation via the
same plug.

An attach-statement may attach a plug to a
component fragment, as shown in Figure 4. It
checks at compile time whether the interface of the
component fragment extends the plug interface. The

ENGINEERING A COMPONENT LANGUAGE: COMPJAVA

103

constraint is that the same plug may appear only
once on the left-hand side of an attach- or connect-
statement, but several times on their right-hand side
and/or be used for operation invocations.

Factoring Out SourceHandling
Suppose that we want to reuse the anonymous
source handling class with the interface
SourceHandling shown in Figure 4. Then we should
factor it out and transform it into a separate source
file processing component with the component type
SourceType.

component type ype { SourceT
 port source provides Sourcefile;
 port accessSource provides
 SourceAccess;
}

The component Source contains a
SourceHandling component fragment that is
identical to the component fragment used by the
Compiler1 component (see Figure 4). Since we want
to attach both provided ports to the same component
fragment, we declare the plug sourceHandler of
type SourceHandling. It is attached to the
component fragment with an attach-statement. The
inside of each provided port is attached to the plug
with each an attach-statement.

component Source ofType SourceType {
 plug<SourceHandling> sourceHandler;
 attach This.source to This.sourceHandler;
 attach This.accessSource to This.sourceHandler;

 private File sourceFile;
attach This.sourceHandler to new SourceHandling{

 void setSource(String name){//open sourceFile}
 char getChar(){
 //read next char from sourceFile
 }
 };
}

Figure 5: Component Source with the provided ports
source and accessSource attached to plug sourceHandler
attached to an anonymous class as component fragment.

The component Compiler2 (see Figure 6) is
identical to Compiler1, except for replacing the
SourceHanding component fragment by the Source
component. It connects the port source of Scanner2
with a connect-statement to the accessSource port of
Source. The plug setSource is declared and
connected to the source port of the Source
component with the objective that the main method
may invoke via that plug the setSource-operation of
the source port.

Compiler2

Parser Scanner2

«comp fragment»

main()

getToken

TokenIF

token source

Source
Access

Source
file

setSource

Source

accessSource

source

component Compiler2 ofType CompilerType {
 ParserType myParser = new Parser();
 Scanner2Type myScanner = new Scanner2();
 SourceType mySource = new Source();
 connect myParser.getToken to myScanner.token;
 connect myScanner.source to
 mySource.accessSource;
 plug u ile> setSou e; <So rcef rc
connect This.setSource to mySource.source;

 public void main(String[] args)
 { String sourceName = args[1];
 new Compiler2();
 This.setSource.setSource(sourceName);
 //start parser via a plug and port not shown
 }
}

Figure 6: Component Compiler2 composed from
subcomponents Parser, Scanner2 and Source.

7 DYNAMIC ARCHITECTURES

The language constructs described so far allow to
construct component systems with a static
architecture, i.e. a static hierarchy of collaborating
component instances. Though that is sufficient for a
large class of systems, there are other ones that
require a dynamic creation and connection of
components.

A component instance may be created
dynamically in a method of a component fragment
with a new-operator and component constructor in
the same way as shown e.g. in Figure 4.
Dynamically created components are connected at
run-time with a reconnect-statement which is similar
to a connect statement. A component should
document explicitly all kinds of architectural
interactions that are permitted between its
subcomponents. To this purpose, a component uses
connection patterns (as introduced by ArchJava
(Aldrich, May 2002) (Aldrich, 2002)) to describe
the set of connections that can be made at run-time
using reconnect-statements.

Since in a dynamic architecture, a component
may have a variable number of subcomponents of
the same type, we introduce component arrays and
vectors (as a parametric Vector parameterized with a
component type). Since it may also be required that
a connection is made from the port of a component
to a variable number of sibling components, we

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

104

introduce port arrays or port vectors as arrays or
parameterized vectors of an interface type.

Though the primary emphasis of component and
port arrays resp. vectors is on dynamic architectures,
they may be of use also for static architectures with
repetitive elements.

For example, consider a WebServer component.
It has one Router and many Worker subcomponents.
The Router receives incoming HTTP-requests and
passes them through a required port of the port array
workers to the connected Worker subcomponent that
serves the request. The WebServer starts the Router
via its provided port start and the plug start.

Figure 7 shows a shortened version of the
WebServer. The running version with about three
times the length of the presented version may be
obtained from the authors. We present, in contrast to
(Aldrich, May 2002), an optimized solution that
reuses idle Worker instances and their connections.
A Worker contains a WorkerThread class. When an
httpRequest is invoked via the serve port of a
Worker, the WorkerThread is (re-) started by a
notify-statement and takes up work with a call of its
method handleRequest. When it has finished the
processing of an HTTP-request, it goes into a wait
state.

The WebServer has declared an array of Worker
components. It connects the provided serve port of
each Worker instance after its creation dynamically
to the matching port of the required port array
workers of the Router component.

The WebServer performs the administration of
the Worker instances in the method block
implementing the WorkerAdministration interface,
which is attached to the adminWorker plug. It has a
setIdle-operation which is invoked by a Worker after
having finished the processing of an HTTP-request,
and similar operations. The requestWorker-
operation checks if an idle Worker is available, and
returns its index. Otherwise, it creates a new Worker
instance if the maximum worker number is not yet
reached. It connects dynamically a Worker’s serve
port to the matching port of the workers port array
of the Router, and its required adminWorker port to
the adminWorker plug.

The WebServer has connected the required
request port of the Router to the adminWorker plug.
In that way, both the Router and all Worker’s can
invoke operations of the worker administration, like
setIdle or requestWorker when required.

The code of the WebServer component is easy to
understand, in contrast to the code shown in
(Aldrich, May 2002).

Worker
Administration

WebServer

Router Worker

serve

RequestIF[]
StartIF

start

start

request

Worker
Administration

«Method Block» adminWorker

admin
WorkerStartIF

Worker
Administration

RequestIF

workers

interface StartIF {
 void listen();
}
interface WorkerAdministration {
 void requestWorker();
 void setIdle(int workerId);
}
interface RequestIF {
 void httpRequest(InputStream in,
 OutputStream out);
}

component type WebServerType { }
component type RouterType {
 port start provides StartIF;
 port request requires WorkerAdministration;
 port workers requires RequestIF[];
}
component type Type { Worker
 port serve provides stIF; Reque
 port adminWorker requires WorkerAdministration;
}

component WebServer ofType WebServerType {
 final RouterType theRouter = new Router();
 WorkerType[] workers = new WorkerType[10];

 plug<StartIF> start;
 plug<WorkerAdministration> adminWorker;
 connect theRouter.request to This.adminWorker;
 connect This.start to theRouter.start;
 connect pattern RouterType.workers to
 WorkerType.serve;
 connect pattern WorkerType.adminWorker to
 plug<WorkerAdministration>;

 public static void main(String[] args) {
 new WebServer(...).run();
 }
 void run() {
 This.start.listen();
 }
attach
 void setIdle(...) { ...}

 This.adminWorker to WorkerAdministration {

 int requestWorker(){
 if(no worker idle & workerID < maxWorkerID){
 workers[workerID] = new Worker(dir, workerID);
 reconnect workers[workerID].adminWorker to
 This.adminWorker;
 reconnect theRouter.workers[workerID] to

 return workerID; }

 workers[workerID].serve;

 //other methods...
 } };
}
component Router ofType RouterType {
 //port start provides StartIF;
 //port request requires WorkerAdministration;
 port workers = new RequestIF[10];
 attach This.start to StartIF {
 void listen() {
 ServerSocket server = new
 ServerSocket(This.request.getPort());
 while (true) {
 workerID = This.request.requestWorker();
 Socket sock = server.accept();
 This.workers[workerID].httpRequest(

ENGINEERING A COMPONENT LANGUAGE: COMPJAVA

105

 sock.getInputStream(),sock.getOutputStream());
 } }};
}
component Worker ofType WorkerType {
 //port serve provides RequestIF;
 //port adminWorker requires WorkerAdministration;

 BufferedReader in; // HTTP-request
WorkerThread myThread; //started by constructor

 PrintWriter out; // HTTP-response
 attach This.serve to RequestIF{
 synchronized void httpRequest(
 InputStream in, OutputStream out){
 this.in = new BufferedReader(new
 InputStreamReader(in));
 this.out = new PrintWriter(new BufferedWriter(
 new OutputStreamWriter(out)));
 myThread.notify();
 }
 };
 class WorkerThread extends Thread {
 //several data attributes and methods
 protected void handleRequest() {
 // open requested file and send answer ...
 out.println("HTTP/1.0 200 OK");
 // ... and file contents to Browser
 }
 public synchronized void run() {
 while (true) {
 this.wait();
 handleRequest();
 This.adminWorker.setIdle(this.workerNo);
 } }
 } //end WorkerThread
}

Figure 7: Component WebServer composed from a worker
administration component fragment together with one
Router and a variable number of Worker subcomponents

8 CONCLUSIONS

CompJava, to be available for a wider use in fall
2006 via http://www-home.fh-konstanz.de/
~schmidha/, composes components in a clear and
simple way from two kinds of building blocks:
component fragments and subcomponents. We have
introduced component fragments that may be
considered as very simply structured lightweight
components without ports. There are three
implementation variants covering different
performance and reusability requirements.
Component fragments allow to structure low-level
components in an adequate way, and they serve as
filters for medium to high level components.

These building blocks with well-defined and
clear interfaces are attached/connected either
directly or via plugs to themselves or to ports of the
parent component.

Clean and efficient dynamic architectures are
composed from dynamically instantiated and
connected subcomponent instances together with
component arrays and port arrays resp. vectors.

CompJava has been extended for use as a
distributed component language as described in
(Schmid, 2005).

REFERENCES

Aldrich, J., Chambers, C., Notkin, D., 2002, May.
ArchJava: Connecting Software Architecture to
Implementation. In Procs ICSE 2002, May 2002.

Aldrich, J., Chambers, C., Notkin, D., 2002. Architectural
Reasoning in ArchJava. In Procs ECCOP 2002,
Springer LNCS, Berlin.

Aldrich, J., Sazawal, V., Chambers, C., Notkin, D., 2003.
Language Support for Connector Abstractions. In
Procs ECCOP 2003, Springer LNCS, Berlin.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

Medvidovic, N., Rosenblum, D.S., Taylor, R.P., 1999,
May. A Language and Environment for Architecture-
Based Software Development and Evolution. In Procs
ICSE 1999.

Medvidovic, N., Taylor, R. P., 2000. A Classification and
Comparison Framework for Software Architecture
Description Languages.

van Ommering, R., van der Linden, F., Kramer, J., Magee,
J., 2000, March. The KOALA Component Model for
Consumer Electronics Software. In IEEE Computer.

van Ommering, R., 2002. Building Product Populations
with Software Components. In Proc. ICSE 2002.

Seco, J. C., Caires, L., 2000. A Basic Model of Typed
Components. In Procs. ECOOP 2000, Springer
LNCS, Springer, Berlin.

Schmid, H. A., Pfeifer, M., Schneider, T., 2005. A
Middleware-Independent Model and Language for
Component Distribution. In Proc. SEM 2005, ACM
Press, New York.

Sreedhar, V. C., 2002, May. Mixin’ Up Components. In
Procs ICSE 2002.

Szyperski, C., 1997. Component Software, Beyond
Object-Oriented Programming. Addison-Wesley

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

106

