
TOWARDS ANCHORING SOFTWARE MEASURES
ON ELEMENTS OF THE PROCESS MODEL

Bernhard Daubner and Bernhard Westfechtel
Bayreuth University, Applied Computer Science I

95440 Bayreuth, Germany

Andreas Henrich
Bamberg University, Media Informatics

96045 Bamberg, Germany

Keywords: Automatic software measurement, anchoring software measures, process models, measurement tool, maven.

Abstract: It is widely accepted that software measurement should be automated by proper tool support whenever possible
and reasonable. While many tools exist that support automated measurement, most of them lack the possibility
to reuse defined metrics and to conduct the measurement in a standardized way. This article presents an
approach to anchor software measures on elements of the process model. This makes it possible to define
the relevant software measures independently of a concrete project. At project runtime the work breakdown
structure is used to establish a link between the measurement anchor points within the process model and the
project entities that actually have to be measured.
Utilizing the project management toolMaven, a framework has been developed that allows to automate the
measurement process.

1 INTRODUCTION

Effective management of software development pro-
jects requires permanent assessment of both the ac-
tual projects and the underlying development pro-
cesses. Managers need to control projects quantita-
tively in order to maximize estimation accuracy based
on historical project data, to minimize risks and time-
to-market, and to reliably reproduce the related pro-
cesses (Auer et al., 2003). As the continuous col-
lection and analysis of measurement data is crucial
in tracking and managing software development pro-
cesses efficiently, the measurement process must be
automated by proper tool support whenever it is pos-
sible and reasonable.

Today many tools are available to compute certain
measures about software artifacts like source code, to
store measurement data in a database and to create the
corresponding reports. Also general frameworks and
guidelines have been proposed to integrate software
measurement into the software engineering environ-
ment (Basili and Rombach, 1988), (Kempkens et al.,
2000), (Münch and Heidrich, 2004). Finally there ex-
ist measurement approaches likeGQM (Basili et al.,
1994) andPSM (McGarry et al., 2002) that support
the project manager to define what measures to col-

lect.

Within the above mentioned measurement frame-
works it is often stressed that models and metrics de-
fined for the whole organization should be reused to
make measurement results comparable and to build
up an experience base that can be used to assess future
projects. In order to assure comparability of measure-
ment results, measurement must be integrated into the
software development process for a new project be-
fore project execution starts (Kempkens et al., 2000).

Concerning these last two aspects we think that
there exists no proper tool support that provides both
automated software measurement and reuse of al-
ready defined metrics. Moreover, it should be possi-
ble to implement the measurement program on top of
an existing software development process. Hence, we
suggest to anchor the software measures on elements
of the applied process model. Thus the software mea-
sures that have to be collected can be determinedex
anteand independently of a concrete project. This al-
lows to define in advance, which software measures
have to be computed on every software development
project in order to make these projects comparable.

We will show within the next section that this ap-
proach is fairly new since the other published ap-
proaches either lack tool support for automated mea-

232
Daubner B., Westfechtel B. and Henrich A. (2006).
TOWARDS ANCHORING SOFTWARE MEASURES ON ELEMENTS OF THE PROCESS MODEL.
In Proceedings of the First International Conference on Software and Data Technologies, pages 232-237
DOI: 10.5220/0001318502320237
Copyright c© SciTePress



surement or are based on a special process model that
is needed in order to provide automatic measurement.

2 RELATED WORK

The need for software measurement has been widely
accepted and there exist many commercial software
measurement tools. In (Auer et al., 2003) a sur-
vey on up-to-date measurement tools has been con-
ducted. Only two out of five products were able to
collect measurement data automatically. These tools
(MetricCenter1 and ProjectConsole2) mainly focus
on software measures concerning the whole project
(number of requirements, number of defects, etc.).
These kinds of tools are certainly useful in order to
provide a management view on ongoing projects and
are also described in terms ofproject dashboards
(Selby, 2005). But we think that they hardly pro-
vide support for reuse of the defined metrics to enable
more fine granular comparisons between projects.
This aspect is addressed by theSoftware Project Con-
trol Centersdecribed in (M̈unch and Heidrich, 2004)
including a reference model of concepts and defini-
tions around SPCCs. A tool support for the proposed
architecture however is not yet available.

In (Lott, 1996) a framework is presented to inte-
grate measurement and process models in a way that
supports automation of “measurement-based feed-
back”. Automated support for measurement-based
feedback means that software developers and main-
tainers are provided with on-line and detailed infor-
mation about their work. Lott has realized his ap-
proach by implementing a dedicated process-centered
software engineering environment. Hereby the sys-
tem informs the users about the tasks that they are
expected to perform and collects data that are associ-
ated with the realization of these tasks. However most
of the data is not measured automatically but must be
provided by the user by means of a form-based inter-
active tool.

Also the APEL (Abstract Process Engine Lan-
guage) (Dami et al., 1998) has been developed as
process modeling and controlling framework with in-
tegrated measurement. It allows the user to link the
measurement model with the process model in order
to control which measures should be collected at what
stages in the process. Since APEL acts as a workflow
engine the automatic support it provides only works
if the processes are exactly executed in the way they
are specified.

In (Kempkens et al., 2000) a framework for inte-
grated tool support within measurement programs is

1http://www.distributive.com
2http://www.ibm.com/developerworks/rational/products

presented, which gives guidelines for setting up mea-
surement tool support for software development pro-
cesses. Hereby the framework allows companies to
use their existing tools and processes. Within the pre-
sented case studies however much of the data collec-
tion was done manually and no evidence has been
given for the demanded ”reuse of models and met-
rics”.

Finally, a contrary approach has been presented by
Johnson within his conference paper ”You can’t even
ask them to push a button: [. . . ]” (Johnson, 2001),
where he introduced the approach of his toolHacky-
stat. The Hackystat software uses sensors to gather
the activities of each user within the software devel-
opment environment. Thus it analyses and logs what
kind of work (programming, testing, modeling, etc.)
the user is just performing. Hereby the system acts
unobtrusively and the user is in no way interrupted
within his work. It is however not easy to interpret the
vast amount of data collected by Hackstat in a mean-
ingful way.

3 ANCHORING SOFTWARE
MEASURES

3.1 Software Measures in the
Context of Process Models

Our aim is to describe a standardized way to inte-
grate software measurement into the software devel-
opment process in order to make software develop-
ment projects comparable with respect to the applied
software measures and the way the software measures
are collected.

The crucial point is that especially those software
measures that are relevant to the project at manage-
ment level are fixed independently of the concrete
project. Software measures that generally have to be
collected are for instance determined at the introduc-
tion of a company wide measurement campaign (Mc-
Garry et al., 2002), are derived from tactical or strate-
gical company goals with frameworks like theGoal
Question Metric Paradigm(Basili et al., 1994) or are
determined by a process evaluation methodology like
the Capability Maturity Model Integration (CMMI)
(Chrissis et al., 2003).

This insight leads directly to our approach to an-
chor the software measures on elements of the process
model, because the process model is the basis that all
the projects we want to measure will build on.

The process model structures the software develop-
ment process into units typically called phases, dis-
ciplines or activities. Here we can distinguish be-
tween fine granual process models like theV-Modell-

TOWARDS ANCHORING SOFTWARE MEASURES ON ELEMENTS OF THE PROCESS MODEL

233



XT3, which serves as the standard process model in
Germany for managing government IT development
projects, and more “pragmatic” process models like
the Rational Unified Process(Kruchten, 2003) that
contain guidelines about the workflows to operate on.
One interesting question in this regard is how certain
work efforts are distributed over the activities. For
example one would expect that most of the program-
ming effort is spent on activities belonging to the im-
plementation phase. But is is not unlikely that pro-
gramming efforts also are carried out within the scope
of analysis related activities if requirements have to
be clarified by means of prototypes. It might even
be possible, if the development is accomplished in an
agile way, that most of the programming effort is ac-
cumulated during analysis activities.

In order to monitor this we suggest to anchor the
appropriate size measures on the relevant elements of
the process model. Thus, we get software measures
like

• LOC within the scope of programming related ac-
tivities and

• LOC within the scope of analysis related activities

These measures use elements of the process model as
anchor points and not concrete artifacts.

3.2 The Work Breakdown Structure

This yields to the demand to identify the artifacts that
have been created or modified within the scope of a
certain activity of the process model in order to mea-
sure their sizes respectively. For this purpose we uti-
lize the work breakdown structure of the project as
link between the process model which the project is
based on and the above mentioned artifacts.

The work breakdown structure (WBS) (Project
Management Institute, 2001) represents the structure
of a project and contains the essential relationships
between the elements of a project. The project is
structured in a hierarchical manner into subtasks and
work packages. This leads to a tree structure as shown
in Figure 1, which contains all project activities that
have to be performed within the individual develop-
ment phases.

Identifying Artifacts Utilizing Wbs Codes

Since the WBS is based upon the activities of the pro-
cess model, we can assume that for each activity of
the process model a corresponding work package ex-
ists within the work breakdown structure. Thus we
can reduce the above demand to identify the artifacts
associated with a certain activity to the determination
of the artifacts that have been created within a certain

3http://www.v-modell-xt.de

Figure 1: Work Breakdown Structure with decade code
scheme.

work package. This however is possible by means of
the identifying key (WBS Code) that usually each el-
ement of the work breakdown structure is associated
with (Project Management Institute, 2001). Using for
instance adecade code scheme(Figure 1) the num-
ber of digits unequal to 0 within the WBS code de-
termines the position of the WBS element within the
hierarchical work breakdown structure.

The WBS codes not only identify the work pack-
ages within the work breakdown structure. They also
can be used to label the artifacts that have been cre-
ated or modified within a particular work package.
For that purpose it is necessary to maintain all ar-
tifacts under version control. Whenever acommit
statement for a modified version of an artifact is exe-
cuted within the software configuration management
(SCM) system, the WBS code of this work package
has to be stored together with the change-log infor-
mation.

Thus by means of the WBS code within the change-
log information of the SCM system the artifacts and
also the changes of the artifacts are associated with
the corresponding activities of the process model.
And software measures that have been anchored on
elements of the process model can be applied respec-
tively.

Cross-Project Software Measurement

Since companies usually perform several similar soft-
ware development projects, in the course of the time
a standard work breakdown structure is established
based on the company-specific process model. The
standard WBS serves as basis for the concrete work
breakdown structures used in the individual projects
(Futrell et al., 2002). For the latter this standard work
breakdown structure has to be extended or shortened
respectively.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

234



The common elements of the WBS however keep
hold of the same WBS code. Utilizing this standard
work breakdown structure makes the application of
software measures anchored on the process model
also in a cross-project manner possible. Those soft-
ware measures that are associated with the company-
specific process model can be collected by means of
the cross-project uniform WBS codes of the corre-
sponding subtasks and work packages.

3.3 Agile Software Development

In Section 3.1 we have explained our approach con-
sidering well defined process models with a clear
and elaborated structure. This immediately leads to
the question whether this approach also is applicable
on less elaborated or less process based development
methodologies. Particularly within agile development
methodologies it is not very common to establish a
work breakdown structure (Beck, 2004), (Cockburn,
2001) that our approach needs to identify the artifacts.

The apparently obvious idea to collect software
measures within the scope of the individual itera-
tions of the agile development process does not lead
to any benefit in order to compare several develop-
ment projects or to assess the progress of the ongoing
project.

But also software projects using an agile develop-
ment style can be structured into at least two dimen-
sions. First of all there are several kinds of activ-
ities to distinguish that are performed during a de-
velopment project. Ambler for example mentions in
the style of the RUP the “agile disciplines”Model-
ing, Implementation, Test, Deployment, Configura-
tion Management, Project ManagementandEnviron-
ment (Ambler, 2002). In addition to that the soft-
ware units that are created can be categorized accord-
ing to their function. Here one can think ofapplica-
tion logic, presentation, data management, transac-
tion management, logging etc. . This means that the
activities of an agile software project can be mapped
into a matrix with the axesdiscipline and function.
Therefore also the artifacts produced within an agile
project can be tagged within the SCM system with 2-
tupels that inform about the discipline they have been
created in and the function they have.

Thus, regardless of the existence of a work break-
down structure, the artifacts under version control and
the time records within the time recording system can
be tagged with codes that identify the implemented
functionality and the discipline within that scope the
effort has been performed. These codes provide a
“generic project plan” and we can use the elements
of this “generic WBS” to anchor our software mea-
sures on. In Section 4.3 we will demonstrate this agile
application of our measurement approach on a small
development project.

3.4 Preferred Usage of Our
Approach

We think that this measurement approach is prefer-
ably suitable for measures that are relevant for project
controlling. Here often the measuressize, time, ef-
fort, defectsandproductivityare mentioned (Russac,
2002), (Putnam and Myers, 2003). For these mea-
sures our approach supports automatic measurement
and reuse.

The only thing our approach needs is that all
projects are based upon a consistent skeletal struc-
ture. This can be a standard WBS for process-based
development projects or a discipline-function-matrix
for agile projects. The skeletal structure provides the
numbering scheme in order to tag the produced ar-
tifacts within the SCM system or administrative in-
formation like time records within the time recording
system.

4 INTEGRATING AND
AUTOMATING SOFTWARE
MEASUREMENT

4.1 The Project Management Tool
Maven

In order to continuously measure the software devel-
opment process and to get the required feedback on
process improvement attempts the collection of the
software measures has to be automated and must be
integrated into the development process. Implement-
ing our approach we have restricted ourselves to Java
projects. This allows us to use the softwareMaven
from theApache Project4. Maven is a tool that sup-
ports the management and the development process of
Java projects. On the one hand it supports the devel-
oper at the so calledbuild process, i.e. Maven com-
piles the source code and considers thereby depen-
dencies like additional libraries that have to be made
available first. With this respect Maven can be re-
garded as an alternative toAnt5.

In addition to that it provides means to hold im-
portant information about project members, project
ressources (e.g. documents, licences) and about the
software configuration and bug tracking systems that
are used within the project. Using plugins, the func-
tionality of Maven can be extended anytime. The plu-
gins thereby can access the project information and
thus for instance access the software configuration

4http://maven.apache.org
5http://ant.apache.org

TOWARDS ANCHORING SOFTWARE MEASURES ON ELEMENTS OF THE PROCESS MODEL

235



system in a generic manner without the need to know
the exact type of the SCM software.

4.2 Measurement Transmitters for
Software Measures

At this point we join and use Maven plugins in or-
der to implement what we callmeasurement trans-
mitters. In climate research measurement transmit-
ters are used for instance to measure rainfall. A soft-
ware measurement transmitter however is a Maven
plugin that is capable of computing a certain soft-
ware measure. For example aJavaLOC measure-
ment transmitter is able to determine theLines of
Codeof Java program files. And as a rainfall measure-
ment transmitter can be set up at different locations
theJavaLOC measurement transmitter can likewise
be configured in that way with the Maven XML con-
figuration file that only such code lines are counted
that have been created within the scope of a certain
element of the process model.

We do this by anchoring the measurement transmit-
ter on the corresponding work package of the WBS
using the XML configuration file of the plugin.

Querying the software configuration management
system, which also is referenced within the Maven
configuration, and utilizing the change-log informa-
tion, it is possible to identify such source code files
(including the revision numbers) that have been cre-
ated or modified within the scope of the mentioned
work packages. Now the affected versions of these
source files successively have to be checked out in or-
der to measure their changes in size in LOC.

Measurement transmitters also can be combined.
For example aJavaLOC measurement transmitter
can be combined with anEffort measurement
transmitter which leads to a simpleProductivity
measurement transmitter. First theJavaLOC mea-
surement transmitter has to determine the code size.
Then theEffort measurement transmitter deter-
mines the expenditure of time by querying the time
recording database. The results refer to the same work
packages. Thus, the productivity during the treatment
of these work packages can be computed.

4.3 The Maven Measurement
Framework

We call our implementation of this measurement ap-
proach on the top of Maven theMaven Measurement
Framework (MMF). It is a framework because it con-
sists of a collection of API functions that are invoked
by Maven plugins which thereby implement the mea-
surement transmitters. The API provides the applica-
tion logic like analysing the change-logs of the SCM

system, querying the time recording database for ef-
fort information about certain work packages or ap-
plying software measures on source code files. Thus
we can provide Maven plugins for arbitrary software
measures by combining these API calls respectively.
Within the Project Object Model, the central XML
configuration file of all Maven projects, the project
manager can select which Maven plugin of our frame-
work should be used and what parameters should be
passed to it, in order to define the measurement scope.

Example Use of the Maven Measurement
Framework

We have evaluated our approach on two software de-
velopment projects that have been conducted by stu-
dents within the bachelor’s study courses in computer
science at Bayreuth University. Two student teams
had to implement a client for aMancalagame6. As
the corresponding server containing the data for the
actual state of the game was alread on-hand the stu-
dents essentially had to implement the GUI and the
application logic for the client. The latter also com-
prised the implementation of a game tree in order to
find possible moves.

With our measurement framework we have moni-
tored the development progress of the two teams (Fig-
ure 2). The size of the Java sources is counted inNon
Commenting Source Statements7. It can be seen that
team 1 at first has put its focus on the development
of the GUI and has implemented the application logic
not until the last four days. On the contrary, team 2
has equally developed both components in parallel
from the beginning. This measurement based anal-
ysis has been verified by the resulting programs. It
could be seen that the GUI of team 1 was more elab-
orate, whereas the program of team 2 was technically
superior.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 12  14  16  18  20  22  24  26  28

C
od

e 
S

iz
e 

[J
av

aN
C

S
S

]

Calendar Day (March 2006)

Development Progress

GUI 1
Appl. Logic 1

GUI 2
Appl. Logic 2

Figure 2: Comparison of the Implementation Progress of
two Teams.

6http://en.wikipedia.org/wiki/Mancala
7http://www.kclee.de/clemens/java/javancss/

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

236



5 CONCLUSION

The automatic collection, interpretation and visual-
ization of software measures is a complex task. The
aim of this approach is to provide a lightweight
tool for project managers to assess their development
projects and the applied software process. The an-
choring of software measures on elements of the pro-
cess model enables the project manager to define soft-
ware measures in advance before a concrete project
starts. This allows for comparison of distribution ra-
tios of effort and time spent on the activities of several
projects in order to assess the progress of the current
project or the productivity of the individual projects.

Therefore we think that with our approach to an-
chor software measures on elements of the process
model and to identify by means of the work break-
down structure the entities that have to be measured
we have found a practicable tradeoff between the au-
tomatic collection of information and the additional
effort the developers have to perform.

The developers have to record their activities by
indicating the associated WBS code within the time
recording system. Furthermore these references to the
work breakdown structure must also be maintained
within the software configuration management and
the bug tracking system. This is however a common
modus operandi (Selby, 2005).

With our approach we gain the possibility to collect
certain software measures in a standardized way that
allows the cross-project comparison of the measure-
ment results, because we define the entities to mea-
sure already before the start of the individual projects
on the basis of the process model. The actual compu-
tation of the software measures is realized automati-
cally at project runtime using Maven.

REFERENCES

Ambler, S. (2002).Agile Modeling: Effective Practices for
eXtreme Programming and the Unified Process. John
Wiley & Sons, New York.

Auer, M., Graser, B., and Biffl, S. (2003). A survey on the
fitness of commercial software metric tools for service
in heterogeneous environments: Common pitfalls. In
Proceedings of the Ninth International Software Met-
rics Symposium (METRICS 2003). IEEE Computer
Society.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994).
Goal question metric paradigm. In Marciniak, J. J.,
editor, Encyclopedia of Software Engineering, vol-
ume 1, pages 528–532. John Wiley & Sons.

Basili, V. R. and Rombach, H. D. (1988). The TAME
Project: Towards Improvement-Oriented Software
Environments. IEEE Transactions on Software En-
gineering, 14(6):758 – 773.

Beck, K. (2004). Extreme Programming explained: Em-
brace Change. Addison Wesley, Upper Saddle River,
New Jersey, second edition.

Chrissis, M. B., Konrad, M., and Shrum, S. (2003).CMMI:
Guidelines for Process Integration and Product Im-
provement. Addison-Wesley, Boston.

Cockburn, A. (2001). Agile Software Development.
Addison-Wesley, Boston, MA.

Dami, S., Estublier, J., and Amiour, M. (1998). APEL: A
graphical yet executable formalism for process mod-
eling. Automated Software Engineering: An Interna-
tional Journal, 5(1):61–96.

Futrell, R. T., Shafer, D. F., and Shafer, L. I. (2002).Quality
Software Project Management. Prentice Hall, Upper
Saddle River, NJ.

Johnson, P. (2001). You can’t even ask them to push a
button: Toward ubiquitous, developer-centric, empiri-
cal software engineering. InThe NSF Workshop for
New Visions for Software Design and Productivity:
Research and Applications, Nashvile, TN.

Kempkens, R., R̈osch, P., Scott, L., and Zettel, J. (2000).
Instrumenting measurement programs with tools. In
PROFES ’00: Proceedings of the Second Interna-
tional Conference on Product Focused Software Pro-
cess Improvement, pages 353–375, London. Springer.

Kruchten, P. (2003).The Rational Unified Process - An
Introduction. Addison Wesley, Boston, third edition.

Lott, C. M. (1996). Measurement-based Feedback in a
Process-centered Software Engineering Environment.
PhD thesis, University of Maryland.

McGarry, J., Card, D., Jones, C., Layman, B., Clark, E.,
Dean, J., and Hall, F. (2002).Practical Software Mea-
surement: Objective Information for Decision Mak-
ers. Addison-Wesley, Boston.

Münch, J. and Heidrich, J. (2004). Software project control
centers: Concepts and approaches.Journal of Systems
and Software, 70:3–19. Issues 1–2.

Project Management Institute (2001).Practice Standard for
Work Breakdown Structures. Project Management In-
stitute.

Putnam, L. H. and Myers, W. (2003).Five Core Metrics:
The Intelligence behind successful Software Manage-
ment. Dorset House Publishing Co., New York.

Russac, J. (2002). Cheaper, better, faster: A measurement
program that works. In International Function Point
Users Group, editor,IT Measurement: Practical Ad-
vice from the Experts. Addison-Wesley, Boston, Mas-
sachusetts.

Selby, R. W. (2005). Measurement-driven dashboards en-
able leading indicators for requirements and design of
large-scale systems. In11th IEEE International Sym-
posium on Software Metrics (METRICS 2005). IEEE
Computer Society.

TOWARDS ANCHORING SOFTWARE MEASURES ON ELEMENTS OF THE PROCESS MODEL

237


