
USING LINGUISTIC PATTERNS FOR IMPROVING
REQUIREMENTS SPECIFICATION

Carlos Videira, David Ferreira, Alberto Rodrigues da Silva
INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

Keywords: Requirements, Requirements Specification Languages, Linguistic Patterns, Parsing Techniques.

Abstract: The lack of quality results in the development of information systems is certainly a good reason to justify
the presentation of new research proposals, especially those that address the most critical areas of that
process, such as the requirements specification task. In this paper, we describe how linguistic patterns can
be used to improve the quality of requirements specifications, using them as the basis for a new
requirements specification language, called ProjectIT-RSL, and how a series of validation mechanisms can
be applied to guarantee the consistency and correctness of the written requirements with the syntactic and
semantic rules of the language.

1 INTRODUCTION

The requirements specification task is one of the
most critical steps in the development of information
systems. Not only because it encompasses the initial
activities, whose results are critical for the success of
the succeeding activities, and of the global project,
but because it deals with the identification of the
scope of the system to be developed, and the
problem to be solved. Several surveys and studies
(such as The Chaos Report, available at
http://www.standishgroup.com) have emphasized
the costs and quality problems that can result from
mistakes in the early phases of system development,
such as inadequate, inconsistent, incomplete, or
ambiguous requirements (Bell, Thayer, 1976).

The requirements concept is one of those IS/IT
concepts where there is no standard and widely
accepted definition. A classical definition from
Kotonya says that a “requirement is a statement
about a system service or constraint” (Kotonya,
Sommerville, 1998). The number of proposals, both
research and practical, has grown in the last decade,
but there is still not a universal or most accepted
practice. The consequence is the use of different
approaches for requirements specification, with
different levels of formality; the most adopted
solution is still the use of natural language to
elaborate requirements specification documents.

This paper describes how the identification of the
patterns most frequently used in requirements
documents can be used to implement a series of
techniques to improve the requirements validation
process, using a number of parsing components.
Section 2 presents an overview of the ProjectIT
research program and describes the main features of
a new requirements specification language, called
ProjectIT-RSL. Section 3 describes the architecture
and the parsing algorithms adopted, section 4
presents related work and section 5 overviews the
paper and presents the future work.

2 PROJECTIT-RSL OVERVIEW

As a result of the experience gathered from previous
research and practical projects, the Information
Systems Group of INESC-ID (http://gsi.inesc-id.pt/),
started an initiative, called ProjectIT (Silva, 2004),
whose goal is to provide a complete software
development workbench, with support for project
management, requirements engineering, and
analysis, design and code generation activities (the
work presented in this paper is partially funded by
the Portuguese Research and Technology
Foundation, under project POSI/EIA/57642/2004 -
Requirements engineering and model-based
approaches in the ProjectIT research program).
ProjectIT-Requirements (Videira, Silva, 2004b and

145
Videira C., Ferreira D. and Rodrigues da Silva A. (2006).
USING LINGUISTIC PATTERNS FOR IMPROVING REQUIREMENTS SPECIFICATION.
In Proceedings of the First International Conference on Software and Data Technologies, pages 145-150
DOI: 10.5220/0001314301450150
Copyright c© SciTePress

2004c) is the component of the ProjectIT
architecture that deals with requirements issues. The
main goal of this project is to develop a model for
requirements specification, which, by raising their
specification rigor, facilitates the reuse and
integration with development environments driven
by models. One of the results of this project is a new
requirements specification language, called
ProjectIT-RSL (Videira, Silva, 2004a and 2005).

Figure 1: ProjectIT-RSL Editor.

The definition of ProjectIT-RSL took in
consideration the format and structure of the
requirements documents of the projects we have
developed, which led to the identification of a set of
linguistic patterns associated with requirements.
From these patterns we determined the main
concepts used in requirements specification, how
they are structured, organized, and combined into
wider scope blocks. We derived a metamodel of the
concepts identified, which is also the base of a
profile (called XIS - Silva, Lemos, Matias, Costa,
2003), common to all our tools. Based on the
patterns identified, we defined the syntax of
ProjectIT-RSL, which was tested in a prototype
developed using the features provided by Visual
Studio .NET and the .NET Framework (Carmo,
Videira, Silva, 2005), and is now being supported by
an integrated set of tools, called ProjectIT-Studio.
An example of the editor of ProjectIT-RSL is shown
in Figure 1.

The complete specification of all ProjectIT-RSL
rules is beyond the scope of this paper, and can is
presented in more detail in (Videira, Ferreira, Silva
2006). ProjectIT-RSL allows the definition of
different “application units”: (1) reusable
components, which can be specified independently,
and integrated in broader systems; (2) complete
executable systems, that can “include” some of the
previous ones (reusing their functionality); (3)

architectural templates and application templates,
which allow pattern reuse and instance reuse,
respectively. The rules expressed below in EBNF
notation abstract the structure of our requirements
document.

<Requirements Document>: [<Introduction Section>]
<Application Unit>*
<Application Unit>: <Section>*
<Section>: <Sentence>*

The sentences of our requirements documents are

divided in two groups, declaration and definition
sentences; the first ones just give names to concepts,
associating them with a specific type (which is what
happens in an Operation Declaration) whereas
definition sentences detail the features of a concept
(such as an Entity Definition).

<Sentence>: <Declaration> | <Definition>
<Declaration>: <Application Unit Declaration> |
<Operation Declaration>

Our profile identified three base concepts,

Entities, Actors and Operations, defined by the
following rules, which basically state that the
complete specification of a concept can be done by a
number of sentences.

<Operation Specification>: <Operation Declaration>
<Operation Definition>*
<Actor Specification>: <Actor Definition>*
<Entity Specification>: < Entity Definition>*

For example, the number of rules currently used

for validating an entity specification is already very
large, as the following EBNF rules, although not
complete, show.

<Entity Definition>: <Entity Inheritance
Definition> | <Entity Property Definition> |
<Entity Equivalence Definition> | <Entity
Association Definition>
<Entity Inheritance Definition>: <Entity> is a
<Entity>
<Entity Equivalence Definition>: <Entity> is the
same as <Entity>
<Entity Property Definition>: <Entity> has
<Property Definition>*
<Property Definition>: [a|an|the] [<Primitive
Type>] [<Quantifier>] <Property>
<Quantifier>: <number> | at least <number> | at
most <number> | a list of | each | …
<Property>: Name | <Entity>
<Entity Association Definition>: <Entity Active
Association Definition> | <Entity Passive
Association Definition>
<Entity Active Association Definition>:
[<Quantifier>] <Entity> <Active Verb>
[<Quantifier>] <Entity>
<Entity Passive Association Definition>:
[<Quantifier>] <Entity> <Passive Verb>
[<Quantifier>] <Entity>

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

146

Although we want to allow the users of our tools
to use natural language, the parsing mechanisms, as
well as the integration with code generation tools,
imply that we must restrict the terms allowed to a
recognizable subset, such as the fixed terms we have
seen in the above rules. This set of rules, called the
TS rules (Template Substitution rules), which can be
defined and changed for a specific project, enables
the incremental evolution of these terms, just by
adding more rules, or by defining synonyms
between words. This approach not only supports
different writing styles and natural languages, but
also is the base for the definition of domain specific
languages. The rules are stored in groups related to
the sections they apply, and as such we have
specialized business entities, functional requirements
and non-functional requirements rules.

3 PROJECT COMPONENTS

As figure 2 shows, the architecture that supports
ProjectIT-RSL is composed by a number of different
components, from which we must emphasize the
roles of three of them: a text editor, two specialized
parsers and an inference engine.

pd PIT-RSL Component Model Ov erv iew

PIT-RSL Plug-in

+ RSL-EditorPlugin
+ PIT-RSL TemplatesImportView
+ PIT-RSL TextEditor

PIT-RSL Parser

+ RSL-Fuzzy Matching Parser
+ RSL-Structural Parser

PIT-RSL TextEditor

+ RSL-Editor
+ PIT-RSL Internal

(from PIT-RSL Plug-in)

«framework»
CSTools

«adapter»
RSL-to-RDF/OWL

«framework»
Jena .NET Port

+ Inference Engine
+ Knowledge Base

«import»

«import»

«import»

Figure 2: ProjectIT-RSL components.

3.1 The Text Editor

The text editor, represented by the package PIT-RSL
Plug-in, is a plug-in built upon the capabilities of
Eclipse.NET (a port we have performed of Eclipse
to the .NET platform), with features such as auto-
complete, auto-format, warnings and errors
annotations (text underline and vertical bars marks),
syntax-highlighting and suggestions.

When the user opens a requirements
specification document written in ProjectIT-RSL (a
.pit file) with the text editor, it performs an initial
full parsing of the document’s contents and starts a
read-evaluate-print cycle typical of event oriented
interfaces such as the one we are using. Upon

detection of a document manipulation, the plug-in
sets a timeout mechanism that triggers an event after
a configurable short time interval and, which
revaluates the whole document again, applying only
the parsing algorithms to new or modified
requirements. Therefore, this lazy document’s
evaluation mechanism avoids repetitive calls to the
parsing mechanism while the user is temporarily
typing. Consequently, having in mind the Model-
View-Controller (MVC) architecture’s analogy, all
model dependent views (subscribers) of the parsing
result (the RSL model) stay immutable until new
relevant changes occur in the document’s contents
presented in the text editor (a view-controller
component), instead of being constantly refreshed.

3.2 The Parsing Components

The analysis of the requirements sentences is
performed by two parsers, the RSL-Structural Parser
and the RSL Fuzzy Matching Parser. The first is
generated by a set of tools called CSTools (available
at http://cis.paisley.ac.uk/crow-ci0/) and performs
the initial parsing steps, validating the document’s
structure. The second is called PIT-RSL Fuzzy
Matching Parser and is responsible for processing
Natural Language (NL) text to find the optimal
parsing tree, by successive testing NL patterns
contained in the TS set of rules.

3.3 The Structural Parser

The generation of the Structural Parser is based upon
two script files, one that contains all the regular
expressions that recognize the tokens specified in the
PIT-RSL language definition, and the other that
contains all non-terminal and abstract syntax tree
nodes specifications.

One of the first steps of the Structural Parser is to
break in tokens its input (the requirements
document): it parses the file accordingly with the
semantic contexts introduced by the SYSTEM and
SECTION tokens. This enables the detection and
validation of the requirements hierarchical
numeration and enforces a predefined sentences’
structure for each of the above scopes. This step was
essential for early detection of potential problems
and inconsistencies.

For dealing with the nested structural scopes of
the requirements specification document, we
introduced a context stack mechanism. Additionally,
it was necessary to establish an error and warning
mechanism to allow the parsing process to continue
to run until the end of the requirements document

USING LINGUISTIC PATTERNS FOR IMPROVING REQUIREMENTS SPECIFICATION

147

file, even in the presence of non-critical errors,
introducing this way a certain level of robustness.

The output of the early stage transformations is
an abstract syntax tree (AST) which contains an
overall improved representation of the original free-
form document, where each requirement is
contained in a specific section of the nested
structural hierarchy and consists of a sequence of
words. Subsequent iterations over the produced AST
are used to supply information to other internal data
structures belonging to other components which are
responsible for the next parsing stages. Before
starting to examine the requirements’ semantics, the
parsing mechanism must first import all the
referenced documents/systems present in the section
type “Section Imports”. The import mechanism
follows a depth-first approach while parsing and
loading the documents/systems specified for import
but, for safety, it maintains a path trace which avoids
endless importing cycles and redundancies.

3.4 The Fuzzy Matching Parser

The second parsing component is called the Fuzzy
Matching Parser (FMP), which heuristically
analyses the semantics of each requirement through
the adherence of the statement’s semantics to its
syntactic structure, which is typical of requirements
sentences. Initially, this component performs a
morphological and syntactic analysis of each word
of every requirement statement. This categorization
analysis, based on each word definition and on the
context in the statement (relationship with adjacent
and related words in a sentence or paragraph), is
performed by an external component that
implements the Brill Tagger’s algorithm for part-of-
speech tagging (more information available at
http://www.cs.jhu.edu/~brill/code.html), which
marks each word by appending a set of grammatical
information tags, providing the required words’
classification for further appliance of the FMP
algorithm.

To avoid redundant “labelling” and parsing
information, we store a list of all distinct words used
in the requirements document, and implement a
hashing mechanism that assures words’ uniqueness
when adding new words to the list. The use of the
word list constitutes an efficient way of managing
the terms available and, simultaneously, improves
memory usage since it is based on the GIF format
compression algorithm (Sayood, 1996), where each
sentence is converted in a sequence of numbers,
each corresponding to a previously tagged word.

For each new requirement addition, the FMP
algorithm is called with the requirement statement
and a set of specific TS rules, depending on the
section where the requirement belongs, providing a
more refined parsing. The algorithm attempts to find
the optimal parsing tree by recursively trying, until
exhaustion, to match the requirements statement
information with the TS rule’s templates part and,
upon a successive match, substitutes the matched
information with the TS rule’s substitution part. This
recursive search is guided by a heuristic function,
which gives a score value for each TS rule applied.
In each step the algorithm iterates over all TS rules
and, for each, tries to find if there is a complete
match between it and the statement being parsed.

A complete match occurs when for all elements
of TS rule template part there is at least one match
between that template element and a word of the
requirement’s sentence. If a complete match occurs,
then for all valid matches, the algorithm applies a
substitution operation which replaces the matched
text fragment of the current requirement’s statement
by the template part of the TS rule under analysis
within the algorithm step. During the replacement
process, the template’s variables are bound to the
corresponding word values of the statement and this
new requirement’s statement is further used in the
next recursive step. Then, the algorithm determines
an overall score for the step with a parameterized
heuristic function which is based in the following
three aspects: (1) the “match quality”, which
includes the relative word positions, eventual words
inversions, and number of words discarded; (2) the
TS rule template length, number of variables, and
number of constants; finally (3) the length of the
requirement statement’s fragment that couldn’t be
parsed. At the end of the step, the algorithm calls
itself in a recursive manner executing the same
behaviour until it reaches a terminal case where no
more rules can be applied.

At the end, the algorithm verifies if the achieved
results demonstrate a minimal level of parsing
quality by comparing its score with a minimum
threshold value: if the attained score exceeds the
threshold, the algorithm returns the best results
found – the optimal parsing tree; otherwise it returns
the original requirement sentence. Since this
algorithm is intrinsically recursive, we have to
guarantee that it neither enters in an endless loop,
nor repetitively reapplies the same TS rule, which in
both cases mean a possible TS rules specification
error, and consequently a PIT-RSL linguistic
patterns’ constructs problem. To solve this issue we
have introduced a Background Thread Variable

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

148

Timeout Mechanism (BTVTM). Its goal is to run
this heavy-weight FMP algorithm FMP in the
background. It has an associated timer for only
letting the algorithm perform its tasks during a
previously specified period, thus assuring that the
algorithm eventually ends. This strategy also
guarantees that the tool always provides feedback to
the end user instead of blocking each time the
algorithm runs during the parsing process.

3.5 Inference Engine

Finally, and to allow further knowledge inference
capabilities, important for requirements validation,
PIT-Studio/RSL uses two other components: RSL-
to-RDF/OWL and Jena .NET Port. The former
contains the adapter pattern code that provides a
clean C# API for using the .NET ported Jena
framework without the necessary traces of java
syntax code. The Jena .NET Port package represents
a .NET port of Jena framework (available at
http://jena.sourceforge.net/), which supplies the PIT-
RSL plug-in with knowledge-base and inference-
engine capabilities

4 RELATED WORK

The use of natural language in the initial phases of
the software development process has received
attention for more than 20 years. Abbot (Abbot,
1983) proposed that nouns could be used to identify
classes, adjectives to identify attributes, and verbs to
identify methods. OICSI is a tool developed by
Rolland and Proix (Rolland, Proix, 1992), to help the
identification of requirements from natural language
text and available domain knowledge. Attempto
Controlled English (ACE), first described in (Fuchs,
Schwitter, 1996), is one of those approaches that use
a controlled natural language to write precise
specifications that, for example, enable their
translation into a first-order logic similar
representation (called DRS).

The use of parsing techniques to elaborate a
conceptual model from natural language
requirements is a common approach; in (Macias,
Pulman, 1993) we can find descriptions of proposals
to use a controlled natural language with a limited
syntax in order to specify requirements with more
quality. Some of the previous initiatives were
concerned with detecting problems in previously
written requirements documents (Fantechi, Gnesi,
Lami, Maccari, 2002), while others are concerned
with the elaboration of requirements documents

without such problems (Ben Achour, 1998, Denger,
2002). NL-OOPS (Mich, Garigliano, 1999) and
LIDA (Overmyer, Lavoie, Rambow, 2001) are
systems that process natural language requirements
to construct the corresponding object-oriented
model. A similar system is described in (Nanduri,
Rugaber, 1996). Although the number of initiatives
seems to justify the potential of natural language
requirements, there are studies reporting problems in
using natural language requirements specifications
(Berry, Kamsties, 2003).

A number of different approaches have
researched on the elaboration of requirements
specification using patterns of natural language.
Approaches such as (Ben Achour, 1998) and
(Rolland, Proix, 1992) reduce the level of
imprecision in requirements by using a limited
number of sentence patterns to specify a requirement
for a particular domain. Denger (Denger, 2002) has
also identified natural language patterns used to
specify functional requirements of embedded
systems, from which they developed a requirements
statements metamodel. Juristo and Moreno try to
formalize the analysis of natural language sentences
in order to create precise conceptual model (Juristo,
Morant, Moreno, 1999).

Ambriola and Gervasi proposed the CIRCE
project (sometimes defined as a “lightweight formal
method”) (Ambriola, Gervasi, 2003), which uses
natural language as the specification language, and
is also supported by fuzzy matching parsing
techniques to extract knowledge from requirements
documents and produce a formal validation of
requirements. Although Circe and ProjectIT-RSL
have some similarities, there are between them many
differences, namely in the architecture, concepts and
algorithms used, and above all, in the strategy: the
goal of CIRCE has initially been requirements
validation, and only recently integrated with model
driven approaches, whereas our goal with
requirements specification is to obtain a consistent
requirements document that enables the use of
model driven techniques and code generation.

5 CONCLUSIONS AND FUTURE
WORK

The importance of requirements specification led us
to propose a new specification language, closely
supported by a number of tools that cover most of
the requirements specification process, mainly the
specification and validation steps. This paper

USING LINGUISTIC PATTERNS FOR IMPROVING REQUIREMENTS SPECIFICATION

149

focused on the description of the parsing steps
algorithms, following others where we have
described the language ProjectIT-RSL in more detail
(Videira, Ferreira, Silva, 2006). The language and
the tools have already reached an important maturity
level, and the application in small examples has led
us to conclude that, although sharing points with
other initiatives, we think that our approach has a
unique combination of ideas that has not been tried.

In the near future we will concentrate in the
development of the requirements reuse mechanisms
and in advancing tool support. For example, we will
automate the generation of the TS Rules from the
ProjectIT-RSL abstract rules, and we will develop
plug-ins to show, in different formats, the
information stored in the knowledge base. When our
ProjectIT-RSL and its supporting tools reach a
sufficient maturity level, it is our intention to use
them in real projects, to better test and proof the
ideas we are proposing.

REFERENCES

Abbot, R., Program design by informal english
description, Communications of the ACM, 16(11), pp.
882-894, 1983

Ambriola, V., Gervasi, V., The Circe approach to the
systematic analysis of NL requirements, Technical
Report TR-03-05, University of Pisa, Informatics’
Department, 2003.

Bell, T., Thayer, T., Software requirements: Are they
really a problem?, Proceedings of the 2nd Int.
Conference on Software Engineering, pp. 61-68, 1976

Ben Achour, C., Guiding Scenario Authoring, Proceedings
of the 8th European-Japanese Conference on
Information Modeling and Knowledge Bases, pp.
152–171, IOS Press, Vamala, Finland, May 1998

Berry, D., Kamsties, E., Ambiguity in Requirements
Specification, Perspectives on Software Requirements,
eds. J. C. Sampaio do Prado Leite and J. H. Doorn,
Kluwer Academic, pp. 191-194, 2003

Carmo, J., Videira, C, Silva, A., Using Visual Studio
Extensibility Mechanisms for Requirements
Specification, 1st Conference on Innovative Views on
.NET Technologies, Porto, June 2005

Denger, C., High Quality Requirements Specifications for
Embedded Systems through Authoring Rules and
Language Patterns, M.Sc. Thesis, Fachbereich
Informatik, Universität Kaiserslautern, 2002

Fantechi, A., Gnesi, G., Lami, G., and Maccari, A.,
Application of Linguistic Techniques for Use Case
Analysis, Proceedings of the IEEE Joint International
Requirements Engineering Conference (RE’02), IEEE
Computer Society Press, Essen, Germany., 2002

Fuchs, N., Schwitter, R., Attempto Controlled English
(ACE), CLAW 96, First International Workshop on

Controlled Language Applications, University of
Leuven, Belgium, March 1996

Juristo, N., Morant, J., Moreno, A., A formal approach for
generating oo specifications from natural language,
The Journal of Systems and Software, Vol. 48, pp.
139-153, 1999

Kotonya, G., Sommerville, I., Requirements Engineering
Processes and Techniques, New York. Jonh Wiley &
Sons, 1998

Macias B, Pulman S., Natural language processing for
requirements specification, Safety-critical Systems, pp
57–89, Chapman and Hall: London, 1993

Mich, L., Garigliano, R., The NL-OOPS Project: OO
Modeling using the NLPS LOLITA, Proc. of the 4th
Int. Conf. Applications of Natural Language to
Information Systems, pp. 215-218, 1999

Nanduri, S., Rugaber, S., Requirements Validation via
Automated Natural Language Parsing, Journal of
Management Information Systems, 1996

Overmyer, S., Lavoie, B., Rambow, O., Conceptual
Modeling through Linguistic Analysis using LIDA,
Proc. of the 23rd Int. Conf. Software Engineering, pp.
401-410, 2001

Rolland, C., Proix, C., A Natural Language Approach for
Requirements Engineering, Proceedings of the 4th Int.
Conf. Advanced Information Systems, CAiSE 1992

Sayood, K, Introduction to Data Compression. Morgan
Kaufmann, 1996

Silva, A., O Programa de Investigação “ProjectIT”,
Technical report, V 1.0, October 2004, INESC-ID

Videira, C., Silva, A., The ProjectIT-RSL Language
Overview, UML Modeling Languages and
Applications: UML 2004 Satellite Activities, Lisbon,
Portugal, October 2004a

Videira, C., Silva, A., ProjectIT-Requirements, a Formal
and User-oriented Approach to Requirements
Specification, Actas de las IV Jornadas
Iberoamericanas en Ingeniería del Software e
Ingeniería del Conocimiento - Volumen I - pp 175-
190, Madrid, Spain, November 2004b

Videira, C., Silva, A., A broad vision of ProjectIT-
Requirements, a new approach for Requirements
Engineering, in Actas da 5ª Conferência da Associação
Portuguesa de Sistemas de Informação, Lisbon,
Portugal, November 2004c

Videira, C., Silva, A., Patterns and metamodel for a
natural-language-based requirements specification
language, CaiSE 2005 Forum, Porto, June 2005

Videira, C., Silva, A., A linguistic patterns approach for
requirements specification language, Euromicro
SEAA 2006 Conference, Dubrovnik, August 2006

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

150

