
A DETECTION METHOD OF FEATURE INTERACTIONS FOR
TELECOMMUNICATION SERVICES USING NEW EXECUTION

MODEL

Sachiko Kawada, Masayuki Shimokura and Tadashi Ohta
Information Systems Science, Soka University1-236, tangi-cho, hachioji-city, Tokyo, 192-8577, Japan

Keywords: Feature interaction, detecting interactions, seeming interaction, specification execution model.

Abstract: A service, which behaves normally, behaves differently when initiated with another service. This
undesirable behavior is called a feature interaction. In investigating the international benchmark for
detecting interactions in telecommunication services, it was found that many interactions that do not
actually occur (called: “seeming interactions” in this paper) were mis-detected. The reason for mis-detection
of seeming interactions is that interactions were detected using a state transition model which does not
properly represent the process flow in a real system. Since seeming interactions cause an increase in time
taken for solving interactions, avoiding mis-detection is an important issue. In this paper, a problem in
implementing a detection system without mis-detecting seeming interactions is clarified and its solution is
proposed. In addition, a new interaction detection method, which adopts the proposed solution and is based
on a specification execution model which properly reflects the process flow in a real system, is proposed.

1 INTRODUCTION

A service, which behaves normally, behaves
differently when initiated with another service. This
undesirable behavior is called a feature interaction
(hereafter abbreviated as an interaction) (Cameron,
1994). Many approaches, that formally and
automatically detect feature interactions among
given telecommunication services specifications,
have been proposed (Amyot, 2003).

However, in investigating interactions that were
described in the international benchmark for
detecting interactions in telecommunication services
(Griffeth, 2000), it was found that many interactions
that do not actually occur (which are called
“seeming interactions” in this paper) were mis-
detected.

The authors have proposed a Trigger Point
Model, (abbreviated as a “TP model”) as a new
specification execution model which properly
reflects the process flow in a real system. They have
also confirmed its effectiveness (Shimokura, 2004).
In implementing a detection system based on the TP
model without mis-detecting seeming interactions, a
change of the meaning of an event causes a problem.
To solve this problem, this paper proposes a method
for identifying the meaning of an event and a new

interaction detection algorithm based on the
proposed method and the TP model, and confirmed
that the proposed algorithm is effective.

In section 2, a concrete example of a seeming
interaction caused by a change of the meaning of an
event is explained. In section 3, the TP model that is
a basis of this paper is briefly described. In section
4, a problem in implementing a detection system is
described, and a method for identifying the meaning
of an event is proposed as a solution. In section 5, a
new detection algorithm for interactions based on
the proposed model and the TP model is proposed.
In section 6, the proposed algorithm is evaluated.

2 SEEMING INTERACTION

It is well known that telecommunication services
specifications can be described as state transition
diagrams. In this paper, hereafter, ‘specification’
means individual state transitions in the state
transition diagram for a service. These state
transitions are described formally so that a computer
can understand them. So, a service specification
means a set of all specifications for the service.
‘Execution of a specification’ means to execute a
state transition described in the specification.

190
Kawada S., Shimokura M. and Ohta T. (2006).
A DETECTION METHOD OF FEATURE INTERACTIONS FOR TELECOMMUNICATION SERVICES USING NEW EXECUTION MODEL.
In Proceedings of the First International Conference on Software and Data Technologies, pages 190-195
DOI: 10.5220/0001310301900195
Copyright c© SciTePress

‘Triggering a specification’ means to initiate
execution of the specification.

A concrete example of a seeming interaction
between Call Forwarding service (CFV) and Calling
Number Delivery service (CND), which is described
in the international benchmark, is explained.
1) A specification of CFV

A typical specification of CFV is explained.
Suppose that terminal A receives a dial tone
(denoted by dialtone(A)), and terminal B has CFV
activated and has registered terminal C as a
forwarding terminal (denoted by cfv(B,C)). When
terminal C is idle (denoted by idle(C)), if terminal A
dials terminal B (denoted by dial(A,B)), the call
from terminal A is forwarded to terminal C, then
terminal A calls terminal C (denoted by
calling(A,C)) (Figure 1).

dial(A,B)

Cidle(C)

A

cfv(B,C)
dialtone(A)

B

Current state

A

cfv(B,C)

B

Next state

calling(A,C) C

dial(A,B)

Cidle(C)

A

cfv(B,C)
dialtone(A)

B

Current state

A

cfv(B,C)

B

Next state

calling(A,C) C

Figure 1: A specification of CFV.

2) A specification of CND
A specification of CND is explained. Suppose

terminal C has CND activated (Figure 1 A
specification of CFV denoted by cnd(C)). When
terminal A receives a dial tone and terminal C is
idle, if terminal A dials terminal C (denoted by
dial(A,C)), terminal A calls terminal C, and a
telephone number of terminal A is displayed on
terminal C (denoted by display(C,A)) (Figure 2).

dial(A,C)

Cidle(C)

A

dialtone(A)

Current state

calling(A,C) C

A

Next state

cnd(C)
display(C,A)

Figure 2: A specification of CND.

3) Occurrence of a seeming interaction
Since displaying a telephone number is executed

after it is determined that terminal C is called, a
specification of CND is triggered later than that of
CFV. In the conventional detection methods, since it
was supposed that when an event, dial(A,B) occurs,
only a specification which has dial(A,B) as an event

was triggered, only CFV is triggered. Therefore, a
telephone number of terminal A is not displayed on
terminal C despite terminal A calls terminal C. Since
this is an abnormal state, an interaction is detected.

However, taking into consideration the process
flow in a real system, after execution of CFV, the
call from terminal A is forwarded to terminal C.
Then, if terminal C is idle, terminal A calls terminal
C. In effect, it can be said that a call from terminal A
reaches terminal C. Thus, the meaning of the event,
which is a trigger for executing specifications after
execution of a specification of CFV, should be
deemed to be ‘a call from terminal A reaches
terminal C’, that is, in this case, dial(A,C). After a
specification of CFV is executed, a specification of
CND which has dial(A,C) as an event is triggered.
As a result, a telephone number of terminal A is
displayed on terminal C and an interaction does not
occur.

Therefore, the interaction between CFV and CND
shown as an example is a seeming interaction.

3 TP MODEL

The minimum explanation of the TP model, which is
necessary for this paper, is given. For more details
please refer to (Shimokura, 2004).

3.1 Overview

The TP model is designed, independently from
individual services, based on state transition
diagrams. To realize independency, each system
state in state transition diagrams for supplementary
services is represented as one of abstracted states in
state transition diagrams for the basic service
(POTS). Thus, each state transition for
supplementary services can be represented as one of
state transitions between common states, Sc and Sn,
abstracted from states of POTS (Figure 3).

Sc

SbnSbc

Sn

State transition of service A

TPx

Abstracted state transition

State transition of service B

SanSac

TPy

TPy

TPx

Figure 3: Represented state transition.

On a common abstracted state transition diagram
obtained in the way mentioned above, TPs are set as

A DETECTION METHOD OF FEATURE INTERACTIONS FOR TELECOMMUNICATION SERVICES USING NEW
EXECUTION MODEL

191

timing points for specifications. Since timing points
for individual specifications are determined
according to TPs, the order of triggering
specifications is clear.

State transitions for CFV and CND, described in
section 2, are explained using Figure 3. Current
states for CFV and CND, Sac and Sbc, can be
represented as Sc. Next states for CFV and CND,
San and Sbn, can be represented as Sn. TPs for a
specification of CFV and a specification of CND are
described as TPx, and TPy, respectively. Thus, it is
clear that a specification of CFV is triggered before
a specification of CND.

3.2 Triggering a Specification

(1) Conditions for triggering a Specification
Suppose that in a specification, ‘current state’

which is a service state before the state transition,
‘event’ which is a trigger for the state transition,
‘next state’ which is a service state after the state
transition, the name of a TP where the specification
is initiated, and a name of a TP or a state which the
process flow after execution of the specification
reaches, are described. If the process flow after
execution of the specification does not reach one of
TPs or states, the last term, a TP or a state, is not
described. In the TP model, when an event Ei occurs
and the process flow reaches one of TPs, TPi,
specifications, which have the same event as Ei and
the same trigger point as TPi, are initiated. Thus, for
one event, more than one specification can be
triggered.

Conditions for triggering a specification are
given as follows:
Condition 1: The process flow for the event reaches

a TP described in the specification.
Condition 2: An event described in the specification

occurs.
Condition 3: A state described in the current state of

the specification is the same as a service
state when the process flow reaches a
TP described in the specification.

(2) Triggering two specifications

In the TP model, when two specifications are
given, each specification is initiated as follows:
(i) In case two specifications have the same TP.

When a process flow reaches a TP described in
both specifications, firstly, a specification, which
satisfies Condition 2 and Condition 3, described
above in this section, is triggered. Where both
specifications satisfy the conditions, either

specification is triggered first. After execution of the
first specification, if the process flow reaches a TP
described in the second specification and the second
specification satisfies the conditions, the second
specification is also triggered.

(ii) Two specifications have different TPs which are
set on the same state transition in the TP model.
When a process flow reaches a TP described in

the specification triggered first, if the specification
satisfies Condition 2 and Condition 3 described
above in this section, it is triggered. After execution,
if the process flow reaches a TP described in the
other specification and the specification satisfies the
conditions, the specification is also triggered.

(iii) Two specifications have different TPs which are
set on different state transitions, respectively, in
the TP model.
Since the temporal order of TPs cannot be

determined, both specifications are triggered in the
same way as case (i).

4 MEETING CONDITIONS FOR
TRIGGERING: A PROBLEM
AND ITS SOLUTION

4.1 Problem

To detect interactions, it is judged whether two
given specifications can be triggered or not.

In the TP model, when an event, Ei, occurs and
the process flow reaches a TP, TPi, a specification
which is triggered at the TPi has Ei as an event. But,
as mentioned in section 2, there is a case where the
meaning of an event is changed by execution of a
specification. Therefore, in this case, after execution
of the specification, a specification that has an event
other than Ei may satisfy Condition 2 described in
section 3.2. In this case, another specification that
has Ei as an event does not satisfy the condition.

Therefore, to judge whether a specification
which is executed after execution of the first
specification, satisfies Condition 2 described in
section 3.2 or not, it is necessarily to identify what
an event means after execution of the first
specification.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

192

4.2 Solution

(1) Identification Method
The meaning of an event used in POTS is well

known. But, the meaning of a new event used in
supplementary services cannot be known
beforehand. The meaning of an event commonly
used in two supplementary services causes the
problem in judging if Condition 2 described in
section 3.2 is satisfied. But, most of those events are
used in POTS. Therefore, in this paper, targeted
events are restricted to those used in POTS. The
meaning of those events is classified, and a method
for identifying the meaning of events is discussed.
Because of space limitation, a method for
identifying the meaning of dial(A,B) is discussed
here.

For POTS, there is a specification that represents
a state transition: when a service state is
{dialtone(A), idle(B)}, if dial(A,B) occurs, the
service state transits to calling(A,B). This
specification can be taken as, when terminal B is
idle, if a call from terminal A reaches terminal B,
terminal A calls terminal B. Besides, only this
specification represents a state transition to
calling(A,B). That is, ‘when terminal B is idle,
terminal A calls terminal B’ is a necessary and
sufficient condition for the meaning of an event,
which is a trigger for initiating this specification, to
be that a call from terminal A reaches terminal B.
Thus, if calling(A,B) is described in the next state of
the specification, after execution of the specification,
arguments X and Y of dial(X,Y) which means ‘a call
from terminal X reaches terminal Y’, are A and B,
respectively.

Thus, if calling(A,B) is described in the next
state of a given specification s (in this case, s is
called as s1) which has dial(X,Y) as an event, after
execution of s, dial(X,Y) should be considered to be
changed to dial(A,B).

An identification method in the case where
calling(A,B) is not described in the next state of s is
discussed in (2).

(2) calling(A,B) is not described in specification s

A method for identifying the meaning of an
event in the case where calling(A,B) is not described
in the next state of s, s2. A concrete example where
calling(A,B) is not described in s2 is explained.

s2, which defines a state transition when terminal
C registered as a forwarding terminal in CFV is not
idle, is shown in Figure 4. Figure 4 is explained.
Suppose terminal B has CFV activated and has

registered terminal C as a forwarding terminal.
When terminal C is not idle (denoted by
not[idle(C)]), if terminal A dials terminal B, terminal
A receives a busy tone (denoted by busy(A)). Thus,
when s2 is executed, a call from terminal A reaches
terminal C. Thus, the meaning of the event after
execution of s2 should be regarded as not dial(A,B)
but dial(A,C).

dial(A,B)

Cnot[idle(C)]

A

cfv(B,C)
dialtone(A)

B

Current state

A

cfv(B,C)

B

Next state

C

busy(A)

not[idle(C)]

dial(A,B)

Cnot[idle(C)]

A

cfv(B,C)
dialtone(A)

B

Current state

A

cfv(B,C)

B

Next state

C

busy(A)

not[idle(C)]

Figure 4: A specification of CFV (in case terminal C is not
idle).

However, since calling(A,C) is not described in the
next state of s2 shown in Figure 4, the identification
method proposed in (1) above cannot identify the
meaning of dial(X,Y).

But, in general, there are two cases for
terminating terminal, idle and not idle, the service
specification should have both specifications.

Thus, when calling(A,C) is not described in the
next state of s2, by finding out another specification,
s3, which has calling(A,C) in the next state, the
meaning of the event can be identified as dial(A,C).

(3) An event identification method

For a method for identifying the arguments X
and Y in dial(X,Y), after execution of specification s
that has dial(A,B) as an event, discussion (1) and (2)
mentioned above are summarized. When
calling(P,Q) is described in the next state of s (s1),
dial(X,Y) after execution of s1 is regarded as
dial(P,Q). Here P and Q represent arbitrary
terminals. When calling(P,Q) is not described in the
next state of s (s2), identify another specification s3,
that has dial(X,Y) as an event and calling(P,Q) is
described in its next state in the service specification
to which s2 belongs. If s3 is found, dial(X,Y) after
execution of s2 is regarded as dial(P,Q). If s3 is not
found, since arguments in dial(X,Y) cannot be
identified, the arguments in dial(X,Y) after
execution of s2 are regarded as unchanged.
Consequently, there is a possibility that real
interactions are not detected and/or seeming
interactions are mis-detected. This possibility is
evaluated in section 6.

A DETECTION METHOD OF FEATURE INTERACTIONS FOR TELECOMMUNICATION SERVICES USING NEW
EXECUTION MODEL

193

Based on the discussion above, a method for
identifying the arguments in an event after execution
of specification s which has dial(A,B) as an event, is
proposed as follows:
Step 1) If calling(P,Q) is described in the next state

of specification s, go to Step 3.
Step 2) Search for another specification si, that has

dial(X,Y) as an event and calling(P,Q) is
described in its next state, in the service
specification to which specification s belongs. If
specification si is not found, go to Step 4.

Step 3) Identify the meaning of dial(X,Y) after
execution of specification s as dial(P,Q), and end
identification.

Step 4) Identify the meaning of dial(X,Y) after
execution of specification s as dial(X,Y), and
end identification.

5 DETECTION METHOD FOR
INTERACTIONS

A new interaction detection algorithm, which is
based on the TP model and adopts solutions
described in section 4.2, is proposed. In interaction
detection, for given two specifications depicted from
two service specifications, respectively, non-
determinacy interactions and semantic interactions,
which means abnormality of a system state or a state
transition after execution of two specifications
(Ohta, 1994)(Ohta, 1998) are detected, as
conventional detection methods.

5.1 Detection Scenario for
Non-determinacy Interactions

A non-determinacy interaction occurs when the
order of triggering two specifications cannot be
determined. In the TP model, the order of triggering
two specifications cannot be determined in the
following cases: Both TPs and events described in
each specification are the same, or events described
in each specification are the same and the TPs of
each specification are set on different state
transitions in the TP model. So, in either case, a non-
determinacy interaction is detected.

5.2 Detection Scenario for Semantic
Interactions

(1) Checking conditions for a specification to be
executed

Since a specification is described as a state
transition, when two specifications that belong to
different services are given, a specification, which
satisfies all of the following conditions, should be
executed.
(a) The process flow reaches a TP described in the

specification.
(b) An event described in the specification is the

same as one that actually occurs.
(c) The state described in the current state of the

specification exists in the current service state
of a compound

The conventional detection methods (Ohta,
1994) (Yoneda, 2003) can be used for judging
conditions (c). Judging conditions (b) can be made
by using the identification method proposed in
section 4.2. Therefore, the method for judging
condition (a) is discussed.

If two specifications have the same TP, or
different TPs which are set on different state
transitions in the TP model, the both specifications
are judged to satisfy condition (a).

In case that two specifications, sa and sb, have
different TPs (TPa and TPb) that are set on the same
state transition in the TP model, if TPa is set ahead
TPb in the state transition in the TP model,
specification sa is judged to satisfy condition (a). For
sb, only if the process flow in the TP model reaches
TPb after execution of specification sa, specification
sb is judged to satisfy condition (a).

These judgments can be made by comparing a
TP, described in specification sb, and a destination
reached by a process flow after execution of
specification sa, described in the specification sa.

(2) A detection scenario

A detection scenario of semantic interactions is
proposed. When the given two specifications have
different events, firstly, an event described in either
of two specifications is supposed to occur, and
detecting interactions is done. Then, suppose that the
other event occurs, and detecting interactions takes
place. The detection scenario is as follows:
Step 1) According to the triggering methods

described in section 3.2, execute a specification
that is triggered first.

Step 2) After execution of the specification, the
event is changed if needed, according to the
identification methods of events described in
section 4.2 (3).

Step 3) Execute another specification according to
the triggering methods described in section 3.2

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

194

and obtain a state of a compound service after a
state transition.

Step 4) Judge whether each specification should be
executed or not according to the method
described in (1) above. If both specifications are
judged to be executed, go to Step 6.

Step 5) If a state described in the current state of the
specification, which is judged as not to be
executed, does not exist in a state of a compound
service after execution of the other specification,
an interaction is detected. Go to Step 7.

Step 6) If each state described in the next states of
each specification does not exist in a state of a
compound service after execution of both
specifications, an interaction is detected.

Step 7) If a state of a compound service after
execution of specification/specifications violates
either service constraint (Ohta, 1998), an
interaction is detected.

6 EVALUATION

The event identification method proposed in section
4.2 and the new detection method for interactions
proposed in section 5 were applied to specifications
for 12 services, which are described in the
international benchmark (Griffeth, 2000). In the
international benchmark, 98 interactions are reported
(Griffeth, 2000). But, among them, there are 22
interactions that do not actually occur because
system states just before executing the specifications
cannot actually exist. According to our investigation
beforehand, it was confirmed that 39 interactions out
of 76 interactions are seeming interactions.

For the identification method: in all cases for all
pairs of 12 services, all events are correctly
identified. Thus, the proposed identification method
was confirmed to be reasonable.

For the detection method: in 39 seeming
interactions (8 non-determinacy interactions and 31
semantic interactions) were avoided to be mis-
detected, and 37 actual interactions were detected.
Thus, the proposed detection method was confirmed
to be effective.

7 CONCLUSION AND FUTURE
WORK

To implement a detection system without mis-
detecting seeming interactions, a method for

identifying the meaning of an event was proposed.
In addition, a new method for detecting interactions
was proposed. The proposed method was applied to
specifications of 12 services described in the
international benchmark for interaction detection,
and it was confirmed that the proposed methods
were reasonable and effective.

For future work, an automatic detection system
based on the proposed methods will be implemented
and evaluated in more detail.

REFERENCES

Amyot, D., 2003. Feature Interactions in Telecommuni-
cations and Software Systems VII. Proc. of FIW’03.
IOS Press.

Cameron, J., 1994. A Feature Interaction Bench mark for
IN and Beyond. Proc. of FIW’94. IOS Press.

Griffeth, N., 2000. A feature interaction benchmark for the
first feature interaction detection contest. The
International Journal of Computer Networks, Vol.32.

Ohta, T., 1994. Classification, Detection and Resolution of
Service Interactions in Telecommunication Services.
Feature Interactions in Telecommunications Systems.
IOS Press.

Ohta, T., 1998. Formal Detections of Feature Interactions
in Telecommunication Software. IEICE, Trans. on
Fundamental, Vol.E81-A, No.4.

Shimokura, M., 2004. Service Specification Description
Model for Avoiding Redundancy in Detecting Feature
Interactions. Proc. ATNAC2004.

Yoneda, T., 2003. Formal Approaches for Detecting
Feature Interactions, Their Experimental Results, and
Application to VoIP. Proc. of FIW03. IOS Press.

A DETECTION METHOD OF FEATURE INTERACTIONS FOR TELECOMMUNICATION SERVICES USING NEW
EXECUTION MODEL

195

