
EXTENDING AN XML MEDIATOR WITH TEXT QUERY

Clément Jamard, Georges Gardarin
Laboratoire PRiSM, Université de Versailles, 45 avenue des Etats-Unis, 78000 VERSAILLES

Keywords: XML, mediation, indexing technique.

Abstract: Supporting full-text query in an XML mediator is a difficult problem. This is because most data-sources do
not provide keyword search and ranking. In this paper, we report on the integration of the main
functionalities of the emerging XQuery Text standard in XLive, a full XML/XQuery mediator. Our
approach is to index on keywords virtual documents in views. Selected virtual documents are on demand
mapped to data source objects. Thus, the mediator selection operator is efficiently extended to support full-
text search on views. Keyword search and result ranking are integrated. We rank results using a relevance
formula adapted to XPath, based on number of keywords in elements and distance from the searched nodes.

1 INTRODUCTION

As XQuery becomes the standard for querying
XML, new needs appear to perform full-text search
in XML. A task force, Buxton and Rys (2003), is
currently specifying new full-text search predicates
and functions to be included in XQuery, so as to
express searching on multiple keywords, ranking
results on relevance, searching on suffix or prefix of
terms, etc. TexQuery, Amer-Yahia (2004), can be
seen as a precursor of the future language.

Some text search functionalities are very
common and present in most DBMSs, such as single
keyword search. Data from distributed system has to
be recomposed before applying text search;
important functionalities often required by
applications are not possible with distributed
systems. These concern ranking query results,
multiple conjunctive keywords searches, and
searches dealing with stemming, prefix or suffix on
terms. An increasing number of XQuery-based
information integration platforms are available like
BEA (2004), IBM DB2 (2004), Papakonstantinou
(2003) or XQuare (2005). They are mostly based on
a global as view architecture and support a
significant subset of XQuery. At the best of our
knowledge, none of them support fully XQuery
Text. However, many data integration applications
are full-text oriented and requires full support.

The goal of a mediator is to federate sources
around an integrated architecture fulfilling the lacks
of some sources. Most data sources support single

word search, some multi-keyword search, but most
mediated systems have different capabilities for
searching full text. For example, the XLive mediator
can currently query Google as a (large) virtual XML
collection through a Web service wrapper. This
search engine is very powerful in multi-keyword
search and in ranking results, compared to common
relational databases. We also federate Xyleme,
Abiteboul (2002), an XML native database system
that supports efficiently multi-keyword searches. All
these systems have some capabilities, but none
propose the full set of XQuery text functionalities.
Thus, there is a strong need to integrate uniform full-
text search on all sources. Moreover the integration
of the ranking systems is very difficult, as all
integrated system have their own ranking scheme.

In this paper, we address the problem of
extending an XML mediator for querying text-
oriented sources using XQuery Text. We base our
implementation on XLive, Dang-Ngoc and Gardarin
(2003). The XLive system integrates and query
relational or XML sources in XQuery. A large
subset of XQuery is supported including FLWR
expressions and nested queries. Sources are wrapped
in a subset of XQuery. The query runtime is
dataflow-oriented and built around an extended
relational algebra for XML, known as the XAlgebra.
The basic idea of this algebra is to model XML
documents as tuples of paths referencing virtual
DOM trees, called XTuples. The mediator evaluates
query plans of XAlgebra operators on collections of
XTuples and constructs XQuery results.

38 Jamard C. and Gardarin G. (2006).
EXTENDING AN XML MEDIATOR WITH TEXT QUERY.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 38-45
DOI: 10.5220/0001246000380045
Copyright c© SciTePress

Data retrieved through XLive are distributed on
multiples sources. An important issue in integrating
full-text search in XLive is the management of
sources capabilities. We propose to unify these
capabilities through views. The mediator defines
views of distributed XML data and provides XQuery
Text support through these views. The mediator
does not materialize the views to avoid replicating
sources data; but, it indexes their contents and
structures. Several indexing schemes have been
proposed in centralized systems for fast retrieval of
elements on keywords. The interested reader can
find a survey in Gardarin and Yeh (2003). We
propose an efficient distributed indexing scheme that
relies on a viewguide, an invariant abstract DTD-
like summary derived from the query defining the
view. This index scheme is particularly adapted for
text search over distributed data.

XQuery/IR, Bremer and Gertz (2002), is an
efficient integration of information retrieval
techniques within XQuery. It uses an indexing
scheme adapted to XML tree structures allowing
solving tree pattern queries. Such a system does not
provide a solution for our mediation context as data
structures are centralized and homogeneous.
Another approach to support XQuery Text query is
to define function operators. TexQuery, Amer-Yahia
(2004), uses Boolean operators on XML data flows
to determine the presence of keywords in elements
and distance between keywords. Scores functions
are also defined as operators to rank results. Such
operators are not easy to adapt to mediation; the
mediator has to manipulate a huge amount of data
through complex operations. Both systems do not
provide solutions to reconcile data coming from
different sources before applying text search
functions. Numerous works focus on reducing index
size in centralized systems (Chen and al. 2003,
Chung and al. 2002, Cooper and al. 2001, Milo 1999
or Kaushik and al. 2002). In summary, although
functional and efficient solutions have been studied
for supporting XQuery Text, they are not easily
applicable to mediation systems.

Managing view requires integration of data
available in different schemas. Relationship
(mappings) between schemas must be specified, to
determine correspondence between elements in
source schemas and elements in target schemas. A
lot of work has been done on unifying source
schemas under a target schema. A survey can be
found in Rahm and Bernstein (2001). Defining rules
mapping paths from one schema to paths of another
is a simple but effective approach. Our system

provides for this kind of mapping techniques to
create integrated views.

This paper is organized as follows. Section 2
presents the integration of indexed views to support
full-text search in XLive. Section 3 develops the
query processing algorithm for querying views and
ranking results. Section 4 gives some experimental
results of our system. Section 5 summarizes the
contributions and introduces future work.

2 INDEXING VIRTUAL VIEWS

The key question in a mediation context is how to
integrate a keyword path indexing technique within
the distributed architecture. In mediation systems,
views are often used to focus the search on relevant
data source parts. To combine the power of views
with keyword search, a key decision of our design is
to index virtual views of sources by keywords.

We choose to index the view content. Through
the index, the mediator knows the locations of terms,
which helps in answering text queries efficiently.
Indexing important terms avoids replicating entire
sources in the mediator. It avoids huge data transfer
between sources and the mediator. The index
determines relevant results, which avoids complex
full text search operation on data in the mediator. A
compact and fast index is the focus of our approach
in order to avoid managing large data sets in the
mediator.

Identifiers used in index entries are mapped to
objects in sources through additional structures
maintained at the mediator and source layers. We
use these additional structures that determine where
data composing a document in the view are located.
It helps in recomposing the document efficiently.

2.1 Index Overview

We choose to index view content at creation time
and to maintain index when view sources are
updated. Term positions in the view are memorized
in the index at mediator level. The index determines
relevant elements addresses; it avoids huge data
transfer between source and mediator; only relevant
data are transferred. Thus, the mediator does not
manipulate the whole data, through complex
information retrieval operations.

Identifiers used in our index reference objects on
sources using intermediate structures managed by
wrappers. These structures allow view data
localization, extraction, and reconstruction from

EXTENDING AN XML MEDIATOR WITH TEXT QUERY

39

sources. When an update occurs on a source, the
source reports to the mediator in order to update
index identifiers. Triggers or periodic polling is used
to detect updates on sources. The reporting
functionality depends on the source wrapper.

2.2 Location of Words in Views

To index content of the view, the position of a word
has to be identified precisely. A word is located by a
path and a document instance of the view. We
propose our own numbering scheme to encode this
position. We now detail the index structure used for
determining and locating the relevant view instances

2.2.1 Numbering Scheme

We first introduce the numbering scheme
implemented for identifying virtual nodes in a view.
Any element in a view instance is addressed by a
global document identifier (GDID) plus a node
identifier (NID) determining the path reaching the
element.

Global document identifier (GDID): Unique
integer allocated by the mediator identifying a
virtual document instance of a view.

Node identifier (NID): Unique identifier of a
node element in a document determined by the view
definition.

To encode a NID, we make use of a Viewguide
summarizing the structure of a view.

Viewguide: Tree giving the common structures
of all documents in a view, whose nodes correspond
to elements or attributes and edges to simple or
multi-valued (marked with*) imbrications of
elements.

Attributes are treated as elements with a name
prefixed by @. All children of a node have different
names as duplicates are removed. In addition, edges
are marked by the maximum cardinality of the
element (1 by default, and * if multiple). Thus, each
distinct path of the view is represented once and
only once in the viewguide.

The viewguide is somehow similar to a
DataGuide (Widom and al), but: (i) It is a pure
structural summary. (ii) It is derived from a view
definition (i.e., the query defining the view) and not
from instances. (iii) It is annotated with cardinalities
of elements. It is used to assign a compact and stable
unique node identifier (NID) to each element of an
instance of a view. Viewguide nodes are numbered
by means of a preorder traversal (see figure 1). We
select this structure as it is easy to derive from a
query with a fully specified return clause. View

definitions are restricted to fully specified return
clauses, as detailed in the sequel.

I

II

III IV V VI

VII

VIII IX

critic

book review

author genres isbn title p rating

*

**

X

author
for $b in collection(“catalog”)/book
return
<critic>

<book>
{ for $a in $b/author

return <author> { $a/text () } </author>
}
<genres> { $b/genres/text() } </genres>
<isbn> { $b/@isbn/text () } </isbn>
<title> { $b/title/text () } </title>

</book>
{ for $rev in collection(“review”)/review
where $b/@isbn = $rev/book/@isbn
return

<review>
{ for $p in $rev/book/p

return <p> { $p/text () } </p>
}
<rating> { $rev/book/rating/text () } </rating>
<author> { $rev/book/author/text () } </author>

</review>
}

</critic>

Figure 1: View definition XQuery and ViewGuide.

To facilitate logical operation and XPath
encoding, we implement a structure for NIDs. A
NID is composed of a prefix and an optional suffix:
- The prefix is the node number assigned to the

node in preorder traversal of the viewguide.
- The suffix corresponds to the cardinality of the

traversed multi-valuated elements from the root
to the node.

The document identifier determines a document
instance in the view while the node identifier
encodes the path to reach the node from the
document root. Then a <GDID-NID> pair identifies
a unique element in the view.

For example, an element identified by the XPath
critic/review/p is assigned the path I/VII/VIII. Only
the leave number is kept as node identifier, i.e., VIII.
Nodes with edges marked with multiple occurrences
are additionally identified by a suffix added to the
identifier. Therefore the path critic/review[1]/p[2],
which corresponds to the numbering I/VII[1]/VIII[2]

WEBIST 2006 - INTERNET TECHNOLOGY

40

is encoded as VIII[1,2]. We keep suffixes only for
multi-valuated elements; a mono-valuated element
has no suffix, for example critic/book/title is
encoded as VI. Such identifiers are compact and do
not change while the view definition does not
change. The <GDID-NID> pair identifying the
position of the author of the second review in the
second document of the view is <2-X[2]>.

To translate XPath expressions selecting several
nodes in path identifiers, we introduce the concept of
identifier pattern (NID pattern called NIP). This
structure is used further for query processing.

 Node identifier pattern (NIP): Profile of node
identifier with * in place of indices, meaning that
any indice is valid.

A node identifier pattern is simply a node
identifier in which stars replace one or more indice
of the suffix. A star in a suffix means that any
number is valid. For example, the path
critic/review/p[1], selecting the first p element in
any review of a critic will be encoded VIII[*,1].

2.2.2 Word Index

The mediator stores words positions in the view in
the Word Index.

Word Index: B-tree structure giving for each
keyword the virtual addresses of the nodes
containing these keywords.

The Word Index is a classical inverted list
addressing element locations in virtual documents.
An address is a <GDID-NID> pair determined by
our numbering scheme. Keywords are determined by
a thesaurus giving important words to be indexed,
which can be used in queries. It is populated with
location of all words at view creation time.
In a more detailed way, entries of the word index are
pairs (term, position record). The position record is a
table with column GDID, NID prefix, sorted list of
NID suffix. Each tuple corresponds to an element
containing the term with possibly multiple instances
if the element is multi-valued. Table 1 illustrates two
position records. This structure has been selected for
fast evaluation of intersection and union operations
detailed further in query processing section.

Table 1: Two position records, rec1 and rec2.

GDID Prefix Suffix list GDID Prefix Suffix list
120 VIII (1,4) (3,5) 120 IV -
120 IX (2) 120 VI -
121 VI - 120 VIII (1,2) (2,3) (2,5)
121 VIII (3,4) (4,1) 120 IX (1)

2.3 Location on Data Sources

The Source Map maintains the mapping between a
global document in the view and local documents in
the sources used to compose the view instance. More
precisely, we refer local documents through local
document identifiers. This local identifier is
associated to an extraction data operation.

Source Map: Mapping structure on the mediator
mapping a GDID to a set of LDID composing the
document.

 Local document identifier (LDID): Number
allocated by a wrapper allowing retrieving a part of a
document in the source.

At view creation time, the view definition query
is decomposed into atomic queries (queries referring
to a single collection of XML documents). Each
concerned wrapper rewrites the atomic query(ies)
according to its local schema(s). Mapping between
global schema (defined by atomic queries definition)
and local schema can be given by a human or can be
determined semi-automatically by schema matching
algorithms. Mapping techniques used are not
detailed here for lack of place.

Plan Generator

Wrapper
- XQuery Mapping translation

- LDID creation

Atomic XQueries

Source Source

Local queries

Wrapper
- XQuery Mapping translation

- LDID creation

-XML data
-LDID

View
Documents

View Indexer

ViewGuideXQuery View
Definition

Execution Plan

Figure 2: Framework for creating an Indexed View.

Each local source wrapper extracts and provides
data to the mediator respecting the target view
schema (viewguide). The view creation framework
is detailed in figure 2. The Plan Generator defines
an Execution Plan, which constructs view
documents from data retrieved by wrappers. Data is
then indexed by the View Indexer, which populates
the Word Index and Source Map.

For each document on a local source, a LDID is
created. An LDID maintains a reference to data on
the local source and a reference to the mapping used

EXTENDING AN XML MEDIATOR WITH TEXT QUERY

41

to extract data. The LDID mapping depends on the
wrapper. For a file wrapper, the LDID can be simply
the file URI. For an XML database, it is generally a
document identifier, for example a URL in Xyleme.
For relational databases, it can be a reference to an
SQL/XML or XQuery query allowing mapping table
rows to XML. The mapping associated to each
LDID determines the way to query and recompose
data on local sources.

In the view example, two atomic queries
corresponding to book and review are generated
from the view definition. Wrappers corresponding to
these collections of entities are retrieved, queries are
rewritten according to local mapping, and data are
extracted.

From any LDID identifier, wrappers are able to
query the source to retrieve the local part of
document participating in the view. Finally, the
mediator uses the view definition to recompose the
whole document.

3 TEXT QUERY PROCESSING

The query processing algorithm first retrieves the
index entries corresponding to a textual search (e.g.,
search on keyword list with ranking of results).
Then, it uses the retrieved node identifiers to extract
from the sources the relevant elements from the
view. We detail how to search the index and
recompose results after querying the source. We also
propose an efficient way to rank results by relevance
in the context of distributed heterogeneous sources.

A multi-keyword search over semi-structured
data relies on two parameters: the structural search
space and a keyword list (k1, k2… kn). The
structural search space defines the elements to look
into. Typically, it is expressed as an Xpath. We first
concentrate on conjunctive queries in which the
relevant elements shall contain all keywords.
Predicates in queries are of the form A1/A2…/Am[.
Ftcontains k1 && k2 &&… kn], where Ai are labels
(or attribute names prefixed by @) and ki are
keywords. Regular expressions are allowed, i.e., Ai
can be * or empty (wildcards). A typical query is
“find all books in the critics view having a review
dealing with XML and databases”.

Steps performed by a search are:
1. Determine the search space.
2. Compute the set of entries containing each

term of the keyword list.
3. Extract documents from sources and

compose results.

We define the search space using node identifier
pattern(s) as define above. NIPs are derived from the
Xpath expression by a viewguide traversal from the
root. Notice that an Xpath query searches for all
elements when the position is not specified for a
repetitive element.

On the example, we rewrite the predicate Xpath
in pattern critic/review[*]. Then, we encode the
Xpath, which results in VII,(*). Thus, we obtain the
root(s) of the subtree(s) interesting for the query.
However, we need to access the full contents of
these subtrees, to look for other keywords inside
(keywords may be contained in any element among
comments, comment, p, author or rating. To retrieve
efficiently the ancestors or descendants of a node,
we maintain the ancestor-descendant matrix (ad-
matrix): it is a compact Boolean matrix in which
element Cij = 1 if element i is an ancestor of element
j in the viewguide. This matrix provides an
immediate method to retrieve the relationship
between two identifiers in the viewguide.

The search space for our example query is an
interval of nodes identified between VI(*) and X(*).

We query the word index to compute the set of
entries containing each term of the keyword list. The
strategy consists in accessing the B-tree entries
(position record) for each keyword k1 to kn. We then
intersect these lists of identifiers for conjunctive
queries; the element searched must contain at least
one or more occurrences of each keyword. The
intersect operation determines the first common
ancestor between two or more nodes. Each valid
intersection (i.e., remaining in the search space) will
be kept as a result.

To reduce the number of comparisons, the
intersection algorithm processes intersection on
entries respecting these three conditions:

1. GDID equality, i.e., keywords are in the
same document. It is a trivial condition
avoiding intersecting position contained in
different documents.

2. NID prefixes are descendant of the NIP
search space, i.e., keyword positions out of
the search space are not considered.

3. NIDs suffixes are not already computed.
Figure 3 sketches the intersection algorithm. It
computes every valid intersection between list of
identifiers in a given search space. Condition 1 is
checked on lines 8 and 12-13 to select identifiers of
same documents. Condition 2 is applied when
asking for next element with the search space on
lines 1, 5, 13, 27. Each next element is chosen only
among lines of position record corresponding to the
search space. Last condition is applied on line 21-

WEBIST 2006 - INTERNET TECHNOLOGY

42

22, by checking if the current intersection remains in
the last result (descendant of that result).

Entries are ordered by NID suffix in position
records, which avoids skipping intersection when
scanning each list. Therefore condition on line 30
always selects the minimum NID of list to intersect.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

ALGORITHM INTERSECT
INPUT : List(n)

n list of keyword position
VARIABLES : intersect, current_id, test_id, tmp_res

type:identifier<GDID-NID>
search_space

type:NIP filter
result

type:list of result
current_id = List(0).nextElement(search_space)
WHILE(List(0).hasNextElement(search_space)) DO

intersect = NULL;
FOR EACH LIST DO

test_id = list().nextElement(search_space)
/* No element intersecting in same document
Repeat process on the next element */
WHILE (test_id.GDID > current_id.GDID)

current_id = test_id;
FOR EACH LIST DO

/* Find next element with same GDID */
WHILE (test_id.GDID < current_id.GDID) DO

test_id = list().nextElement(search_space);
/* Intersection in a given search space */
tmp_res =

ancestor(test_id,current_id,search_space);
/* Valid intersection ->

search in the next list */
/* Invalid intersection ->

same process on next element */
IF (tmp_res != NULL &&

!tmp_res.descendantOf(result.last))
intersect = tmp_res;

ELSE
intersect = NULL;
IF (current_id.suffix > test_id.suffix)

current_id =
list().nextElement(search_space);

break;

/* Keep the resulting intersection */
if(intersect != NULL)

result.add(intersect);
last_res = intersect;
current_id = list().nextElement(search_space);

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

Figure 3: Intersection algorithm.

The algorithm can be applied to position record
list of table 1 with the search space of our query as a
NIP: VII(*). For GDID 120 only lines VIII and IX
are selected. We obtain valid intersection for IX(1)
records1 and VIII(1,4) records2, VIII(2,3) records1
and IX(2) records2. These are VII(1) and VII(2).
Other intersections for GDID 120 are not leading to
a valid intersection (in the search space, or an
intersection already found). Entries of other GDID
are processed in the same way.

4 XQUERY TEXT CAPABILITIES

4.1 Full Text Search

A full-text search may use the position of keywords
inside the document. This position can be expressed

in two metrics. The position as element means that
only the path from the root of the document
determines the criteria. The position inside an
element means the path and the position among the
other words in the element determine the criteria.

The index presented before allows answering any
full-text search dealing with position expressed as
element. Other functionalities like term distance,
window, order or result ranking require additional
information, the word offset inside an element. The
offset is added to position records as needed by these
operations. Full functionalities are available in
Buxton and Rys (2003).

4.2 Ranking Results

A ranking method associates a relevance weight to
each result. In a mediator, we have to rank results
coming from different sources and to merge results
for delivery to the user in correctly ranked order.
Our architecture provides a way to pre-rank results,
i.e., virtual results are ranked before source
extraction; we compute the relevance score of each
result when querying the word index. The weighting
formula has to be accurate but simple enough to be
computable with information contained in the word
index.

We determine the weight of a result by adding
the weights of each node containing directly one or
more keywords. Our ranking approach is based on
the specificity of each result. The ranking method
gives more influence to element nodes close to the
root of the search space. Thus, words close to the
root weight more than words deeply hidden in the
result tree. Such an approach is a bit simplistic, as
ranking weights are attributed independently of
keyword position in relation with each other.
We also give more influence to element nodes
containing several keywords of the search. The
percentage of keywords in a node is used as a
polynomial factor to adjust the weight. Finally, the
following formula computes the weight of a node:

()∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

n

i
d

Wi
N

NiWe
0 1 α

β

Wi is the weight of the keyword (tf.idf), N is the
total number of keywords in the query, Ni is the total
number of keywords in the node, and d is the
distance to the root of the sub-graph (number of
edges). The constant α is designed to give more
influence to the distance from the root to the word
position (in edges). β is a polynomial factor used to
increase the weight of an element containing several

EXTENDING AN XML MEDIATOR WITH TEXT QUERY

43

keywords. The total weight of a result is the sum of
each node weight containing one or more keywords.

An advantage of the implemented ranking
system is the formula modularity. It may be
extended or replaced. The mediator may integrate
any formula relying on information contained in the
word index (tf.idf, distance). The ranking formula is
application adjustable.

Some other systems propose concrete solutions
to rank results of a keyword–based query. XRANK,
Lin and al. (2003), proposes a ranking algorithm
relying on the elemRank of an XML element. This
rank is computed using the number of outgoing and
incoming edges (inter and intra documents). It
contrasts with our approach, which focuses first on
keywords distribution and second on links, by
applying a tf.idf based formula on element contents.
Moreover, the proximity factor proposed in XRANK
is not fully adapted to XML tree structures; XRANK
uses the minimum containing window (containing
all keywords) as proximity metric. It is a global
proximity; our system rather uses a proximity factor
computed at the element granularity, i.e., not
globally on the full result sub-graph. Thus, our
approach is more precise on content. XRANK also
uses a decreasing factor for less specific results (far
from the sub-graph result root).

The XXL system, Theobald and Weikum (2002),
uses relevance ranking focused on a vagueness
operator, which computes a similarity score for
every result. It compares the structure of the result
with the structure of the query, by applying
ontological rules. This kind of ranking is not easily
adaptable to XQuery Text in the context of
mediation, as it is not based on a specific search
space. However, it could be interesting to consider
ontology-based similarity for integrating
heterogeneous sources.

XIRQL, Norbert and Kai (2001), extends IR
functionalities to XML, like relevance-oriented
search, looking for XML objects satisfying a content
search. Weighting formulas are applied to objects
(i.e., sub-graphs) defined in the schema at the type
level and in the index at the instance level.
Composed objects are weighted with the sum of the
composing objects. Content queries are processed by
combining relevance of objects according to the
logical search conditions. Only the relevant objects
are returned ranked by weights. A tf.idf computation
and the specificity of the position of keywords are
used to adjust the weight of the objects. This
approach is difficult to apply in a mediation
architecture where objects are not defined for each
source.

5 EXPERIMENTS

We experiment index search on three different data
sets stored in an XML repository. The data sets are
presented in table 2. The size is the total size of the
view after creation. Each data set is structured as the
critic view definition given above. Collections are
stored on different sources. We measure search time
through the index for three queries:

(q01) critic/review [. ftcontains “k1” && … “kn”]
(q02) critic [. ftcontains “k1” && … “kn” without
content .//title]
(q03) critic [. ftcontains “k1” && … “kn”]

The queries are searching documents containing
a conjunctive set of keywords. The search space
includes different elements of the view. q01 searches
in the review element, q02 in the review element
without title, and q03 in the full document. Queries
are executed on the same Pentium 4 with 512K
memory configuration. The numbers of keywords in
queries vary from 2 to 26. The measures presented
here are an average of ten executions.
Table 2 presents the execution time of q01 searching
for 5 keywords. For each data set, we measure the
execution time with an indexed view, and without
index (the mediator handles the search operation).
The time for the view includes the index search time
(both Word Index and Source Map), the query plan
execution in the mediator, and the result
construction. The time without indexed view
includes the plan execution and the result
construction times. As planned, index speeds up the
execution time as only relevant results are requested
from the sources and complex content search
operations are avoided on huge text data at the
mediator layer. For each data set, the execution
through the indexed view brings out a significant
ratio averaging 3, for a low selectivity of queries
(from 60 % to 68 % of the documents are selected).

Table 2: Data sets.

 Docs Byte Size
ds1 100 607 855
ds2 250 1 556 052
ds3 500 3 029 990

Table 3: q01 execution time and index search time.

Execution Time Intersection
View Mediator 5 words 15 words 25 words
1042.1 2917.6 1.6 3.1 4.6
1976.5 5969 6.3 15.6 21.9
5949 18501 17.2 65.6 86

Index search times for query Q01 are presented
in table 3. The index search does not increase

WEBIST 2006 - INTERNET TECHNOLOGY

44

significantly the execution time; it represents less
than 1% of the overall execution time. These
preliminary results validate our approach.

0

5

10

15

20

25

30

35

1 2 3 4 6 7 8 9

DS3 Q02
DS3 Q03
DS2 Q02
DS2 Q03

0

5

10

15

20

25

30

35

1 2 3 4 6 7 8 9

DS3 Q02
DS3 Q03
DS2 Q02
DS2 Q03

words

Ti
m

e
(m

s)

Figure 4: q02 and q03 evaluation for DS2 and DS3.

Figure 4 illustrates the index search time
difference between q03 and q02. Due to the
identifiers ordering scheme, q02 always executes
faster than q03 as fewer elements are considered in
the search space.

6 CONCLUSION

In this paper, we have reported on the integration of
XQuery Text in an XML mediator. The main
difficulty is to integrate sources with little
capabilities in full-text search. We propose to use
indexed virtual views to support such sources. The
views are indexed inside the mediator using a sort of
structural dataguide derived from the view
definition, called a viewguide. Nodes identifiers and
path expressions are encoded through the viewguide,
which yields to algorithms to process efficiently the
mediator basic selection operator involving XPaths
and keywords. A parameterized ranking formula
taking into account relevance and deepness of
elements is proposed to integrate result relevance.

Further work remains to be done. Notably, a
better support of source capabilities would be
desirable. When a source can support a subset of
XQuery, we should be able to build limited views at
the wrapper to integrate it in distributed query
processing. Thus, functionalities should be divided
in multiple stages, e.g., concrete local views
combined with global virtual views. Also, local
ranking of results from a view or a capable source
(e.g., Google) seems easy, but global ranking with
pertinent formulas remains to be experienced in
details on real applications. The propagation of
updates must also be studied. Indexing structures
should be automatically updated when inserting and
deleting objects in data sources. A basic approach
could be detecting updates at wrapper level and
propagate them at the different index structures.

REFERENCES

Abiteboul S., S. Cluet, G. Ferran et M.C. Rousset: "The
Xyleme project", Computer Networks 39(3): 225-238
(2002)

Amer-Yahia S., C. Botev, J. Shanmugasundaram :
"TeXQuery: A Full-Text Search Extension to
XQuery", WWW'04

BEA: "Liquid data for WebLogic 1.1, 2004, http://e-
docs.bea.com/liquiddata/docs11/

Bremer J. M., M. Gertz : "XQuery/IR: Integrating XML
Document and Data Retrieval", WebDB 2002.

Buxton S., Rys M. Editors, "XQuery and XPath Full-Text
Requirements", W3C Working Draft 02 May 2003,
http://www.w3.org/TR/xquery-full-text-requirements/

Chen Q., A. Lim and K.W. Ong : D(k)-index: An adaptive
structural summary for graph-structured data. In Proc.
of SIGMOD, 2003.

Chung Chin-Wan, J. Min and K. Shim: "APEX: an
adaptive path index for XML data", SIGMOD
Conference 2002: 121-132

Cooper B., N. Sample, M.J. Franklin, G.R. Hjaltason and
M. Shadmon :" A Fast Index for Semistructured
Data.", VLDB 2001: 341-350

Dang-Ngoc T.-T., G. Gardarin : "Federating
heterogeneous data sources with XML", In Proc. of
IASTED IKS Conference, pages 193-198, Scottsdale,
USA, Nov. 2003.

Fuhr N., K. Großjohann: "XIRQL: A Query Language for
Information Retrieval in XML Documents". SIGIR
2001: 172-180

Gardarin G., L. Yeh: "Treeguide Index: Enabling Efficient
XML Query Processing", Bases de Données Avancées,
Montpellier, Octobre 2005

IBM: "DB2 Information Integrator for Content", 2004,
http://www-306.ibm.com/software/data/eip/

Kaushik R., P. Shenoy, P. Bohannon and E. Gudes :
Exploiting local similarity for indexing paths in graph-
structured data. In Proc. of ICDE, 2002.

Lin G., F. Shao, C. Botev, J. Shanmugasundaram :
XRANK: Ranked Keyword Search over XML
Documents. SIGMOD Conference 2003: 16-27

Milo T., D. Suciu: "Index Structures for Path
Expressions", ICDT 1999: 277-295

Papakonstantinou Y., V. Borkar, M. Orgiyan, K.
Stathatos, L. Suta, V. Vassalos, P. Velikhov : "XML
queries and algebra in the Enosys integration
platform", Data Knowl. Eng. 44(3): 299-322 (2003)

Rahm E., P.A. Bernstein. 2001. A survey of approaches to
automatic schema matching. VLDB journal:334-350.

Theobald A., G. Weikum : "The Index-Based XXL Search
Engine for Querying XML Data with Relevance
Ranking". EDBT 2002: 477-495

Widom J. et. al.: "Lore, a DBMS for XML", http://www-
db.stanford.edu/lore/

XQuare: "The XQuare project: open source information
integration components based on XML and XQuery",
2004, http://xquare.objectweb.org/

EXTENDING AN XML MEDIATOR WITH TEXT QUERY

45

