
CWS-TRANSACTIONS: AN APPROACH FOR COMPOSING
WEB SERVICES

Juha Puustjärvi
Lappeenranta University of Technology

Keywords: Composed web services, Advanced transaction models, Semantic atomicity.

Abstract: Many transaction models have been developed for modelling composed web services. In these models
subtransactions (single web services) can commit and release their resources before the whole composed
transaction commits. If the whole transaction aborts, then the (semantic) atomicity is ensured by executing
compensating transactions which semantically undo the effects of the committed subtransactions. However,
using compensating transactions in ensuring semantic atomicity is turned out to be problematic in many
cases. In order to avoid these problems we have developed a new transaction model, called CWS-
transaction model, for composed web services. It deviates from other advanced transaction models in that it
is not based on compensating transactions, but rather it divides the traditional business transaction into two
successive transactions, called request transaction and decision transaction. The commitment of the request
transaction ensures that the decision transaction will not fail, and so the atomicity of the CWS-transaction is
ensured. In this paper we specify the components of the CWS-transaction model, their execution
dependencies, the correctness criteria of the CWS-transactions and give an example of the implementation
of the CWS-transaction model.

1 INTRODUCTION

A business transaction is an interaction in the real
world, usually between an enterprise and a person or
between enterprises, where something is exchanged.
For example, making a room reservation on a hotel
and booking a flight are business transactions.

Web services (Newcomer. 2002) provide a way
for executing business transactions in the Internet.
They are self-describing modular applications that
can be published, located and invoked across the
Web. Once a service is deployed, other applications
can invoke the deployed service. In general, a web
service can be anything from a simple request to
complicated business process.

Another nice feature of web services is that new
and more complex web services can be composed of
other web services. However, in many cases
composed web services are useful only if they can
be processed atomically. For example, assume that a
composed web service is composed of flight
reservation web service and hotel web service. Now
the success of the hotel reservation may be useless if
the flight reservation failed.

Many transaction and workflow models have
been developed for modelling the execution of
composed web services, e.g., XLANG (XLANG,
2001), XAML (XAML, 2003), BTP (Business
Transaction Protocol) (BTP, 2002), WSFL (WSFL,
2003) and BPEL4WS (MPEL, 2004). The
cornerstone of these models is the notion of
compensation. This means that each subtransactions
(the execution of a single web service) can commit
and release its resources before the whole composed
transaction (composed web service) commits. If the
whole transaction aborts (i.e., at least one
subtransaction failed) then the (semantic) atomicity
(Lynch, 1983) of the composed web service is
ensured by executing compensating transactions
which semantically undo the effects of the
committed subtransactions.

However, using compensating transactions
(Garcia-Molina, 1983) in ensuring atomicity may be
problematic. To illustrate this let us consider the
composed business transaction comprising of hotel
room reservation and flight reservation. Now assume
that the hotel reservation was successfully processed
whereas the flight booking failed. So, the hotel
reservation has to be rolled back by a compensating

69Puustjärvi J. (2006).
CWS-TRANSACTIONS: AN APPROACH FOR COMPOSING WEB SERVICES.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 69-74
DOI: 10.5220/0001239400690074
Copyright c© SciTePress

transaction. Now we may encounter the following
problems:

First, rolling back a business transaction is not
always free of charge, and so the cancellation of the
hotel reservation may give rise for a special charge.

Second, there are two semantics for the hotel
reservation transaction: From composed transactions
point of view the reservation is a reservation of
resource which will be realized only if all the
subtransaction succeed (with traditional transaction
processing such a function is carried out by locks).
From hotel point of view the reservation of a
composed business transaction is like any
reservation.

In addition, compensation is not always possible.
For example, withdrawing 100 euros from account
A is the compensation of deposing 100 euros on
account A. However, the withdrawing will fail if the
balance of account A is less than 100 euros.

In order to avoid these problems we have
developed a new transaction model, called
Composed Web Service Transaction model, or CWS-
transaction model for short. It deviates from other
advanced transaction models in that it is not based
on compensating transactions, but rather it divides
the traditional business transaction into two
successive transactions, called request transaction
and decision transaction. The commitment of the
request transaction ensures that the decision
transaction will not fail, and so the atomicity of the
CWS-transaction can be ensured.

The rest of the paper is organized as follows.
First, in Section 2, we specify the syntax and
semantics of the CWS-transaction model. Then, in
Section 3, we specify the coordination requirements
for the execution of CWS-transactions. In particular,
the message interchange between web services is
illustrated. In Section 4, we illustrate how the
request transaction and the decision transaction can
be implemented in a local application. The required
transactions are presented by an SQL-like notation.
Section 5 concludes the paper by discussing the
advantages and limitations of the CWS-transaction
model.

2 THE STRUCTURE OF THE
CWS-TRANSACTIONS

In this section we specify the components of the
CWS-transaction model and their execution
dependencies.

In our terminology we refer by the term web
service transaction, or WS-transaction for short, to
the execution of a web service. So, for example,
WS-transaction is an execution of a web service
which makes a reservation on a hotel through.
Further WS-transaction comprises of one or more
web service operations, or WS-operations for short.
For example, requesting the prises of hotel rooms
and making the actual room reservation are the WS-
operations comprising a WS-transaction.

Further, we make the difference between read
operations and update operations of a WS-
transaction, e.g., requesting the prises is a read
operation whereas making the actual reservation is
an update operation.

Transactional feature (Gray and Reuter, 1993) in
the context WS-transactions means that all or none
of its update operations are executed. For example,
if the function of a flight reservation WS-transaction
is to make a reservation on flight A and B, then both
or none of the reservations are done.

Even though the WS-transaction model is useful
for executing and analyzing single web services, it is
not enough powerful for modelling composed web
services. Therefore we use WS-transaction as
components in the CWS-transaction model.

The structure of the CWS-transaction is
presented in Figure 1.

The function of the root (CWS-transaction) is to
coordinate the execution of the leaf transactions
(Participant Web Service transactions, or PWS-
transactions for short).

Further each PWS-transaction is divided into a
request transaction and a decision transaction
(Figure 2). The function of a successfully executed
request transaction is to ensure that the decision
transaction will not semantically fail. The decision
transaction will only be executed if the
corresponding request transaction is successfully
executed. Further, each decision transaction either

Composed web
services transaction
(CWS-transaction)

Participant web
service transaction
(PWS-transaction)

Participant web
service transaction
(PWS-transaction)

…

Figure 1. The structure of the CWS-transaction.Figure 1: The structure of the CWS-transaction.

WEBIST 2006 - INTERNET TECHNOLOGY

70

confirms or cancels the request. Note that
technically request and decision transactions are
normal WS-transactions.

The execution dependencies of the PWS-
transaction are presented in Figure 3.

In order to illustrate the execution of the CWS-
transactions let us assume that a
business_trip_reservation is a CWS-transaction
(Figure 4). Its PWS-transactions are
hotel_reservation_transaction and flight_reservation
transaction, which in turn are divided into request
transaction and decision transaction.

After the execution the business trip transaction
it is either in aborted state or committed state (Figure
5). It is in the aborted state, if one or more request
transaction failed. This may happen for example
when the flight or the requested hotel is fully
booked.

3 SUPPORTING
CWS-TRANSACTIONS

Based on the concepts presented in Section 2 we can
now specify the correctness criteria of the CWS-
transactions. They are the followings:

C1. Each CWS-transaction either commits or aborts.

C2. If the request transaction of each PWS-
transaction is successfully executed, then their
positive decision transaction is also executed (i.e.,
the CWS-transaction is committed).

C3. If the CWS-transaction aborted, then each of its
PWS-transaction either aborted or cancelled.

Enforcing these constraints requires the coordination
between the CWS-transaction and its PWS-
transactions. In the following protocol description to
illustrate the functions of the components, we call

Start

Wait

ConfirmedCanceledAborted

Semantic success
of request transactionSemantic failure

of request
transaction

Positive
decision

transaction

Negative
decision
transaction

Figure 3. The states of a PWS-transaction.

PWS-transaction

Request
transaction

Decision
transaction

Failure

Success

Figure 2. The execution dependencies of the PWS-transaction.

CWS-transaction:
Business
trip reservation

PWS-transaction:
Hotel
reservation

PWS-transaction:
Flight
reservation

Hotel
Request
transaction

Hotel
Decision
transaction

Flight
Request
transaction

Flight
Decision
transaction

Figure 4. The structure of a CWS-transaction.

Start

Aborted Committed

Failure of
a request
transaction

Semantic
success of
all request
transactions

Figure 5. The states of a CWS-transaction.

Figure 2: The execution dependencies of the PWS-
transaction.

Figure 3: The states of a PWS-transaction.

Figure 4: The structure of a CWS-transaction.

Figure 5: The states of a CWS-transaction.

CWS-TRANSACTIONS: AN APPROACH FOR COMPOSING WEB SERVICES

71

the root as coordinating web service while other web
services we call participating web service. This kind
of communication architecture can be presented as
graph where nodes are Web services (Web services,
2002) and directed edges represent SOAP-messages
(SOAP, 2002) (Figure 6).

 For simplicity we first present the atomicity
protocol assuming that there are no communication
failures. In such a case the atomicity protocol of
composed web services goes as follows:

1. The CWS-transaction coordinator sends the
request message to participant web services.

2. A participant web services execute the request
transaction. If the execution failed the participant
web service sends to CWS-transaction coordinator
the failure message; otherwise it sends the success
message.

3. If the CWS-transaction coordinator has
received the success message from all participant
web services, then it sends the positive decision
message to each participant web service (i.e.,
requests to execute the positive decision
transaction). Otherwise it sends the negative
decision message.

Note that, this protocol will terminate only if all
messages are received. There are two places where a
service is waiting for a message: in the beginning of
steps 2 and 3. In the beginning of step 2, a
participant web service waits for a request from the
CWS-transaction coordinator. In step 3, the CWS-
transaction coordinator is waiting for the decision
(positive or negative) from all the participant web
services.

We say that when a service must await the repair
of failures before proceeding, the service is blocked.
Blocking is undesirable, since it can cause services

to wait for an arbitrarily long period of time. In order
that a blocked service can proceed it must
communicate with the CWS-transaction coordinator.
This kind of communication is carried out in a
termination protocol. Participant web service
activates a termination protocol when it has been
waiting a predetermined time for a message. Our
termination protocol of the atomicity protocol goes
as follows:

1. The participant web service sends decision-
request-message to the CWS-transaction
coordinator.

2. The CWS-transaction coordinator sends the
response-message to the participant web service.

The participant web service repeats the request if it
has not received the response in a predetermined
time period. The CWS-transaction coordinator is
always able to response to the request as it has no
uncertainty period. Uncertainty period is the time
period between the moment a participant web
service sent the success message to the CWS-
transaction coordinator and the moment it has
received the decision message. During the
uncertainty period the participant web service does
not know whether the CWS-transaction coordinator
will eventually commit or abort the CWS-
transaction.

4 IMPLEMENTING
PWS-TRANSACTIONS

A salient feature of the CWS-transaction model is
that if a participant web service sends the success
message to the CWS-transaction coordinator, then it
is committed to execute the decision (either positive
or negative) transaction. The problem here is how to
ensure that the decision transaction will not
semantically fail in executing the positive decision
transaction. We illustrate our used technology by a
web service of an imaginary airline (Figure 7). Web
services are described in WSDL (WSDL, 2001) but
here we omit the descriptions.

CWS-transaction
coordinator

Participant
Web service

Participant
Web service

SOAP-
messages

…
Figure 6. The communication structure of CWS-transaction.

1 2 3 123

Figure 6: The communication structure of CWS-
transaction.

WEBIST 2006 - INTERNET TECHNOLOGY

72

Assume that the Flight reservation database is
comprised of the three relations: Reservations
(Figure 8), PreliminaryReservations (Figure 9) and
ReservationStates (Figure 10).
 Relation Reservations includes reservations.
Relation PreliminaryReservations includes the
reservations inserted by the transaction triggered by
the Request-message. They are called preliminary
reservations as they will be changed to reservations
by the positive decision transaction or they will be
deleted by the negative decision transaction. That is,
the positive decision transaction deletes the
preliminary reservation and makes a reservation
while the negative decision transaction only deletes
the preliminary transaction.

Relation ReservationStates captures the information
of preliminary reservations (attribute preResNum)
and reservations (attribute resNum). Attribute
maxRes indicates the number of reservations that can
be made on flights. In order to avoid overbookings
the specification of the relation ReservatioState
includes the following consistency constraint:

 CONSTRAINT BookingWatch
 CHECK (resNum + preResNum <= maxRes)

Note that this constraint also ensures that each
preliminary reservation can be changed to
reservation. That is, changing a preliminary
reservation into reservation cannot fail as a result of
unreserved seats.
 The specifications of the transaction making the
preliminary reservation and the positive and
negative decision transactions are given below. The
Request message (Figure 7) activates the
PreReservation transaction, and the Decision
message (Figure 7) activates either the
PositiveDecision transaction or the
NegativeDecision transaction. Here we use an SQL-
like notation which deviates from SQL in that we
omit certain features, which are irrelevant from the
illustrative point of view, e.g., we omit the check of
the SQLSTATE-variable.

PreReservation (customerID, flightId,
resSeats)
Begin transaction
 INSERT INTO PreliminaryReservations
 VALUES (:customerID, :flightId,
:reseats);
 UPDATE ReservationStates
 SET preResNum = preResNum +
:reseats
 WHERE flight = :flightId;
End transaction

PositiveDecision (customerID, flightId,
resSeats)
Begin Transaction
 UPDATE ReservationStates

Flight reservation
application

Flight reservation
database

Web service interface

Request
message

Success
message

Failure
message

Decision
message

Figure 7. Web service of a reservation system.

customer flight preResSeats

A -123 1
C -345 2

Figure 9. Relation PreliminaryReservations.

PreliminaryReservations

Robinson
Harrison

ReservationsStates flight

A -123 1

C -345

3

B -234 1

2

Figure 10. Relation ReservationStates.

resNum preResNum maxRes

3

0

60

50

90

Reservations customer flight resSeats
Smith A -123 1
Jones C -345 3
Taylor B -234 1
Cooper A -123 2

Figure 8. Relation Reservations.

Figure 7: Web service of a reservation system.

Figure 8: Relation Reservations.

Figure 9: Relation PreliminaryReservations.

Figure 10: Relation ReservationStates.

CWS-TRANSACTIONS: AN APPROACH FOR COMPOSING WEB SERVICES

73

 SET preResNum = preResNum -
:reseats,
 resNum = resNum + :resSeats

 WHERE flight = :flightId;
 INSERT INTO Reservations
 VALUES (:customerID, :flightID,
:reseats):
 DELETE FROM PreliminaryReservations
 WHERE fligh = :flightId AND
 customer =
:customerID;
End transaction

NegativeDecision (customerID, flightId,
resSeats)
Begin Transaction
 UPDATE ReservationStates
 SET preResNum = preResNum -
:reseats,
 WHERE flight = :flightId;
 DELETE FROM PreliminaryReservations
 WHERE fligh = :flightId AND
 customer =
:customerID;
End transaction

5 CONCLUSIONS

A goal of web services is to achieve universal
interoperability between applications by using web
standards. However, the full potential of universal
interoperability will be achieved only when web
services can be integrated in a transactional way. In
order to achieve this goal many transaction models
have been developed. In these models compensating
transactions are used to ensure the semantic
atomicity of transactions spanning over many sites.

In many cases the use of compensating
transactions has turned to be problematic. In order to
avoid these problems we have developed the CWS-
transaction model, which does not use compensating
transactions. In contrast it divides the traditional
business transaction into two successive
transactions, called request transaction and decision
transaction. The commitment of the request
transaction ensures that the decision transaction will
not fail, and so the semantic atomicity of the CWS-
transaction is ensured. In addition the termination
protocol ensures that CWS-transactions tolerate also
communication and site failures.

A restriction of our approach is that the support
of CWS-transactions requires minor modifications
on local applications. In particular, the updates of
the request transaction must be stored in a stable

storage, typically on the database. This in turn
requires creating new data structures, e.g., relations.

REFERENCES

Newcomer E., 2002. Understanding Web Services
Addison-Wesley.

XLANG, 2001. XLANG–Web Services for Business
Process Design.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm.

XAML, 2003. Transaction Author Markup Language
 (XAML). http://xml.coverpages.org/xaml.html.

BTP, 2002. BTP- Business Transaction Protocol,
http://www.oasis-open.org/committees/business-
transactions/documents/primer/.

WSFL, 2003. WSFL- Web Services Flow Language.
http://www.ebpml.org/wsfl.htm

BPEL, 2004. BPEL4WS – Business Process Language for
Web Sevices.
http://www.w.ibm.com/developersworks/webservices/
library/ws-bpel/.

Lynch N., 1983. Multilevel atomicity – a new correctness
criterion for database concurrency control. ACM
Transactions on Database Systems, 8(4):65-76.

Garcia-Molina H., 1983. Using semantic knowledge for
transaction processing in a distributed database. ACM
Transactions on Database Systems, 8(2):186-313.

Gray, J. & Reuter A. 1993. Trasaction Processing:
Concepts and Techniques. Morgan Kaufman.

Web services, 2002. Web Services Activity.
http://www.w3.org/2002/ws/.

SOAP, 2002. SOAP – Simple Object Access Protocol.
http://www.w3.org/TR/SOAP/.

WSDL, 2001. WSDL- Web Services Description
Language. http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.

WEBIST 2006 - INTERNET TECHNOLOGY

74

