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Abstract. This work addresses the problem of detecting the speaker on audio-
visual sequences by evaluating the synchrony between the audio and video sig-
nals. Prior to the classification, an information theoretic framework is applied to
extract optimized audio features using video information. The classification step
is then defined through a hypothesis testing framework so as to get confidence
levels associated to the classifier outputs. Such an approach allows to evaluate
the whole classification process efficiency, and in particular, to evaluate the ad-
vantage of performing or not the feature extraction. As a result, it is shown that
introducing a feature extraction step prior to the classification increases the ability
of the classifier to produce good relative instance scores.

1 Introduction

This work addresses the problem of detecting the current speaker among two candidates
in an audio-video sequence, using a single camera and microphone. To this end, the
detection process has to consider both the audio and video clues as well as their inter-
relationship to come up with a decision. In particular, previous works in the domain have
shown that the evaluation of the synchrony between the two modalities, interpreted as
the degree of mutual information between the signals, allowed to recover the common
source of the two signals, that is, the speaker [1], [2].

Other works, such as [3] and [4], have pointed out that fusing the information con-
tained in each modality at the feature level can greatly help the classification task: the
richer and the more representative the features, the more efficient the classifier. Using an
information theoretic framework based on [3] and [4], audio features specific to speech
are extracted using the information content of both the audio and video signals as a pre-
liminary step for the classification. Such an approach and its advantages have already
been described in details in [5]. This feature extraction step is followed by a classifi-
cation step, where a label "speaker” or "non-speaker” is assigned to pairs of audio and
video features. The definition of this classification step constitutes the contribution of
this work.

As stated previously, the classifier decision should rely on an evaluation of the syn-
chrony between pairs of audio and video features. In [4], the authors formulate the
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evaluation of such a synchrony as a binary hypothesis tkstgaabout the dependence
or independence between the two modalities. Thus, a linkbeafound with mutual
information which is nothing else than a metric evaluating tlegree of dependence
between two random variables [6]. The classifier in [4] u#ttely consists in evaluat-
ing the difference of mutual information between the audgmal and video features
extracted from two potential regions of the image. The sigihe difference indicates
the video speech source. We have taken a similar approa&lj, ishjowing that such a
classifier fed with the previously optimized audio featuesgls to good results.

In the present work, the classification task is cast in a Hyg®is testing framework
as well. The objective however is to define not only a clagsifiet the means for evalu-
ating the multimodal classification chain performance.his &€nd, the hypothesis tests
are defined using the Neyman-Pearson frequentist appr@heind one test is associ-
ated to each potential mouth region. This way, the abilityhef classifier to produce
good relative instance scores can be measured. Moreovewadumation of the whole
classification process, including the feature extracttep,san be introduced. It allows
to assess the benefit of optimizing features prior to perffugrthe classification.

The paper is organized as follows: sec. 2 introduces theimmdtal information
theoretic feature extraction framework and explains hovg iapplied to extract au-
dio features specific to speech. Sec. 3 describes the hygietiesting approach taken,
showing that it comes finally to evaluate the mutual infoliorain each mouth region
with respect to a threshold. In the last section, some 1®avdt presented. The behavior
of the classifier itself is analyzed and a comparative stddyh classification chain
performance involving optimized and non-optimized au@iatéires is performed.

2 Extraction of Optimized Audio Features for Speaker Detecton:
Information Theoretic Approach

2.1 Multimodal Feature Extraction Framework

Given different mouth regions extracted from an audio-gigdequence and correspond-
ing to different potential speakers, the problem is to ass$iig current speech audio
signal to the mouth region which effectively did produc&tis is therefore a decision,
or classification, task.

Let the speaker be modelled as a bimodal sow@mitting jointly an audio and
a video signal,A and V. The sourceS itself is not directly accessible but through
these measurements. The classification process has tteetefevaluate whether two
audio and video measurements are issued from a common tsiswurces or not, in
order to estimate the class membership of this source. Tdss membership, modelled
by a random variabl® defined over the sef, can be either "speaker” or "non-
speaker”. Obviously, the overall goal of the classificatpzocess is to minimize the
classification error probability?, = P(O # 0), where the wrong class is assigned
to the audio-visual features pair. In the present case, d gstimation of the class
O of the source implies a correct estimatiSrof this source. This source estimate is
inferred from the audio and video measurements by evalyadiiair shared quantity
of information. However, these measurements are genecaliyupted by noise due
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Fig. 1. Graphical representation of the related Markov chains modelling the mdéhotassifi-
cation process.

to independent interfering sources so that the source a&iand thus the classifier
performance might be poor.

Preliminarily to the classification, a feature extractiagepsshould be performed
in order to possibly retrieve the information present inreatodality that originates
from the common sourcé while discarding the noise coming from the interfering
sources. Obviously, this objective can only be reached Ingidering the two modal-
ities together. Now, given that such featuf€s and Fy, (viewed as random variables
hereafter) can be extracted, the resulting multimodabkdiaation process is described
by two first order Markov chains, as shown on Fig. 1 [5]. Noticat for the sake of
the explanation, the fusion at the decision or classifieglléw obtaining a unique es-
timateO of the class is not represented on this graph.and Fy, describe specifically
the common source and are then related by their joint préibap{ F 4, Fy). Thus, an
estimatefy, of £y, respectiverFA of F4, can be inferred fronk's, respectivelyFy .
Th[s allows to dejine the transition probgbilities i) e FyandFy — Fy (since
p(Fv|Fa) = p(Fv, Fa)/p(Fa), andp(Fa|Fy) = p(Fa, Fy)/p(Fyv)). Two classi-
fication error probabilities and their associated lowerrustsucan be defined for these
Markov chains, using Fano’s inequality [3]:

H(O) — I(Fa,Fy) -1

P, > , 1

iy log [£20] 1)
H(O)—I(Fy,Fy)—1

P., > , 2

4 log [£20| @

where| 2o | is the cardinality oD, I the mutual information, andl the entropy. Since
the probability densities of'y and Fy, respectiverFV and Iy, are both estimated
from the same data sequendgerespectively, it is possible to introduce the following
approximations?(Fu, Fy) ~ I(Fa, Fy) ~ I(F4, Fy) [3]. Moreover, the symmetry
property of mutual information allows to define a joint loviErund on the classification
error P.:

H(O) —I(Fa, Fv) — 1

Pe:Pe e} =
Ceves) log [ 2o]

®3)

|£20] is supposed to remain fixed during the optimization (only tlesses in all cases)
and each class is assumed to have the same probability. qLemgly, H (O)remains
constantH (O) = —1. Moreover,log |20| = 1, so that Eq. (3) becomes:

Pe>_2_I(FAaFV)' (4)
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To be efficient, the minimization dP. should therefore include the minimization of
the right-hand term of the inequality (4) and therefore,feximization of the mutual
information between the extracted featufésand Fy, corresponding to each modality.
However, for the resulting feature sets to compactly dbsdtie relationship between
the two modalities, a normalization term involving the foémtropyH (F 4, Fy) has to
be introduced, leading to the definition of a feature efficiecoefficient [3]:

I(Fa, Fy)

P B R

€ [0, 1]. (5)

Maximizing e(F4, Fy/) still minimizes the lower bound on the error probability de-
fined in Eq. (4) while constraining inter-feature indepemzes. In other words, the
extracted features’s and Fy will tend to capture specifically the information related
to the common origin ofA andV, discarding the unrelated interference information.
The interested reader is referred to [3] and [5] for moreitieta

Applying this framework to extract features, the bound om ¢tassification error
probability is minimized. However, there is no guaranteat this bound is reached
during the classification process: this depends on the elufia suitable classifier.

2.2 Signal Representation

Before applying the optimization framework previously ciésed to the problem at
hand, both audio and video signals have to be representesliitedle way.

Physiological evidence points to the motion in the mouthaegs a visual clue for
speech. The video features are thus the magnitude of theabfibw estimated over
T frames in the mouth regions (rectangular regions includivgglips and the chin),
signed as the vertical velocity component. These moutlonsgare roughly extracted
using the face detector depicted in [8}-1 video feature vectorgy; (t=1...,7—-1)
are obtained, each element of these vectors being an ohearghthe random variable
Fy.

For the audio representation to describe the salient aspéthe speech signal,
while being robust to variations in speaker or acquisitionditions, we use a set of
T — 1 vectorsC, each containing® mel-frequency cepstrum coefficients (MFCCs):
{Ct(3) }iz1,...p Witht = 1,...,T — 1 (the first coefficient has been discarded as it
pertains to the energy).

2.3 Audio Feature Optimization

The information theoretic feature extraction previousicdssed is now used to extract
audio features that compactly describe the informationmmomwith the video features.
For that purpose, the one-dimensional (1D) audio featlites(x), associated to the
random variablé”', are built as the linear combination of tfieMFCCs:

Fas(o) =) a(i)-Cy(i) Vt=1,...,T—1. (6)

i=1
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Thus, the set of? - (T' — 1) parameters is reduced fo- (T' — 1) valuesF4 ;(cx).
The optimal vectoix could be obtained straightaway by minimizing the classifica
error bound given by Eq. (4). However, a more specific and tcaiméng criterion is
introduced here. This criterion consists in the squardddince between the efficiency
coefficient computed in two mouth regions (referred taldsand Ms). This way, the
discrepancy between the marginal densities of the videturfes in each region are
taken into account. Moreover, only one optimization is perfed for two mouths re-
sulting in a single set of optimized audio features. It iraplhowever that the potential
number of speakers is limited to two in the test audio-videguences.

If £} and F}** denote the random variables associated to regidpsand M,
respectively, then the optimization problem becomes:

Qopt = AIg m;th{[@(Fy1 ,Fa(a)) - e(F{,”?,FA(a))P} , @)

Notice finally that the probability density functions rergd in the estimation of the
mutual information are estimated in a non-parametric wéryguBarzen windowing.

3 Hypothesis Testing as a Classifier and an Evaluation Tool

3.1 Hypothesis Testing for Classification

The previous section has shown how features specific to #ssification problem at
hand can be extracted through a multimodal informationreéteoframework. The ap-
plication of this framework results in the minimization bktlower bound on the clas-
sification error probability. But the question of reachihg tound itself relies on the
choice of a suitable classifier.

Hypothesis tests are used in detection problems in ordek&the most appropriate
decision given an observatianof a random variableX. In the problem at hand, the
decision function has to decide whether two measuremérand 1 originate from a
common bimodal sourcg - the speaker - or from two independent sources - speech and
video noise. As previously stated, the problem of decidiegveen two mouth regions
which one is responsible for the simultaneously recordetaip audio signal can be
solved by evaluating the synchrony, or dependence rekdtipnthat exists between
this audio signal and each of the two video signals.

From a statistical point of view, the dependence betweeratito and the video
features corresponding to a given mouth region can be esguidbrough a hypothesis
framework, as follows [4]:

Hy : FA7t>FV,t ~ Py = P<FA)'P(FV)7
Hy: Fayg, Fyy~ Py = P(Fa, Fy).

H, postulates the data to be governed by a probability densitgtion stating the inde-
pendence of the video and audio sources. The mouth regiadstnerefore be labelled

as "non-speaker”. Hypothesi§; states the dependence between the two modalities:
the mouth region is then associated to the measured speg@i and classified as
"speaker”. The two hypothesis are obviously mutually esisie.
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The Neyman-Pearson approach to hypothesis tests [7] tomsifrmulating cer-
tain probabilities associated with the hypothesis tese fetse-alarm probability, or
sizea of the test, is defined as:

o= P(H = Hy|H = H,), (8)
while the detection probability, or powgrof the test, is given by:
B=P(H=H|H = H). ©)

The Neyman-Pearson criterion selects the most powerftulofesize o: the decision
rule should be constructed so that the probability of daieds maximal while the
probability of false-alarm do not exceed a given valud&Jsing the log-likelihood ratio,
the Neyman-Pearson test can be expressed as follows:

(10)

Fy gy, F
A(FA,t7FV7t):1Og|: p( sl V,t) :|§ )

p(FA,t) : P(Fv,t)

The test function must then decide which of the hypothesthgsmost likely to de-
scribe the probability density functions of the observadié’s . and Fy-;, by finding
the threshold; that will give the best test of size.

The mutual information is a metric evaluating the distanegveen a joint distribu-
tion stating the dependence of the variables and a joinilaligion stating the indepen-
dence between those same variables:

T-1T-1

p(Fai, Fvj)
15050 = 5 X [ e ton (8B

=1 j=1

The link with the hypothesis test of Eq. (8) seems straightfod. Indeed, as the num-
ber of observationg’, , and Fy,; grows large, the normalized log-likelihood ratio ap-
proaches its expected value and becomes equal to the mofoizhation between the
random variablef’y and Fy, [6]. The test function can then be defined as a simple
evaluation of the mutual information between audio and @idendom variables, with
respect to a thresholgl. This result differs from the approach of Fishetral. in [4],
where the mouth region which exhibits the largest mutuarimition value is assumed
to have produced the speech audio signal. The formulatidheofiypothesis test with

a Neyman-Pearson approach allows to define a measure of @ocdidn the decision
taken by the classifier, in the sense thatdhg trade-off is known.

Considering that two mouth regions could potentially beoersged to the current
audio signal and defining one hypothesis test (with asstihresholdg; andnsy) for
each of these regions, four different cases can occur:

Fy, Fy,) <n9: speaker 1 is speaking and speaker 2 is not;
F4, Fy,) >n9: speaker 2 is speaking and speaker 1 is not;
F4, Fy,) <n9: none of the speaker is speaking;

Fy4, Fy,) >n9: both speakers are speaking.

A~~~
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The experimental conditions are defined so as to eliminatpdssibilities 2 and 3:
the test set is composed of sequences where speakers 1 ansii@aking each in turn,
without silent states. This allows, in the context of thisligninary work, to define the
simpler following cases: if a speaker is silent, it implibattthe other one is actually
speaking. Notice also that a possible equality with thestiold is solved by attributing
randomly a class to the random variable pair.

3.2 Hypothesis Testing for Performance Evaluation

The formulation of the previous hypothesis test gives a ntdavaluating the whole
classification chain performance. Receiver Operating &haristic (ROC) graphs al-
low to visualize and select classifiers based on their pedioce [9]. They permit to
crossplot the size and power of a Neyman-Pearson test,dlavaluate the ability of a
classifier to produce good relative instance scores. Oyrgserhere is not to focus the
evaluation on the classifier itself but on the possible gé#fiered by the introduction of
the feature optimization step in the classification process

To this end, two kinds of audio features are used in turn tonasé the mutual in-
formation in each mouth region: the first ones are the lineartination of the MFCCs
resulting from the optimization described in sec. 2; theos€loones consist simply in
the mean value of these MFCCs. The results about this cosguaaire presented in the
next section.

4 Results

4.1 Experimental Protocol

The sequence test set is composed of the eleven two-spesakgrsncegll to g22 1,
taken from the CUAVE database [10], where each speakestittéurn two digit series.
These sequences are shot in the NTSC standard (29.97fhkH&4stereo sound). For
the purpose of the experiments, the problem has been tesdittiz the case where one
of the speaker and only one of them is speaking in any caseefline, the last seconds
of the video clips where the two speakers are speaking atheg, as well as the silent
frames - labelled as in [11] - have been discarded.

For all the sequences, thé x M mouth regions are extracted, using the face de-
tector described in [8]/f and M varying between 30 and 60 pixels, depending on
speakers’ characteristics and acquisition conditionsiisTthe video feature set is com-
posed of theV x M x (T — 1) values of the optical flow norm at each pixel location (T
being the number of video frames within the analyzing windioev T' = 60 frames).
From the audio signal, 12 mel-cepstrum coefficients are etatpusing 30ms Ham-
ming windows.

The optimization is done over2s temporal window, shifted by one second steps
over the whole sequence to take decisions every secondsuiijngt of the classifier for
each window is compared to the corresponding ground tristl Jaefined as in [11].
The test set is eventually composed of 188 test points (wisylovith one audio and

1 g18 has been discarded as it exhibits strong noise due to the compression.
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one video instances for each window. The two classes, "sptakspeaker on the left
of the image) and "speaker2” (speaker on the right) are wadiized since theirs set
sizes are 95 and 93 respectively.

4.2 Performance of Hypothesis Testing as a Classifier

Firstly, the ability of hypothesis testing to act as a clfissis discussed. The evaluation
of the possible gain offered by using optimized audio feswwith respect to simpler
ones is addressed in the next paragraph. Thus, only optiraizéio features are put in
the classifier, defined as the test function giving the basifesizex.

For binary tests, a positive and a negative class have tofieedeWe assume the
positive class to be the class "speaker” for each test. Mozeigely, since the experi-
mental conditions implies that there is always one speghesilsng, the positive class
is the label of the mouth region where the test is performed’speakerl” for testl
(defined between the random variablés and Fy, ), and "speaker2” for test2. Table 1
compares the power of the tests for given sizes

Table 1. Power of the tests for different sizes The thresholds) defining the corresponding
decision functions are also indicated.

Testl Test2
o 5% | 10% | 20% || 5% | 10% | 20%
I6] 37.9%181.1%190.5%)(4.3%|24.7%89.26%
Threshold 0.41 | 0.25| 0.16 || 0.55| 0.45| 0.25

Let us introduce now the accuracy of a test as the sum of tleepaitive and true
negative rates divided by the total number of positive arghtiee instances [9]. Table 2
gives the classifier scores for the threshold corresponidirench test best accuracy:
86.7% and85.11% for testl and test2 respectively, obtained for threshg{ds- 0.18
andn, = 0.19.

Table 2. Detection probabilities? and false-alarm rates for each class of each test at its best
accuracy value.

Testl Test2
Positive clas8\egative classPositive clasgNegative class
15 87.4% 86.0% 91.4% 79.0%
@ 14.0% 12.6% 21.0% 8.6%

These results indicate hypothesis test as a good methoddigineng a speaker class
to mouth regions, with a given-g trade-off. The classifier produces better relative
instance scores for testl. However, the thresholds giviegoest accuracy values are
about the same for the two tests. This tends to indicate ltigatttreshold is not speaker
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dependent. Further tests on larger test sets would be @megdsswever for a more
precise analysis of the classifier capacity.

4.3 Evaluation of the Classification Chain Performance

The advantage of using optimized audio features againgilsiones at the input of
the classifier is now discussed. As in the previous paragtamhtests are considered,
with the positive classes being respectively the speakedltze speaker 2. The ROC
graphs corresponding to each test are plotted on Fig. 2. Alysis of these curves
shows that the classifier fed in with the optimized audiolfezd performs better in the
conservative region of the graph (northwest region).

—Optimized audio features|
L —Optimized audio features| 1
o " MFCC mean #WECC mean
L L L L L L L L L L
1 a 7 1 1

@)

Fig. 2. ROC graphs for tests 1 (a) and 2 (b). The detection probability for thigy@slass is
plotted versus the false-alarm rate.

Table 3 sums up some interesting values attached to the RQ@€ such as the area
under the curve (AUC), or the accuracy with correspondimggtholds. Whatever the
way of considering the problem, the use of the optimized @fehtures improved the
classifier average performance, as stated by the theorgir2se

Table 3. Area under the curve and accuracy with the corresponding threstradé€h test.

Test 1 [ Test 2
Input featurefMFCCs meafOptimized audio featur¢$MFCCs meafOptimized audio features
AUC 0.88 0.92 0.75 0.84
Accuracy 84, 6% 86, 7% 73,4% 85,1%
Threshold 0.14 0.18 0.10 0.19

5 Conclusions

This work addresses the problem of labelling mouth regiatraeted from audio-visual
sequences with a given speaker class label, using both the and video content. The
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problem is cast in a hypothesis testing framework, linkethformation theory. The
resulting classifier is based on the evaluation of the munfatrmation between the
audio signal and the mouths’ video features with respectttoreshold, issued from
the Neyman-Pearson lemma. A confidence level can then bgnasisio the classifier
outputs. This approach results in the definition of an exadodramework. The latter is
not used to determine the performance of the classifief,itagl considers rather rating
the whole classification process efficiency.

In particular, it is used to check whether a feature extoacstep performed prior to
the classification can increase the accuracy of the deteptiocess. Optimized audio
features obtained through an information theoretic featxtraction framework fed in
the classifier, in turn with non-optimized audio featuresalysis tools derived from hy-
pothesis testing, such as ROC graphs, establish eventhalperformance gain offered
by introducing the feature extraction step in the process.

As far as the classifier itself is concerned, more intengststshould be performed
in order to draw robust conclusions. However, preliminamyarks tend to indicate that
a hypothesis-based model can be used with advantage fantadtl speaker detection.

It would also be interesting to consider in future works theeas of simultaneous
silent or speaking states (cases 3 and 4 defined in sec. 3).
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