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Abstract. This paper aims at introducing a novel approach for assisting and re-
storing upper arm movements in stroke patients. The presented system inte-
grates advanced markerless motion analysis together with an artificial neural 
network controller for a biomechanical arm model. The keypoint of the project 
is to acquire kinematics information from the healthy arm of a stroke patient 
during planar arm movements and elaborate them in order to obtain a self-
rehabilitative stimulation of the plegic arm of the same patient. The first ex-
perimental tests show good results and allow to define working direction for the 
extension of the work and for its application in clinical contexts. 

1   Introduction 

Rehabilitative practice in stroke patients has strengthened its empirical foundation on 
the basis of the recent advances in neuroscience methods, which led to deeper under-
standing of motor control and learning mechanisms [1]. Among them, long-term 
potentiation (i.e. synapses are able to encode new information to represent a move-
ment skill) has been considered to play a relevant role in restoring functions. A criti-
cal element for the success of these mechanisms resides in the repetition of inputs for 
the motor cortex, which serves as a biological teacher for the neurons acquiring novel 
skills. This process could easily be implemented through experience and training, 
which induce physiological and morphological plasticity, by strengthening synaptic 
connections between neurons encoding more common functions [2]. In this context, 
the key concept behind rehabilitation is, from a neural network point of view, the 
repetition of movements  in a learning-by-examples paradigm: by repeating move-
ments in either passive or assisted way, the brain is exposed to different examples, 
and its neurons adapt their connections to the newly presented conditions. In this 
general context, the Functional Electrical Stimulation (FES) could heavily enhance its 
role in rehabilitation, since it can be considered as an artificial teacher that allows 
exploration of the workspace, thus representing a driver for different examples: fol-
lowing this perspective, FES has broken the walls of simple functional substitution 
[3] to come up to the requirements of rehabilitation, and has been proven as success-
ful both in lower [4] and in upper limb movements [5]. These encouraging findings 
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recently brought to the development of FES-assisted rehabilitation programs in hemi-
plegic patients [6]. Some of the limitations driven by FES in rehabilitation programs 
reside both in the rather raw and un-physiological control of the stimulation, and in 
the invasiveness of the approach. While for the latter issue, advancements in technol-
ogy made it possible to obtain efficient non-invasive stimulators (see e.g. Handmaster 
[7] and the Bionic Glove [8]), the issue of biological plausibility of stimulation wave-
forms has not yet been deeply investigated, though some pioneering work has been 
found in literature [9]. The resolution of the inverse dynamics, i.e. extracting the 
muscular forces needed to obtain a specific movement from a starting point to a de-
sired endpoint is one of the problems to be solved to efficiently drive the stimulation: 
to this end, artificial neural networks have been hypothesized as biologically plausible 
controllers [10], and then shown as efficient in the resolution of the problem [11]. 
Moreover, if a stand alone system has to be used for an effective self-rehabilitation 
exercise, one point to be addressed resides in the information regarding starting posi-
tion and desired endpoint to be provided to the controller. Among the possible sen-
sors that can efficiently gather these data, one can cite goniometers and motion cap-
ture systems, being the latter less invasive if no markers are to be applied on the body 
surface.  
Following this perspective, the aim of the current work is to provide a general frame-
work for the integration of three blocks that could constitute a stand-alone self-
rehabilitation system: a motion tracking system for the estimation of the desired tra-
jectory obtained from movement of the sound arm, relying on silhouette tracking 
through a novel markerless motion estimation method; a neural controller for the 
resolution of the inverse dynamics to obtain the desired stimulation; the stimulator 
block, that serves as effector to drive the plegic arm. The FES is driven by the inte-
gration between a markerless system for tracking movement and a neural network for 
controlling the muscular stimulations. The overall system to be realised has been 
named TwinN-FES (Tracking with neural Network-FES).  In particular, this work 
will deal with the first two blocks of the system. 

2 Methods 

Figure 1 shows a non formal flow diagram of the proposed method, while in the fol-
lowing subparagraphs the first two blocks are described in detail. 
 

 
Fig. 1. The proposed method. 
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2.1   The Markerless Motion Estimation Method 

The markerless motion estimation method, proposed to track the upper limb during 
the execution of planar movements, aims at estimating the movement of the entire 
arm. The high deformability of human silhouette and consequently the unacceptabil-
ity of a rigid body approximation are critical problems in markerless motion analysis 
[12], [13], [14]. In this context, energy-minimising deformable models offer a partial 
solution. The widely used Active Contour Model, called Snake, is driven by a cost 
function generated by processing an image. The Snakes [15] are widely used in litera-
ture for segmentation and contour detection but they are not applied to track silhou-
ettes subtly changing their shapes during the movement. For this reason they are not 
successfully applicable for human tracking. 
This paper introduces a new deformable model for contour tracing that allows to track 
a deformable silhouette, i.e. the upper limb movement. The method is based on a 
closed Snake predicted by an Artificial Neural Network (ANN) and then called Neu-
ral Snake. The neural approach is based on a multilayer Perceptron (2 hidden layers 
with 15 neurons each) trained for snake configuration prediction. The horizontal and 
vertical components of position, velocity and acceleration of each contour point in the 
current frame are the ANN inputs (number points x 6), while the output is constituted 
by the horizontal and vertical components of the position of each contour point in the 
subsequent frame (number points x 2). The training set is obtained by analysing sev-
eral ad-hoc video sequences: they are characterised by slow upper limb planar move-
ments with high frame rate on a dark background. Figure 2 shows a flow diagram of 
the proposed algorithm which extracts the training set from a video sequence. 
 

 
Fig. 2. Graphical representation of the proposed algorithm for the training set achievement. 

The frames of the video sequences are analysed first by the image enhancer and edge 
detector block in order to determine the upper limb edge over time (figure 3). At first 
the input RGB sequence is converted to greyscale, then the distribution of its histo-
gram is modified by using the VirtualDub program [16]. In particular, the contrast 
filter (200%) and the sharper filter (maximum) are used. After filtering the image by a 
two-dimensional median filter (5-by-5 filter window), the arm silhouette is extracted 
with an edge detection procedure, as reported in Canny [17]. The upper limb edge is 
then uniformly sub-sampled by choosing an Euclidean distance between consecutive 
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points. The sub-sampling procedure aims at keeping constant over time the number of 
edge-points (i.e. in figure 3 the number of points is 22). 
 

 
Fig. 3. 66th frame of one of the video sequences used for training the ANN. a) Original frame. 
b) Frame after the application of the image enhancer. c) Points obtained after the sub-sampled 
edge detector. 

The edge-points are then used as starting points for the Snake algorithm as reported in 
Kass [15]. Then the obtained horizontal and vertical positions of  the contour points 
are processed in order to obtain their velocities and accelerations over time. These 
measures generate the training set of the ANN so that its neurons specialise in snake 
configuration prediction. After training, the ANN is used, frame by frame, to pre-
collocate the snake near the silhouette before the application of the traditional snake 
model (figure 4). 
   The contour-points positions prediction, obtained through the ANN, is significant 
especially in case of fast movements (ballistic) or video sequences with low frame 
rate (i.e. webcams). Therefore, the usage of the trained ANN before the application of 
the Snake algorithm allows to track the silhouette also in these situations. Since the 
ANN inputs are constituted by the horizontal and vertical components of position, 
velocity and acceleration of each contour point, the first three frames of the video 
sequence are necessary for the initialization phase. In this stage the M starting points 
are chosen in the first frame and the following two frames are elaborated with the 
Snake algorithm obtaining the horizontal and vertical positions (Px and Py), velocities 
(vx and vy) and accelerations (ax and ay). Then, the subsequent i frames (i=4,...,N, 
where N is the total number of frames of the video sequence) are elaborated by apply-
ing the Snake algorithm on the output of the ANN (the M predicted contour points P*

x 
and P*

y). The result is the estimation of the silhouette over time. The spatial extremi-
ties of the M contour points, obtained by the Neural Snake approach, are then found 
in order to estimate the close hand and shoulder trajectories. The positions of these 
joints are in fact the inputs of the second block of the proposed method: the Neural 
Controller. 

2.2   The Proposed Neural Controller of the Upper Limb Model 

The second part of the present work concerns the use of the trajectory’s parameter 
information extracted by the Neural Snake algorithm. In order to simulate the activa-
tion of the plegic arm, a neural approach for modelling of the motor control of a hu-
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man arm during planar movements has been used. For this purpose the Neural Snake 
processing block has been integrated with a second system including a NN with a 
biomechanical arm model [11]. 

 
Fig. 4. Graphical representation of the proposed algorithm for upper arm silhouette tracking. 

This linked system is based on three main computational blocks (figure 5): 1) a paral-
lel distributed learning scheme that simulates the internal inverse model in the trajec-
tory formation process; 2) the Pulse Generator, which is responsible for the creation 
of muscular synergies; and 3) the limb model based on two joints (two degrees of 
freedom) and four muscle-like actuators.  
An ANN (a Multi-Layer Perceptron, MLP-ANN with one input layer, one output 
layer and two internal layers) has been used to represent the first computational block. 
   This first block represents the inverse internal model of the upper limb. It collects 
proprioceptive information from the environment, and generates the specific neural 
inputs necessary to obtain the desired motor task which should be carried out by the 
arm. The Artificial Neural Network (ANN) can accomplish to this task on the basis of 
its adaptation and plasticity features. The first layer of the ANN used for this model is 
composed by 4 input units, representing the spatial information (in joints coordinates) 
of the starting and the ending points gained by the analysis of the movement of the 
real arm by means of the Neural Snake algorithm. 
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Fig. 5. Graphical representation of the proposed method for neural controller of the upper limb 
model. 

The transfer function chosen for every unit is the hyperbolic tangent: the output ni
m of 

the ith neuron at the mth level is obtained from the weighted outputs of the (m - 1)th 
level, according to equation 
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After the elaboration of two hidden layers composed by 20 neurons each, the output 
layer provides 3 values, passed to the Pulse generator block, which transforms them 
in the model of the train of the efferent nervous spikes necessary to activate the bio-
mechanical arm, thus inducing the generation of the planar movement. 
 

 
Fig. 6. Neural activations of both the shoulder and the elbow muscle pair. Tall, total time of 
neural activations, is the same for the two joints; the two Tcoact represent the interval of co-
activation of flexor and extensor muscle. The value of 1.5 s is the total observation time. 

The third module corresponds to the model of a human upper limb, composed of a 
skeletal structure together with a muscular structure. The skeletal model has a plant 
structure composed of two segments (because the close hand joint is not considered), 
with lengths L1 and L2, which represent the forearm and the upper arm respectively, 
connected with two rotoidal joint. The planar joints that connect the two segments 
can assume values in the angular range [0, π]. These values univocally identify the 
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Cartesian coordinates of the free end in the working plane by means of well known 
direct kinematic transformation. The muscular system is thus based on 4 Hill’s type 
muscle-like actuators, and establishes the dynamic relationship between the position 
of the arm and the torques acting on each single joint [18]. 
The next figure depicts the profile of these neural activations having rectangular 
shapes, and shows the duration of the entire voluntary task ranging in the interval 300 
ms - 1 s. The three parameters generated by the ANN are: Tcoact shoulder, that defines the 
time of co-contraction between the agonist muscle and the antagonist muscle of the 
shoulder joint, Tcoact elbow, giving the same information for the elbow joint, and Tall 
that specifies the duration of the overall neural activations. 
Body segment anthropometrics and inertias of both upper arm and forearm are now 
taken from the scientific literature, taking into account the specific body height and 
weight [19], but a key feature of the proposed approach is that an adequate model of 
the arm of any specific subject can be obtained and used in the Neural Net. 
The integration of the Neural Snake and the Neural Controller, that constitute the first 
two blocks of the proposed stand-alone self-rehabilitation system, has been tested on 
several experimental trials. The next paragraph describes the obtained results.  

3   Experimental Results 

The markerless method has been firstly tested on synthetic video sequences in order 
to evaluate its accuracy in tracking the arm silhouette, and after on a real context. The 
synthetic videos, obtained with the program Poser®, present one virtual subject exe-
cuting movements similar to the real ones (that will be described below). Figure 7 
depicts the model on which the method has been applied. A first video sequence, with 
an high temporal resolution (60 fps) has been created as the training set for the snake 
predictor ANN. Subsequently the proposed method has been tested on six different 
videos, each one having a particular value of Gaussian noise (mean = 0, and variable 
variance) added to it, and a temporal resolution of 30 fps. In literature results  of the 
application of contour detection algorithms are usually presented in a qualitative way 
[15], [20]. In the present work the use of these synthetic videos makes it possible to 
achieve quantitative results in terms of RMSE. Figure 8 shows the RMSE value for 
each video sequence. The values obtained with the test carried out on synthetic videos 
allow us to extend the application of the markerless technique to video sequences, 
where real subjects are filmed by means of digital cameras. 

 

 
Fig. 7. Upper view of the synthetic model used to test the proposed tracking system. 
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The tests have been done by recruiting 2 healthy subjects. During tests, the subject 
sits on a chair in front of a desk whose height is the same of the subject’s armpit. In 
this way the upper limb movements on the desk are planar. The subject’s trunk is 
close to the desk border. 

 

 
Fig. 8. RMSE values obtained from the analysis of the synthetic video sequences using the 
tracking system. Pixel/cm ratio is 2.7. This means that the mean error value is less than 3 cm. 

Three target points are set on the table surface and a digital video camera (Silicon 
Imaging MegaCameras SI-3300RGB) records movements from an upper view. The 
experimental protocol consists of a series of 3 fast reaching movements executed with 
the left arm towards three different targets considering the centre of the closed hand 
as the end-effector. The video sequence used for training the Snake predictor ANN 
has been acquired with the temporal resolution of 60 frame/s. The proposed Neural 
Snake technique has been applied on two video sequences acquired with the 30 
frame/s sampling rate. The spatial resolution of the frames is 1024x1020 pixels. The 
pixel/cm ratio is 13.5. Figure 9 shows the experimental setup. 
The Neural Snake method has been applied on the video sequences and the close 
hand and shoulder positions have been estimated over time. Figure 9 shows the re-
sults of the proposed silhouette detector and the obtained trajectories on the last frame 
of the video sequence. The Cartesian coordinates of the three targets reached by the 
subject’s arm are evaluated considering the shoulder as the centre of the reference 
system. The new positions values are subsequently sagittally mirrored and passed to 
the right arm Neural controller. For each pair of starting and target points of the three 
trajectories, the motor control simulator generates the neural excitations that permit 
the biomechanical right arm model to execute a movement similar to the one experi-
mentally acquired (figure 10).  
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Fig. 9. On the left , experimental setup; on the right, upper limb Neural Snake (dot line) and 
close hand and shoulder trajectories (solid line) on the last frame of the video sequence. 

 

 
Fig. 10. Solid close hand trajectory (left) and the output of the Neural Controller: “plegic” arm 
trajectory (right). 

4   Conclusions 

A new method finalised to the self-rehabilitation of the arm movements of hemiplegic 
patients has been presented. The overall system is composed by three main blocks. 
The first one is dedicated to the markerless analysis of the healthy arm during planar 
movements and the extraction of kinematics parameters. In the second block a neural 
controller makes use of these information in order to generate specific outputs neces-
sary to pilot a biomechanical arm model. First experimental results are particularly 
encouraging: in the future the outputs gained by the neural controller will be used for 
generating the electrical stimuli of the FES system which represents the third block of 
the proposed approach, called TwinN-FES. 
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