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Abstract. This work discusses an impossibility result for theDynamic Coop-
erative Cleanersproblem, and the relation of a specific geometric feature of the
problem, known as theshape factor, to the efficiency of the operating swarm. The
dynamic cooperative cleaners problem assumes a grid, having “contamination”
points or tiles that form a connected region of the grid. Several agents move in
this contaminated region, each having the ability to “clean” the place it is located
in. The ”contaminated” tiles expand deterministically, simulating a spreading of
contamination, orfire. This problem, as well as a cooperative cleaning protocol
for it and its analysis, were first introduced in [1]. The equivalence of this problem
to another interesting multi agents problem was demonstrated in [2] by utilizing
results relevant to the problem in order to design a cooperative hunting protocol
for a swarm of UAVs. The results of [1] contain a generic lower bound for the
cleaning time ofanymulti agents system which is designed to entirely clean an
expanding contaminated area. This work enhances this bound, while discussing
the effect of the region’s shape factor (i.e. the ratio between the region’s bound-
ary and its area) and the swarm’s cleaning efficiency. As a result, a tighter lower
bound is produced, establishing a new and more generic impossibility result for
the problem.

1 Introduction

In recent years significant research efforts have been invested in design and simulation
of multi-agent robotics and intelligent swarms systems — see e.g. [3, 4] or [5–7] for
biology inspired designs (behavior based control models, flocking and dispersing mod-
els and predator-prey approaches, respectively), [8–11] for economics applications and
[12] for a physics inspired approach). Unfortunately, the mathematical geometrical the-
ory of such multi-agents systems is far from being satisfactory, as pointed out in [13]
and many other papers.

In this work we discuss the dynamic variant of theCooperative Cleanersproblem,
first presented in [14], in which agents must work in a dynamic environment — where
changes may take place, that are independent and certainly not caused by the agents’
activity. The problem assumes a grid, part of which is ‘dirty’, where the ‘dirty’ part is a
connected region of the grid. On this dirty grid region several agents move, each having
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the ability to ‘clean’ the place (‘tile’, ‘pixel’ or ‘square’) it is located in (similar works
appear in [15–17]). The dynamic variant of the cooperative cleaners problem (presented
in [1] and described in section 2) involves a deterministic evolution of the environment,
simulating a spreadingcontamination(or spreadingfire). Once again, the goal of the
agents is to clean the spreading contamination in as little time as possible. In the spirit
of [18] simple robots with only a bounded amount of memory areconsidered (i.e. a
finite-state-machines).

A cooperative swarm cleaning protocol for the problem and a basic analysis of, as
well as various experimental results are presented in [1], whereas a comparison of this
swarm protocol to anA∗ based omniscient centralized algorithm is discussed in [19]. A
scheme of a cooperative hunting protocol, designed to be used by a swarm of unmanned
air vehicles seeking evading targets, which is based on the cleaning protocol mentioned
above is described in [2]. This work discusses the effect of acertain geometric feature
of the dirty region (known as theshape factor) on the cleaning time of the agents (see
section 3).

2 The Dynamic Cooperative Cleaners Problem

We shall assume that the time is discrete. LetG be a two dimensional grid, whose
vertices have a binary property of ‘contamination’. Let contt(v) state the contamination
state of the vertexv at timet, taking either the value “on” or “ off”. Let Ft be the dirty
sub-graph ofG at timet, i.e.Ft = {v ∈ G | contt(v) = on}. We assume thatF0 is a
single connected component.

Let a group ofk agents that can move across the gridG (moving from a vertex to
its neighbor in one time step) be placed at timet0 on F0 (we focus on the cleaning
problem, and not on the discovery problem).

Each agent is equipped with a sensor capable of telling the condition of the tile
it is currently located in, as well as the condition of the 8-neighbors of this tile. An
agent is also aware of other agents which are located in its current position, and all
the agents agree on a common direction. Each tile can containany number of agents
simultaneously.

When an agent moves to a vertexv, it has the possibility of causingcont(v) to
becomeoff. The agents do not have any prior knowledge of the shape or size of the
sub-graphF0 except that it is a single and simply connected component.

Everyd time steps the contamination spreads. That is, ift = nd for some positive
integern, then :

∀v ∈ Ft ∀u ∈ 4 − neighbors(v) , contt+1(u) = on

The agents’ goal is to cleanG by eliminating the contamination entirely, meaning
that the agents must ensure that :

∃tsuccess s.tFtsuccess
= ∅

In addition, it is desired that this time spantsuccess will be minimal.
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3 Results

Since we know no easy way to foretell whetherk agents can successfully clean an
instance of theDynamic Cooperative Cleanersproblem, producing bounds for the pro-
posed cleaning protocol is important for estimating its efficiency.

The completion of the cleaning mission at timet means thatSt = 0. By showing
that at a specific timet, St is always larger than zero, it is shown that the mission
could not be completed until that time, regardless of the nature of the cleaning protocol
utilized by the agents.

For producing this bound, the contaminated region was assumed to spread in such
a way that creates the minimal number of new contaminated tiles. Having no addi-
tional information, this can be guaranteed by assuming thatwhenever the contamina-
tion spreads, it is somehow organized as a digital sphere (aswas the case in the bound
presented in [1]). This, however, is rarely the case, since in the course of the expansions
and erosion process of the contamination, the probability for the contaminated region
to be accidently maintained in the form of a digital sphere, is very low. As a result, we
are interested in examining a variant of this bound, in whichthe contaminated region is
not assumed to be kept in the shape of a digital sphere.

3.1 Definitions

LetSt denote the size of the contaminated regionF at timet, namely the number of grid
tiles inFt. Let d denote the number of time steps between two contamination spreads.

The boundary of the contaminated regionF is denoted as∂F , defined as :

∂F = {(x, y) | (x, y) ∈ F ∧ (x, y) has an 8 neighbor in(G \ F )}

Letψ(Ft) denote theshape factorof Ft, defined as the ratio between the perimeter
of Ft and its area, namely :

ψ(Ft) =
|∂Ft|

St

3.2 Detailed Analysis

Note that a lower bound for the cleaning time is in fact an upper bound for the agents’
performance. Let us assume that the agents are working in 100% efficiency, meaning,
each time step every agent cleans a single tile. After(d − 1) time stepsk agents will
thus cleank · (d− 1) tiles, and thus we know thatSd−1 ≥ S0 − (d− 1) · k

In thed-th time step, the agents clean another portion ofk tiles, but the remaining
contaminated tiles spread their contamination to their 4-neighbors and cause new tiles
to become contaminated. We are interested in theminimal number of tiles which can
become contaminated at this stage.

As the assumption thatFt is continuously preserved in the shape of a digital sphere
is too rigid, we are interested in constructing a method thatwill provide us with tighter
predictions. For achieving this, we assume that the shape factor of the contaminated
region is kept bounded by some valueΨ throughout the entire evolution ofFt, namely :

∀t ψ(Ft) ≥ Ψ (1)
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Since every new contaminated tile is a 4-neighbors of somev ∈ Ft, the total number
of new contaminated tiles is at least the number of boundary tiles ofFt, namely|∂Ft|.
Since we are interested in the minimal number of new contaminated tiles, we can use
the definition ofψ(Ft) and write :

St+d ≥ St − d · k + ψ(Ft) · St (2)

Since∀t ψ(Ft) ≥ Ψ we can then write :

Lemma 1.
St+d ≥ (1 + Ψ) · St − d · k

As to the explicit value ofSt for somet = i · d we can quickly see that :

Lemma 2.

St = Si·d ≥ (1 + Ψ)i · S0 − d · k ·
i−1
∑

j=0

(1 + Ψ)j

For finding the time in which the agents may be able to completethe mission suc-
cessfully (meaning thatSt ≤ 0) we require that :

(1 + Ψ)i · S0 − d · k ·
i−1
∑

j=0

(1 + Ψ)j ≤ 0 (3)

(note that this does not guarantee the completion of the mission, but rather contradicts
the impossibility of the completion of the mission, meaningthat a successful completion
of the mission isenabled). This requirement can also be written as follows :

S0

d · k
≤

i−1
∑

j=0

(1 + Ψ)j

(1 + Ψ)i
=

i−1
∑

j=0

(1 + Ψ)j−i (4)

Remembering thatΨ > 0, we then use the expression describing the sum of a
geometric progression and see that :

i−1
∑

j=0

(1 + Ψ)j−i =
(1 + Ψ)−i((1 + Ψ)i − 1)

(1 + Ψ) − 1
=

1 − (1 + Ψ)−i

Ψ
(5)

Combining equations 4 and 5 the following is produced :

Theorem 1. For a contaminated regionF0 of sizeS0 such thatFt spreads everyd time
steps, and such that∀t ψ(Ft) ≥ Ψ , the number of agents required for a successful
cleaning ofF0 within at most(i · d) time steps is at least :

k =
S0 · Ψ

d · (1 − (1 + Ψ)−i)
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Note that since∀Ft |∂Ft| ≤ St we can see that∀Ft ψ(Ft) ≤ 1. On the other
hand, for any regionFt the minimal value ofψ(Ft) is obtained whenFt is organized
in the shape of a digital sphere (let us denote this value byΨSPHERE , and note that
ΨSPHERE > 0). Hence, we are only interested in0 < ΨSPHERE ≤ Ψ ≤ 1. Note that
for Ψ = ΨSPHERE a lower bound similar to this of [1] can be derived from Theorem 1.

However, unlike the case ofΨ = ΨSPHERE , using larger values forΨ yields better
estimations for the minimal number of agents which are required for a successful com-
pletion of the mission. This means that if it can be shown for some contaminated region
F0 that its shape factor is kept bounded by someΨ throughout its cleaning process, then
a tighter prediction for the minimalk needed for this problem is available.

Let F0 be a contaminated region of sizeS0 such thatFt spreads everyd time steps
and such that∀t ψ(Ft) ≥ Ψ (we know that the number of agents required for a success-
ful cleaning ofF0 within at mostt = (i · d) time steps is at leastkF = S0·Ψ

d·(1−(1+Ψ)−i) ).
Then, for following Corollaries are derived from Theorem 1 :

Corollary 1. For some contaminated regionH0 of sizeα · S0 (for someα ≥ 0) such
thatHt spreads everyd time steps and such that∀t ψ(Ht) ≥ Ψ the number of agents
required for a successful cleaning ofH0 within at mostt = (i ·d) time steps is at least :

kH = α
S0 · Ψ

d · (1 − (1 + Ψ)−i)
= α · kF

Corollary 2. For some contaminated regionH0 of sizeS0 such thatHt spreads every
α · d time steps (for someα > 1

d
) and such that∀t ψ(Ht) ≥ Ψ the number of agents

required for a successful cleaning ofH0 within at mostt = (i ·d) time steps is at least :

kH = α−1 S0 · Ψ

d ·
(

1 − (1 + Ψ)−
i

α

) ∼ α−1 · kF

An example of Corollary 2 appears in Figure 1.
Note that if for some regionFH it holds thatd → ∞ (meaning that the contamina-

tion does not spread at all, for all practical reasons) then usingDe l’Hôpital’s rule on
Corollary 2 we see that :

lim
α→∞

α−1 · S0 · Ψ

d ·
(

1 − (1 + Ψ)−
i

α

) =
S0 · Ψ

d · i ln(1 + Ψ)

and since for every0 < Ψ < 1, Ψ
ln(1+Ψ) < 2 we see thatkH ≥ S0

d·i
(which is also

intuitively correct).

Corollary 3. For some contaminated regionH0 of sizeS0 such thatHt spreads every
d time steps and such that∀t ψ(Ht) ≥ α · Ψ (for some0 < α ≤ 1

Ψ
) the number of

agents required for a successful cleaning ofH0 within at mostt = (i · d) time steps is
at least :

kH = α
1 − (1 + Ψ)−i

1 − (1 + α · Ψ)−i
· kF

For large values ofi, 1−(1+Ψ)−i

1−(1+α·Ψ)−i = 1 and sokH = α · kF .
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An example of Corollary 3 appears in Figure 2.
The previous Corollaries as well as Theorem 1 present various ways of predict-

ing a lower value which bounds the number of agents required for successfully solv-
ing an instance of the dynamic cooperative cleaners problem. In addition, once such
a lower bound was established, the effects of changes in the initial problem’s features
(e.g. spreading speed, shape factor, etc’) on this bound arediscussed. Let us assume
that a certain cleaning protocol for the problem was constructed, which is able to direct
some of its cleaning resources to actively controlling the geometric features of the re-
gion to be cleaned. Meaning — instead of cleaning as much tiles as possible, cleaning
the shape so its boundary area is kept limited. It is obvious that since the shape factor
of the region is artificially controlled, we may expect an acceleration in the operation of
the agents using this protocol (due to Corollary 3). However, since some of the agents’
resources are diverted from the cleaning mission (since those agents are used for main-
taining the required shape factor), this improvement in theagents’ performance will be
compensated by the resources spent on the maintenance of theregion’s shape factor.
This can be described as follows — letf(Ψ) ∈ (0, 1) denote the slowdown function of
the cleaning protocol caused by maintaining the shape factor bounded byΨ . Thus, we
examine the following variation of Theorem 1 :

k =
S0 · Ψ

d ·
(

1 − (1 + Ψ)−i·f(Ψ)
)

In order to obtain the minimal number of agents needed for such a cleaning protocol,
we first much find the optimal value for the percentage of the cleaning efforts allocated
to maintaining the shape factor. Since we assume the cleaning protocol is able to select
the level ofΨ in which the region’s shape factor is maintain, Theorem 1 canbe written
as follows :

Theorem 2. For a contaminated regionF0 of sizeS0 such thatFt spreads everyd
time steps, and assuming that a cleaning protocol which is able to artificially preserve
the shape factor ofFt is used (with a slowdown functionf(Ψ)), the number of agents
required for a successful cleaning ofF0 within at most(i · d) time steps is at least :

k = min

{

S0 · Ψ

d · (1 − (1 + Ψ)−i·f(Ψ))

∣

∣

∣
ΨSPHERE ≤ Ψ ≤ 1

}

For example, imagine a protocol whose slowdown function isf(Ψ) = Ψ . Namely,
the protocol suffers no slowdown when it is completely focused on cleaningF0, while
preserving the region to be organized as a digital sphere (i.e. the shape with the minimal
shape factor) the time it takes it to complete the cleaning is1

ΨSP HERE
·t the time required

without this slowdown. Using Theorem 2 we can see that :

k = min

{

S0 · Ψ

d · (1 − (1 + Ψ)−i·Ψ )

∣

∣

∣
ΨSPHERE ≤ Ψ ≤ 1

}

A short discussing considering this example appears in Figure 3.
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Fig. 1. An example of Corollary 2. The two graphs represent the minimal number of agents as a
function of the spreading speedd. In addition, results of the change in the cleaning time permitted,
are presented. Notice that for most values ofd (number of time steps between spreads) the ratio
between the two values of minimal numbers of agents required equals the ratio of the two cleaning
times, whereas for faster spreading regions (smaller values ofd) the price for demanding faster
cleaning is much smaller.
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Fig. 2. An example of Corollary 3. The two graphs represent the minimal number of agents as a
function of the spreading speedd. In addition, results of the change in the cleaning time allowed
and the shape factor of the contaminated region are presented. Notice that for different values
of d, sometimes a “simple” shape with less cleaning time produces a smaller requirement of
k while in other cases longer cleaning times for higherΨ values are preferred. This example
demonstrates how various features of the problem (in this case — the spreading speed) may
significantly influence designers of multi agents systems.
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Fig. 3.An example of Theorem 2. For minimizing the number of agents required for a successful
completion of the mission, the optimal value ofΨ should be calculated. Once available, it allows
the cleaning protocol to optimally partially allocate its resources for maintainingthe shape factor
of the region. Notice how in this example, using this optimal value results in a minimal require-
ment for 11 agents, while focusing solely on cleaning the region produces a demand for at least
20 agents (and diverting too much resources towards maintaining the shape factor in the lowest
value possible yields a lower bound of 40 agents).
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