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Abstract: Studies on human visual perception measurement for perceptual robotics are described. The visual 
perception is mathematically modelled as a probabilistic process obtaining and interpreting visual data from 
an environment. The measurement involves visual openness perception in virtual reality, which has direct 
implications for navigation issues of actual autonomous robotics. The perception is quantified by means of a 
mapping function which converts a distance to an elemental perception estimate. The measurement is 
carried out with the averaging of the elemental perceptions in real time. This is accomplished by means of 
exponential averaging. The mapping function parameters are optimized uniquely by means of genetic 
algorithm approach where the data set for model development consists of a number of perception data 
samples. These are obtained from individuals who are confronted with a number of scenes and asked for 
their perceptual openness statements. Based on this data, a perception model is developed for a virtual robot 
where the simulated vision interaction of the robot with the environment is converted to visual openness 
estimation through the model output. The model outcome is essential visual information for the navigation 
of an autonomous perceptual robot. 

1 INTRODUCTION 

Robot navigation is one of the major fields of study 
in autonomous robotics (Beetz et al., 2001, Wang 
and Liu, 2004). As data source for navigation a 
number of approaches have been proposed. For 
instance video image processing (Florczyk, 2005), 
or obtaining distances between robot and its 
environment by means of ultrasonic sensors (Oriolio 
et al., 1998), infrared (Song and Cho, 2000), or via 
3D laser (Surmann et al., 2001). In this work, the 
simulated laser approach is considered and 
implemented in a virtual reality (VR) environment. 
Being peculiar to this specific research, in place of 
merely measuring the distances between the robot 
and its environment, the robot’s perception about its 
environment as to visual openness is considered. 
From the architectural design viewpoint, visual 
openness is an important concept in architecture and 
interior design. Since the shape of a space is 
responsible for the perception of an observer, visual 
openness is attributed as an inherent quality to the 
space. From the robotics viewpoint, visual openness 
perception is characteristic information about the 
environment and therefore can be used for the 

human-like navigation of an autonomous perceptual 
robot.  

In the present work, a virtual robot is used as a 
representative of a human, who moves through a 
space making continuous visual openness 
assessment about the environment for building 
technological design purposes. This assessment also 
can form a base of navigation information for path 
planning to make the robot autonomous with human-
like visual openness assessments along the path it 
determines and moves. 

2 PERCEPTION MODEL 
DEVELOPMENT 

2.1 Theoretical Considerations  

The subject matter of this work is visual openness 
perception which has essential implications on 
general design process as well as robot movement. 
The visual openness perception is obtained from 
visual perception data, which are derived from the 
distances between observer and environment. That 
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is, the visual openness of a space is perceived in 
mind with the association of the distances. This 
association is represented in this work by means of a 
sigmoid function.  

The variation of sigmoid with the independent 
variable is shown in figure 1. The sigmoid function 
is a special function which is also used to represent 
biological processes. One important application is 
found in the paradigm of artificial neural networks, 
where sigmoid plays the essential role in modeling 
the non-linearity of a biological neuron. 
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Figure 1: Sigmoid function )]exp(/[)( oxx11xf −+=  which 
represents non-linearity in brain processes.  

The characteristic behavior of the function is its 
saturation at the extremities and its approximately 
linear behavior in the middle range. Since such 
functionality can be surmised to occur in each 
neuron in the brain, the modeling of visual openness 
perception by such a function is a prominent choice 
among other options potentially available. 
Qualitatively, by means of the sigmoid function the 
perception of the visual openness at small distances 
is considered to be small with no significant change 
in this fuzzy range. A similar behavior is observed at 
the other extreme considering that the visual 
openness perception does not deviate significantly as 
the distance approaches to extreme values. At the 
middle range, the visual openness perception is 
highly dependent on the distance, as one should 
expect. These qualitative observations about the 
perception model are similar to many other 
biological processes of a human and they conform to 
the common visual openness perception experience 
of a human, in general.  

Another interesting feature of sigmoid is that it is 
used to measure the perception quantitatively in the 
range between 0 and 1. This is a very significant 
feature especially while the robot is experiencing 
and evaluating the visual openness of a space as a 
fuzzy statement. Such statements can be statistically 
analyzed to establish the visual openness perception 
model parameters.  

For the visual openness perception measurement 
we use the laser option, where the length of each 
visual ray between human eye and an object in the 

environment is represented by a laser ray spanning 
the ray source and the object. The distance is used to 
measure the visual openness perception. In this case, 
the laser source provides rays not in scanning mode 
but as a random source of rays with certain statistical 
properties, which are derived below. A number of 
rays are traced in this way and consequently the 
same amount of perception data is obtained. That is 
for each particular ray an elemental visual openness 
perception is obtained via a sigmoid function. By 
averaging these individual mapping function 
outcomes, the visual openness perception, as a 
measurement outcome, is obtained. The averaging is 
performed on a sample by sample basis so that the 
time-dependent measurement can be accomplished 
in real-time. If the time constant of the exponential 
averaging is kept sufficiently small then the 
measurement outcome can be used for robot 
navigation due to minimal latency of the 
measurement. In the case of a moving robot, it 
experiences human-like interaction with the 
environment.  

For the visual openness perception model 
development and the analysis of the role of the 
sigmoid function, which maps the physical distance 
to visual openness perception, we start with the 
basics of the perception process with a simple yet 
fundamental geometry. This is shown in figure 2. 
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Figure 2: The geometry of visual perception from a top 
view where P represents the position of eye, looking at a 
vertical plane with a distance lo to the eye; fz(z) is the 
probability density function of the perception. 

In figure 2, the observer is facing and looking at a 
vertical plane from the point denoted by P. By 
means of looking action the observer pays visual 
attention equally to all directions within the scope of 
sight. That is, at the first instance, the observer 
visually experiences all regions of the plane without 
any preference for one region over another. Each 
location on the plane has its own distance within the 
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observer’s scope of sight which is represented as a 
cone. The cone has a solid angle denoted by θ. The 
distance of a point on the plane and the observer is 
denoted by x and the distance between the observer 
and the plane is denoted by lo. Since the visual 
perception is determined via the associated 
distances, it is straightforward to proceed to express 
the distance of visual perception in terms of θ. From 
figure 2, this is given by 

)cos(θ
= olx  (1) 

Since we consider the observer pays visual attention 
equally for all directions within the scope of sight in 
the first instance, the probability density function 
(pdf), which is associated with the directions, is 
uniformly distributed. Consequently, assuming the 
scope of sight is defined by the angle θ=π/4, the pdf 
fθ is given by 

2
1f
/π

=θ
 (2) 

Since θ is a random variable, the distance x in (1) is 
also a random variable. The pdf fx(x) of this random 
variable is computed as follows. 

Theorem on the function of random variable: To 
find fx(x) for a given x we solve the equation 

x= g(θ) (3) 

for θ in terms of x. If  θ1 , θ2 ,…., θn , .. are all its 
real roots, x=g(θ1) = g(θ2) =……= g(θn) = …. 
Then 
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Clearly, the numbers θ1 , θ2 ,…., θn , .. depend on x. 
If, for a certain x, the equation x= g(θ) has no real 
roots, then fx(x)=0.      
According the theorem above,  
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Between  θ= -π/4 and θ= +π/4,  
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has two  roots, which are equal and given by  
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Using (7) in (5), we obtain 
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as it should be as a pdf. The sketch of fx(x) vs x is 
given in figure 3 (upper) and its variation for lo=1 is 
also given in the same figure (lower). In place of a 
plane geometry, for a circular geometry, the pdf fx(x) 
in (9) takes a uniform distribution, as it is shown in 
the Appendix. 
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Figure 3: Variation of the probability density of random 
variable x representing the distance between eye and a 
location on a plane shown in figure 1. The upper plot is a 
sketch; the lower one is a computed plot with lo=1. 

It is interesting to note that for the plane 
geometry in figure 2, the visual perception is sharply 
concentrated close to x = lo or θ ≅ 0, that is in 
perpendicular direction to the plane. This striking 
result is in conformity with the common human 
experience as to visual perception. Namely, for this 
geometry the visual perception is strongest along the 
axis of the cone of sight relative to the side 
directions. To see this in mathematical terms, we 
extend our calculations to derive the pdf along the z 
direction in figure 2. In this case, proceeding in the 
same way before, we write 
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for the interval ∞≤≤∞− z . For this interval, 
the integration below becomes 
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as it should be. The variation of fz(z) is shown in 
figure 2. This result clearly explains the relative 
importance of the front view as compared to side 
views in human visual perception. In the visual 
perception measurement system, fz(z) is taken close 
to a Gaussian function, for computational 
convenience. The implication of this approximation 
to the exact fx(x) given by (9) is presented below. 
From figure 2, we can write 
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Substituting z1,2 from (16) into (18) yields 
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From the function of a random variable theorem 
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which is the modified form of exact fx(x) in (9) due 
to approximation of fz(z) in (13) by a Gaussian. Both 
pdfs of fz(z) given by (9) and given by (21) are 
shown together for comparison in figure 4, where 
the difference appears to be not significant for this 
research. 
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Figure 4: The visual perception pdf fx(x) and 
approximation to it (lower) due to Gaussian pdf  fz(z) in 
figure 2. 

The result of the relative importance of the front 
view as compared to side views in human visual 
perception can be explained easily as sketched in 
figure 5. 
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Figure 5: Sketch explaining the relative importance of the 
viewing direction for visual perception. 

In figure 5,  
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Since Δz2<Δz1, this clearly shows that the visual 
resolution is higher for the case with θ2 relative to 
the case with θ1. This implies that one gets more 
visual details at the origin as the visual resolution is 
higher there and consequently the general shape of 
pdf fz(z) exhibits a maximum for θ2 there,  which can 
be seen in figure 2. 

The next step is to move from visual perception 
to visual openness perception via the sigmoid 
function. In this case we aim at to find the pdf of the 
sigmoid function output when the independent 
variable has the pdf of visual perception given by 
(10). In this case the theorem on the function of 
random variable can be written as 
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where fx(x) is given by (7) and g(x) is the sigmoid 
function given by 
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We use the theorem on the function of random 
variable given by (23), to obtain the pdf of the visual 
openness perception. For that matter, first we 
compute the derivative of g(x) with respect to x 
where 
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and the derivative is found to be 

2xx

xx

o

o

e1
exg

][
)(' )(

)(

−−

−

+
=  (26) 

From (25), the root of the equation is obtained as 
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Now, substitution of (28) and (29) into (23), yields 
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for the interval corresponding to θ=± π/2, in figure 2 
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This is the pdf of the visual openness perception. 
Variation of this function is shown in figure 6, for 
xo=1 and lo=1. For this case 0.5000≤ x≤0.6021. 
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Figure 6: Plot of probability density function of random 
variable representing the output of the sigmoid function as 
visual openness perception measurement outcome. 

The fx(x) and fy(y) are depicted together in figure 7 to 
summarize the probabilistic computations above. 
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Figure 7: The sketch of both probability density functions 
of random variables x and y at the sigmoid input and 
output respectively. 

From figure 7, it is seen that, the visual openness 
perception is also strongly concentrated at the 
distance x=lo, which is in the direction perpendicular 

ICINCO 2006 - ROBOTICS AND AUTOMATION

356



 

to the plane, along the axis of the cone in figure 2. 
This means both visual perception and visual 
openness perception have similar properties, namely 
exhibiting maximum concentration along the axis of 
the visual sight cone. This is what one commonly 
experiences during the perception of the 
environment. 

To simplify the fy(y) in (30), we can consider the 
case where g(x) is approximately linear so that 
function of a random variable y=f(x) is given by 

y=a x + b (31) 

In this case the equation y=ax+b has a single 
solution 

a
byx −
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for every y. Since g’(x)=a, we conclude from (23) 
that the density of y is given by 
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Since the sigmoid function can be approximated by 
three linear functions as local approximations, it is 
easy to conclude that, the general formulation of 
fy(y) as to visual openness perception remains the 
same having latent dependency to the parameters xo 
and lo, via the parameters a and b in (31), where xo 
and lo are the shift of sigmoid and the distance of the 
observer to the plane, respectively. 

2.2 Determination of the Model 
Parameters 

For the determination of the parameters in the 
human visual openness perception model, a vision 
robot in virtual reality is employed as shown in 
figure 8. The robot senses its spatial environment by 
sending rays from its eyes and measuring each 
length as they hit shapes, which are around the 
robot. The rays are sent in random directions with a 
Gaussian pdf as an approximation to fz(z) given by 
(13). Formation of Gaussian vision in forward 
direction with a cone of angle 2θ is sketched in 
figure 9 where z is the forward direction in the z-x 
plane. In figure 9, mz is given by (Ciftcioglu et al., 
2006) 
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where mz is the mean in z-direction and σ= σx= σz  is 
the  variance of both Gaussians given by fx(x) and 
fz(z). Note that to have a solution in (35) σ and a 
must have the condition 

π
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to obtain a real value for mz. 

 

Figure 8: Virtual perceptual robot viewing environment 
for visual perception determination. The real-time plot of 
the perception measurement outcome is indicated.  
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Figure 9: Formation of Gaussian vision in forward 
direction with a cone of angle 2θ. z is forward direction of 
the robot in the z-x plane. 

The lengths of the rays are converted to virtual 
openness perception data samples via the sigmoid 
function, which remains the same throughout the 
computer experiments. A number of perception data 
samples are averaged to obtain the degree of visual 
openness perception of the environment. For this 
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purpose exponential averaging is used. In 
exponential averaging previously obtained average 
information is incorporated into the computation of 
the current average. By means of this, the average, 
which is the measurement outcome, is updated in 
real-time in a computationally efficient and effective 
way. Greater values for the time constant in 
exponential averaging yield more accurate 
measurement outcomes, since more data is used to 
identify the perception. As a trade off, the time-
duration it takes to establish the outcome increases. 
At the same time the value of the exponentially 
averaging time-constant determines the accuracy of 
the measurement outcome in terms of reflecting 
details of the geometric shape of the perceived space 
via the pdf of the outcome. The higher the value 
used for the moving exponential averaging window 
is, the more accurately shape details of the 
environment are reflected in the measurement 
outcome. 

Different persons often attribute different 
degrees of visual openness to the same spatial 
situation. This indicates that their perceptions are 
different. To model the perception of individuals as 
well as to find a standard, jointly valid human 
perception model is an interesting endeavour from a 
number of perspectives. For example, in design, 
requirements for perceptual spatial qualities are 
generally expressed based on subjective perception. 
Assessment of requirement satisfaction is a 
necessary component in the search for optimal 
spatial shapes, which is an essential activity in 
architecture and interior design. Another 
implementation is for robot navigation where the 
robot uses the common perceptual information about 
its environment for path planning with humanoid 
behaviour. 

2.2.1 Model Identification by Means of 
Genetic Algorithm 

Systematic finding of the appropriate parameter 
settings of the perception model is essentially an 
optimality search. Goal of the determination of 
appropriate model parameters is to maximize the 
match between modeled perception and human 
perception. For this purpose a number of perception 
outcomes are calculated for a selection of spatial 
scenes, which are also subject to perception 
assessment by a number of test persons. 

Since the visual field is modeled by the random 
sight lines, the parametric expression of scene 
cannot be given. That is, although the statistical 
properties can be analyzed by probabilistic 

computation methods using the probability density 
functions involved, these results cannot be 
incorporated analytically with the scene for 
perception assessment. This is due to the visual 
perception model which receives discrete non-
stationary random inputs as granulated elemental 
perceptions. The stochastic non-stationarity is due to 
the heterogeneity of the environment that it yields 
different pdf in the visual perception. In order to be 
able to handle this non-stationarity imposed on the 
random inputs, a randomized search method is used, 
where the discrete nature of the optimization task is 
also conveniently taken care of. This method is 
genetic algorithm based optimization, which is 
employed as shown in Figure 10.  

GENETIC OPERATIONS 

INITIALIZE POPULATION

EVALUATE FITNESS OF MODEL
assess scene with model 
using current setting

compare result with 
given assessment

END

are all scenes 
considered?

are all 
possible solutions 

considered?

is end criterion 
fulfilled?

START

no

no

no

yes

yes

yes

take the next 
scene

take the next 
possible solution

apply globally 
best solution

 
Figure 10: Schematic description of the visual perception 
model-identification process by means of genetic 
optimization. 

The dataset used to assess the fitness of 
chromosomes during the genetic evolution are 
statements of human experimenters regarding their 
subjective assessment of the visual openness for 
each scene on a scale from zero to ten. In case of 
visual openness, ten signifies maximum and zero 
minimum visual openness. These statements are then 
normalized to values between 0 and 1 matching the 
range of the sigmoid function used in the 
measurement model.  

It is noteworthy to stress that genetic optimization 
has prominent features for this particular 
measurement system to be able to deal with the non-
stationary probabilistic nature of the data samples 
subject to process and to establish optimality as to 
actual calibration of the system. By doing so 
adaptivity is included in the optimization process for 
other executions involving any additional aspects 
like spatial complexity, for instance. This can be 
accomplished conveniently via some modification 
on the fitting function of the algorithm. After the 
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genetic evolution the best solutions can be 
considered as the models of visual openness 
perception for the test persons. 

3 CONCLUSION 

The visual perception is investigated and perception 
of visual openness measurement is presented. The 
measurement system is established through an 
associated perception model which is based on 
probabilistic considerations. The visual openness is 
measured by means of this probabilistic model. This 
is most appropriate since the human vision system 
deals with the natural images using their statistical 
properties rather than dealing with each piece of 
image information in order to be able to cope with 
the complexity of information. For changing scenes, 
the statistical properties of visual information 
become non-stationary and the visual process 
becomes a stochastic process, which is peculiar to 
this specific research on perception. By means of the 
model, the characteristic aspects of visual perception 
are substantiated providing ample insight into the 
complex visual process.  

For the model formation, the method of genetic 
algorithm is uniquely employed due to the non-
stationary nature of the case subject to optimization. 
The visual openness perception is exercised by a 
virtual robot having human-like visual perception in 
a virtual environment with a definitive trajectory, to 
provide openness assessments as measurement 
outcomes. Among other applications, such a robot is 
intended for emulation of human perception 
providing input for enhanced architectural design. 
Another important application of common interest is 
autonomous robotics where the robot moves in an 
environment without collision by having real-time 
visual openness perception information during the 
move without any predefined trajectory. This 
approach is rather unique as to the novelty of the 
visual openness perception concept presented here 
for robotics while a prototype is implemented in 
virtual reality. 
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APPENDIX 

In the case of circular geometry, the pdf of the visual 
perception becomes uniform as one intuitively 
concludes. Referring to figure 2, this is shown 
mathematically as follows. In circular geometry, the 
random variable connected to θ is ω where 
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Using the theorem on the function of random 
variable, given by (4) in the text, we write 
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The root of (A1) is given by 
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as uniform pdf of visual perception, which satisfies 
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