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Abstract: In this paper we describe our approach to enhancing control of robotic systems by providing domain and 
policy services via KAoS.  Recently developed languages such as OWL provide a powerful descriptive 
logic foundation that can be used to express semantically rich relationships between entities and actions, and 
thus create complex context sensitive policies.  KAoS provides a tool to create policies using OWL and an 
infrastructure to enforce these policies on robots.  We contend that a policy-based approach can provide 
significant advantages in controlling robotic systems and is a much more natural way for operators to 
interact with and manage multiple robots. 

1 INTRODUCTION 

Robot control is achieved through a variety of 
techniques.  Some aspects require tight real-time 
control loops, such as balancing and avoiding 
dynamic obstacles.  Many aspects however do not 
have these real-time restrictions and simply provide 
constraints on the system, for example speed limits.  
These types of constraints can also adjust the 
parameters of the real-time control systems, like 
adjusting the standoff range for obstacle avoidance.  
The majority of robotics work to date embeds non-
real-time constraints into the robotic system.  Some 
are built into reactive behaviors and others are hard 
coded into deliberative layers.  This makes it 
difficult for anyone but the robot’s developer to have 
an understanding of them.  Even with good 
architectural design that allows for adjustment of 
these constraints, it can still be difficult for an 
operator to manage constraints.  The problem is 
exacerbated in heterogeneous multi-robot 
environments.  Another limitation is that there is 
typically no capability to add context to a constraint 
adjustment.  For example, the operator may be able 
to adjust the speed limit, but cannot say that the 
speed limit can be higher for emergency situations.   
This lack of semantic description also limits the use 
of software reasoning that could be used to aid the 
operator. 

In this paper we describe our approach to 
enhancing control of robotic systems by providing 
semantically rich domain and policy services via 
KAoS.  KAoS policies are mechanisms to make 
non-real-time constraints accessible to operators and 
a means to adjust these constraints at run time.  
Since the term “policy” is a very general term with a 
variety of meanings, in Section 2 we start by 
defining what we mean by policy.  We will then 
describe how we have designed and implemented 
policies in Section 3 and provide a brief description 
of our applications in Section 4.  These applications 
are used as examples as we discuss the advantages 
of policy based robot control in Section 5. 

2 WHAT IS A POLICY? 

The term “policy” is a word that takes different 
meanings according to context. In the robotics 
domain, the term policy is often used to mean a 
complete mapping from states to actions (Mataric, 
2001). While there has been much work on 
expressive mathematical frameworks such as 
Markov Decision Process models, recently 
developed rich descriptive languages such as the 
Web Ontology Language (OWL: 
http://www.w3.org/2004/OWL) have not been 
exploited to express high level notions such as 
authorization, obligation, and preference.  As a 
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derivative of XML, OWL provides standard, open, 
and extensible data representations as well as a 
powerful descriptive logic foundation that can be 
used to produce semantically rich descriptions of 
relationships between entities and actions.  This 
provides the ability to reason about relationships 
between actions and create semantically rich 
policies.   
Our approach is significantly different from 
mapping states to actions.  We define a policy as: 

“An enforceable, well-specified constraint on the 
performance of a machine-executable action by 
an actor in a given situation” (Bradshaw, 2004) 

The basic components of a policy are an actor, an 
action, and a constraint. Authorities may 
dynamically impose or remove involuntary policy 
constraints on the actions of actors. Alternatively, 
actors may voluntarily enter into agreements that 
mutually bind them to some set of policies for the 
duration of the agreement. There are two types of 
policies; authorization and obligation. The set of 
permitted actions is determined by authorization 
policies that specify which actions an actor or set of 
actors is allowed (positive authorizations policies) or 
not allowed (negative authorizations policies) to 
perform in a given context. Obligation policies 
specify actions that an actor or set of actors is 
required to perform (positive obligations) or for 
which such a requirement is waived (negative 
obligations).  
 

 
Figure 1: Policy modalities. 

As an example, consider the simple obligations: 

“Robot X is obligated to beep before it moves.”    

This could easily be handled by adding the pertinent 
code to the robot.  A more flexible way would be to 
have a flag that an operator could set to enable or 
disable the beeping.  There are still some limitations 
to this design.  For example, it only applies to Robot 
X, and it only applies to beeping.  Semantic policies 

provide a much higher level of expressiveness and 
flexibility.  The operator could specify: 
 

“Actors who are robots are obligated to warn 
before moving”.  

This is a much more general statement and would 
immediately apply to new robots added to the 
system without the operator explicitly setting flags 
on each one.  It also allows each robot to warn in its 
own way (beep, flash lights etc.) based on its 
particular capabilities.  The next section addresses 
how we implement and enforce general statements 
like the one used in our simple example.    

3 HOW WE IMPLEMENT 
POLICIES 

KAoS policies are written using concepts defined in 
the KAoS Policy Ontology (KPO) and are 
represented in OWL.  KPO is a generic ontology, 
which contains the basic concepts such as actors, 
actions, and various generic properties needed to 
write policies.   An diagram of the ontology 
describing a policy is shown in Figure 2. 

 
Figure 2: Policy Ontology Diagram. 

We have also extended this ontology with concepts 
specific to the mobile robot domain.  The KAoS 
robot ontology contains descriptions of the various 
robot classes and their capabilities such as sonar, 
camera, and mobile bases. There is no requirement 
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that every action that a robot may take be 
represented in the ontology; only those that are 
potentially subject to policy constraints. 

OWL provides a rich descriptive language, but at 
a cost of complexity. In order to free users from this 
complexity we have created a graphical interface 
that allows users to specify policies without any 
knowledge of OWL.  As the complexity and number 
of policies increase, it is likely that conflicts between 
policies will exist.  These conflicts can be difficult 
or impossible to find if the constraints are coded into 
the system.  However, KAoS uses the Stanford Java 
Theorem Prover (JTP: 
http://www.ksl.stanford.edu/software/JTP) to 
provide conflict detection, as well as automatic 

conflict resolution in some cases.  Even if the 
conflict cannot be automatically resolved, the system 
can still notify the administrator and direct the 
policy creators to reconsider the problematic policies 
in order to find a solution. 

In order to enforce policies on a system, it must 
be possible to screen the actions as they are 
attempted, translate them into the representation of 
the policy language, check the action against 
policies and then enforce the result.  Robotic 
Systems, being mobile in nature, usually rely on 
distributed communication.  This is particularly true 
in multi-robot control.  We leverage this in our 
implementation to provide policy based control of 
robotic systems.   

 

 
Figure 3: KAoS Architecture. 
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3.1 KAoS Background 

KAoS is a collection of generic domain and policy 
services that have been successful in providing 
policy based management for various platforms 
(Suri, 2003) (Tonti, 2003) (Johnson, 2003). KAoS 
also provides access to a distributed communication 
mechanism.  It also has an extension that allows 
external systems to control multiple heterogeneous 
robots.  Figure 3 depicts the main services provided 
by KAoS.  Domain services allow for the grouping 
of entities to facilitate policy creation, making the 
use of policies scalable and efficient.  Policy 
services enable the creation, management, and 
disclosure of policies.  In addition to storing policy 
data centrally, KAoS performs automatic policy 
distribution to the local robot platforms.  Each 
platform contains a Guard, which is a KAoS 
component designed to cache policies locally and to 
handle local policy checking. 
 The Common Services Interface (CSI) is a 
software interface to various services including 
registration, transport, query, request, subscribe, and 
policy disclosure as shown in Figure 3.  These 
services are available to any entities desiring to 
interact with the robots including internal 
components like a deliberative layer and other 
separate, external agent/robotic systems.  The CSI 
layer provides a consistent approach for accessing a 
robot regardless of whether the code is running 
locally with respect to the robot hardware or 
remotely. Our KAoS Robot Interface provides the 
back-end implementation to enforce policy 
constraints on robotic systems that have a native 
adapter available. 

Each robot typically comes with its own 
proprietary and/or unique native software interface 
for controlling it. Therefore, all heterogeneous robot 
control architectures will require a translation layer 
between the common language and the native 
programming language, and our system is no 
different. Our mobile robot extension to the KAoS 
Policy Ontology is the common language.  The robot 
developers will need a thin translation layer in the 
native implementation. This layer is where the 
ontological strings are converted to the various 
platform specific calls. In order to provide hardware 
abstraction, KAoS has defined a set of interfaces for 
various components, such as a mobile base, sonar, 
and a camera, similar to Player (Gerkey, 2003).  By 
implementing an interface a robotic system can be 
accessed through CSI.  Several popular robotic 
platforms are supported as shown in figure 3, 
including the Pioneer, Amigo, Evolution Robotics 

ER-1, and Player.  Building algorithms on top of 
these interfaces makes the algorithm available to all 
robots that implement them. It also allows policy 
checking at multiple levels of abstraction.  This thin 
native adapter enables KAoS Robot Interface to 
provide policy enforcement on the given platform. 
KAoS makes use of the communication layer in 
order to provide policy enforcement.  It is as 
minimally invasive as possible and only screens 
actions that relate to current policies.  Actions which 
do not relate to any current policies pass through 
unaffected and without any significant delay.  
Actions that require policy checks incur a small 
delay on the order of ten milliseconds.  Once a robot 
has its native translation layer, it can be subject to 
policy constraints without any further modification.  

Lastly, we briefly mention Kaa (KAoS adjustable 
autonomy).  Kaa is software component used to 
perform limited automatic adjustments of autonomy 
consistent with human-defined policy.  Kaa is 
designed to use influence-diagram-based decision-
theoretic algorithms to determine what if any 
changes should be made to agent autonomy.    
 

 
Figure 4: Platforms with policy implementations. 

4 APPLYING POLICIES TO 
ROBOT SYSTEMS 

We have demonstrated the use of KAoS policies in 
multi-robot systems in three different contexts; a 
NASA Human-Robot Teamwork (HRT) project, an 
Office of Naval Research (ONR) Naval Automation 
and Information management project and a 
Transportation Security Robots (TSR) project.  A 
brief description of each is provided next since they 
will be referenced as examples. 
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4.1 NASA Application 

The NASA HRT work involves a MARS 
exploration scenario including an astronaut on a 
simulated Extra-Vehicular Activity who had two 
robots nearby.  The focus of this project was human-
robot teamwork. As such, the policies implemented 
reflect teamwork issues like task switching, 
delegation and notification.  The scenario began 
with the astronaut trying to task one of the robots to 
take a picture of him. 
 Our first policy prohibited the tasked robot to 
move due to some previous tasking.  This caused the 
“take a picture” action to fail because the astronaut 
was remote to the robot and the task would require 
the robot to move into range before taking the 
picture.  This example demonstrates a negative 
authorization policy being imposed on real robots.  It 
also highlighted translation across levels of 
abstraction, since the restricted action is a subtask of 
the high level action.  The failure to take a picture 
triggered an obligation policy that required 
notification of the astronaut about the failure.  The 
failure also triggered a second obligation policy.  
This policy obligated the robot to try to delegate the 
“take a picture” action to another entity with the 
necessary capabilities, in this case the second robot.  
The obligation included getting verification from the 
astronaut that delegation was acceptable. We also 
included the simple example of obligating robots to 
provide a warning before moving.  When the second 
robot was tasked to take the picture through 
delegation, its attempt to move triggered an 
obligation to beep before moving.  In this scenario, 
our robots were only required to implement some 
very rudimentary behaviors of moving, beeping, and 
taking a picture.  All of the teamwork issues were 
handled externally through policies created by the 
operator.   

4.2 ONR Application 

Our project for the Office of Naval Research (ONR) 
was based on finding a clear lane of approach in 
preparation for an amphibious landing.  The scenario 
involved a single human managing four remote 
Pioneer 3-AT robots.  The human interacted with the 
robots through a multi-modal dialogue system 
(Chambers, 2005).  The robots coordinated with 
each other throughout the mission to divide their 
task and update status.  This scenario also 
demonstrated the breadth of our system, including 
matchmaking based on capability, simultaneous 
multi-robot control, authorization and obligation 

enforcement, robot-robot collaboration, mixed 
initiative interaction, and dynamic policy updates.  
Policies first came into play when a robot found an 
object and was unable to sufficiently classify it.  The 
robot was obligated to obtain classification 
assistance.   We also used policies to determine if 
robots were allowed to change roles.  This project 
also demonstrated a new infrastructure for proactive 
ad hoc network maintenance.  The robots were all 
initially assigned to find a clear lane, but if 
communications were lost, the network 
infrastructure had the ability to move the robots to 
regain communications.  Since the change in 
behavior might alarm a supervisor or be detrimental 
to completing the overall task, we used policy to 
constrain the behavior and required approval from 
the human supervisor.  We also demonstrated 
dynamic assignment of an area where the robots 
were prohibited from operating.  The scenario was 
defined such that after a clear lane was found, a 
staging area for the landing craft would be 
established.  For safety reasons, the returning robots 
were not allowed in this area.  This policy was put in 
force dynamically during the demonstration.  The 
resultant robot behavior successfully navigated 
around the restricted area while returning.  Figure 5 
shows the behavior during our demo.  The restricted 
area, shown as a shaded red square, was graphically 
added to the picture to aid in visualization and the 
blue arrows indicate the paths chosen to avoid the 
area.  The change in behavior was completely 
handled through the policy infrastructure and 
external to any robot implementation. 
 

 
Figure 5: Restricted Area Policy. 

4.3 TSR Application 

For the Transportation Security Robots (TSR) 
project we focused on two potential uses for Kaa 
(KAoS adjustable autonomy). The first was 
overriding policy based on context. As in the ONR 
application, the operator could create a restricted 
area forbidding robot movement in a certain zone. 
However, there are certain exemptions that may 
apply, for example, “don’t enter this area, unless 
there is an emergency”. We used Kaa to monitor the 
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system and determine when an emergency existed. 
When Kaa observed an emergency situation inside 
the restricted area, a fire for our example, it overrode 
the policy to allow robots capable of providing 
assistance to enter the area. The second use of Kaa 
was to adjust permissions based on context. Policy 
sets were established for the various Homeland 
Security Threat Levels, as posted by the U. S. 
government. Kaa was in charge of monitoring the 
threat levels and adjusting the policies accordingly. 
As the threat level moved from green to yellow to 
red, the actions the robots were authorized to take 
would vary accordingly. 

5 ADVANTAGES OF USING 
POLICIES 

Some of the characteristics of KAoS policies that 
make them useful for robot control are their 
powerful expressiveness, external nature, 
transparency, and flexibility. 

5.1 Expressive Power 

The choice of policy language directly impacts the 
expressiveness available in policies.  We use OWL 
to provide declarative specification of policies at a 
broad range of levels.  By combining this with JTP, 
we are able to reason about relationships and 
produce complex context sensitive policies.   They 
can address the entire system, groups within the 
system or individual instances within the system. 
They can refer to actions at any level of abstraction 
and translate between levels.  One example of this is 
in our NASA application, where the constraint was 
on movement, which was an optional subtask of the 
original “take a picture” action.”  Most importantly, 
policies allow for a context to be explicitly defined, 
which helps to prevent over (or under) restricting the 
autonomy of the system.  Anyone who has worked 
with robots has run into a constraint that required a 
“work-around”.  Policies provide a mechanism to 
explicitly define the “work-around” solution based 
on context. Context can be any information, 
including things that the robot was never 
programmed to consider, such as time of day or 
outside temperature.  As we have seen, one example 
occurred in our TSR work, where robots were 
prohibited from entering a restricted area, but the 
context of an emergency overrode the general 
policy.   

5.2 External Nature of Policy 

There are many ways to apply constraints to a 
robotic system.  Typically they are coded into the 
behaviors or deliberative layer, hidden from the 
operator.  Policies can be used to separate the 
behavioral constraints and preferences of operators 
from the underlying functionality. This is an idea 
that has been successful in many other areas such as 
database and web design.  Because these different 
aspects of knowledge are decoupled, KAoS policies 
can be easily reused across different robots and in 
different situations. By putting the burden for policy 
analysis and enforcement on the infrastructure, 
rather than having to build such knowledge into each 
of the robots themselves, we minimize the 
implementation burden on developers and ensure 
that all robots operate within the bounds of policy 
constraints.  This is demonstrated by our simple 
“Beep before moving” example discussed earlier 
and demonstrated in our NASA application.  The 
obligation applied to all robots that were capable of 
moving and warning without needing to include the 
code for this behaviour in any individual robot.   
Since policy enforcement is handled separate from 
the robot implementation, externally imposed 
policies provide an additional layer of controllability 
that is independent of the robot developer’s code. 
Poorly performing robots can be immediately 
brought into compliance with externally applied 
policy constraints, improving both controllability 
and safety.  There have been instances in which an 
operator has had difficulty in overriding a faulty 
system that refused to yield control (Wolff, 1999).  
An accident (Williams, 2004) involving an 
Unmanned Aerial Vehicle (UAV) trying to taxi is a 
good example.  Although the operators were very 
aware of taxi speed restrictions, the UAV had no 
such information, and it blindly followed an 
accidental command to taxi at 155 knots.  Policies 
could be used in this situation to provide an 
additional layer of safety checks.  

5.3 Transparency 

The use of KAoS policies can also help to make the 
robot behavior more transparent. Again, constraints 
are made explicit, instead of being scattered and 
buried in the robot’s code. As robots move from the 
lab to the real world, it is unlikely that the operator 
of the robot will be the developer. Although 
developers have the know-how to tweak robot 
programs, operators are typically not as familiar 
with such inner workings. They should not have to 
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be. Regardless of how the robot has been 
programmed, they would like guarantees that certain 
behaviors will be executed in ways that are 
consistent with their personal and organizational 
constraints. Often operators themselves lack 
sufficient situation awareness to properly control the 
system (Yanco, 2004).  Transparency can help 
improve situational awareness.  Our NASA example 
demonstrated how policies can be used to notify 
humans about changes and thus maintain situational 
awareness. 

The benefits of transparency are not restricted to 
humans. Deliberative systems are also free to take 
advantage of the information available through 
policy disclosure mechanisms. Such information can 
be used to reason about the implication of policies 
and generate a more accurate model of behavior for 
the robot itself as well as for other robots or even 
humans. The transparency of policies can be used 
for planning purposes, resulting in more efficient 
plans by considering constraints.  This can both 
reduce the search space and prevent futile actions 
from being attempted.  For example in our TSR 
demo, robots where restricted from entering an area, 
however, an emergency situation presented itself.  
Kaa reasoned about the current policies and the 
current context and authorized a one time override 
of the policy for the given situation.    

Finally, policies are viewable and verifiable.  As 
systems grow, multiple constraints in complex 
systems can lead to unexpected (and possibly 
undetected) conflict. Often these oversights surface 
at very inopportune moments. Polices can be 
screened for conflicts prior to activation and in some 
cases can be automatically harmonized. More 
importantly, the policy creators can be informed of 
the problem, so they may take the best course of 
action. 

5.4 Flexibility 

One of the main advantages of using KAoS policies 
is that they are a means to dynamically regulate the 
behavior of a system without changing code. New 
constraints can be imposed at runtime and can be 
dynamically changed and updated as the 
environment or domain changes. Robotic behaviors 
are typically tuned to a specific domain application 
and must be re-tuned when the domain changes.  
Policies can be used to make these adjustments more 
transparent.  For example, in open terrain, the 
maximum speed can be high, where as in wooded 
environments the maximum speed might be less.  
With policies, this could be accomplished by 

manually changing the policy, or more elegantly by 
specifying the appropriate context for each 
constraint.  For example, the classification threshold 
for identifying an object in our ONR application 
could be varied based on the environment. 

Policy flexibility can also be used to suit the 
system to the human, instead of solely training the 
human to the system. Through policy, people can 
precisely express bounds on autonomous behavior in 
a way that is consistent with their appraisal of an 
agent’s competence in a given context. This 
provides a broad range of controllability, as well as 
allowing individuals to tailor the system to their 
needs. As trust increases, policy can be altered to 
allow greater autonomy.  Again using our ONR 
example, policy provided a way to limit the robot’s 
authority to classify objects based on the operator’s 
assessment of its competence in the given context.  
As the operator’s confidence in the robot’s abilities 
increased, policies could be adjusted accordingly.   

As a final note, policies need not be applied 
uniformly across all robots.  If a particular robot is 
performing worse then others, a policy can be 
tailored for that individual robot.  Policies can be 
applied within any organizational boundary defined 
in the ontology.  

6 CONCLUSION 

We have presented our work toward developing a 
viable approach to the application of semantically 
rich policy in robotic systems operating in the real 
world.  Our next step is to develop quantitative 
metrics to evaluate the benefits of policy based 
control.  There is research to indicate that a core set 
of teamwork policies exists and is reusable across 
domains (Tambe, 1997).  Accordingly, we will seek 
to define reusable policy sets for a variety of areas.   
Like any technology, policies can be misused or 
poorly implemented. An unsophisticated robot, 
insufficiently monitored and recklessly endowed 
with unbounded freedom, may pose a danger both to 
others and to itself. On the other hand, a capable 
robot shackled with too many constraints will never 
realize its full potential. The key to effective policy 
usage is experience in writing and testing policies. 
Fortunately, for this purpose policies provide a more 
transparent mechanism than typical robot control 
techniques. We can reason about policies, verify 
them, determine conflicts, and provide automated 
fixes in some circumstances.  We believe that 
policy-based approaches hold much promise in 
improving robot control.  Polices can also play a 
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vital role in expressing and enforcing various social 
norms including those regarding human robot 
interaction (Feltovich, 2004) which will be 
increasingly important as robots begin to work along 
side humans.  Semantically-rich policy 
representations like those used in KAoS provide 
expressive power needed for context sensitive policy 
expression and enforcement.  There external nature 
of KAoS policies decouples the constraint 
specification from the underlying robotic 
implementation and as such is more transparent and 
flexible than standard approaches.  
Policies of this type are not well suited for all 
aspects of robot control.  Low level control with real 
time constraints is an example in which policy usage 
would not be appropriate.  Our policies are most 
effectively applied in areas of human interest.  
People do not generally consider the low level 
control aspects when trying to work with a robot, but 
instead focus on the higher level aspects that 
generally do not have such sever real-time 
constraints.  Policy mechanisms do not replace 
sound control theory or robot behavioral schemas, 
but supplement them and provide a much more 
intuitive way for operators to interact with and 
manage multiple robots.  Our goal is to explore the 
conditions under which the use of policy services 
can be most beneficial in promoting effective 
humane-machine interaction.   
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