
A SEMANTICALLY RICH POLICY BASED APPROACH TO
ROBOT CONTROL

Matthew Johnson, Jeffery Bradshaw, Paul Feltovich, Renia Jeffers, Hyuckchul Jung, Andrzej Uszok
Institute for Human and Machine Cognition, 40 South Alcaniz, Pensacola, Florida, U.S.A.

Keywords: Policy, semantic, authorization, obligation, ontology.

Abstract: In this paper we describe our approach to enhancing control of robotic systems by providing domain and
policy services via KAoS. Recently developed languages such as OWL provide a powerful descriptive
logic foundation that can be used to express semantically rich relationships between entities and actions, and
thus create complex context sensitive policies. KAoS provides a tool to create policies using OWL and an
infrastructure to enforce these policies on robots. We contend that a policy-based approach can provide
significant advantages in controlling robotic systems and is a much more natural way for operators to
interact with and manage multiple robots.

1 INTRODUCTION

Robot control is achieved through a variety of
techniques. Some aspects require tight real-time
control loops, such as balancing and avoiding
dynamic obstacles. Many aspects however do not
have these real-time restrictions and simply provide
constraints on the system, for example speed limits.
These types of constraints can also adjust the
parameters of the real-time control systems, like
adjusting the standoff range for obstacle avoidance.
The majority of robotics work to date embeds non-
real-time constraints into the robotic system. Some
are built into reactive behaviors and others are hard
coded into deliberative layers. This makes it
difficult for anyone but the robot’s developer to have
an understanding of them. Even with good
architectural design that allows for adjustment of
these constraints, it can still be difficult for an
operator to manage constraints. The problem is
exacerbated in heterogeneous multi-robot
environments. Another limitation is that there is
typically no capability to add context to a constraint
adjustment. For example, the operator may be able
to adjust the speed limit, but cannot say that the
speed limit can be higher for emergency situations.
This lack of semantic description also limits the use
of software reasoning that could be used to aid the
operator.

In this paper we describe our approach to
enhancing control of robotic systems by providing
semantically rich domain and policy services via
KAoS. KAoS policies are mechanisms to make
non-real-time constraints accessible to operators and
a means to adjust these constraints at run time.
Since the term “policy” is a very general term with a
variety of meanings, in Section 2 we start by
defining what we mean by policy. We will then
describe how we have designed and implemented
policies in Section 3 and provide a brief description
of our applications in Section 4. These applications
are used as examples as we discuss the advantages
of policy based robot control in Section 5.

2 WHAT IS A POLICY?

The term “policy” is a word that takes different
meanings according to context. In the robotics
domain, the term policy is often used to mean a
complete mapping from states to actions (Mataric,
2001). While there has been much work on
expressive mathematical frameworks such as
Markov Decision Process models, recently
developed rich descriptive languages such as the
Web Ontology Language (OWL:
http://www.w3.org/2004/OWL) have not been
exploited to express high level notions such as
authorization, obligation, and preference. As a

318
Johnson M., Bradshaw J., Feltovich P., Jeffers R., Jung H. and Uszok A. (2006).
A SEMANTICALLY RICH POLICY BASED APPROACH TO ROBOT CONTROL.
In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics, pages 318-325
DOI: 10.5220/0001219003180325
Copyright c© SciTePress

derivative of XML, OWL provides standard, open,
and extensible data representations as well as a
powerful descriptive logic foundation that can be
used to produce semantically rich descriptions of
relationships between entities and actions. This
provides the ability to reason about relationships
between actions and create semantically rich
policies.
Our approach is significantly different from
mapping states to actions. We define a policy as:

“An enforceable, well-specified constraint on the
performance of a machine-executable action by
an actor in a given situation” (Bradshaw, 2004)

The basic components of a policy are an actor, an
action, and a constraint. Authorities may
dynamically impose or remove involuntary policy
constraints on the actions of actors. Alternatively,
actors may voluntarily enter into agreements that
mutually bind them to some set of policies for the
duration of the agreement. There are two types of
policies; authorization and obligation. The set of
permitted actions is determined by authorization
policies that specify which actions an actor or set of
actors is allowed (positive authorizations policies) or
not allowed (negative authorizations policies) to
perform in a given context. Obligation policies
specify actions that an actor or set of actors is
required to perform (positive obligations) or for
which such a requirement is waived (negative
obligations).

Figure 1: Policy modalities.

As an example, consider the simple obligations:

“Robot X is obligated to beep before it moves.”

This could easily be handled by adding the pertinent
code to the robot. A more flexible way would be to
have a flag that an operator could set to enable or
disable the beeping. There are still some limitations
to this design. For example, it only applies to Robot
X, and it only applies to beeping. Semantic policies

provide a much higher level of expressiveness and
flexibility. The operator could specify:

“Actors who are robots are obligated to warn
before moving”.

This is a much more general statement and would
immediately apply to new robots added to the
system without the operator explicitly setting flags
on each one. It also allows each robot to warn in its
own way (beep, flash lights etc.) based on its
particular capabilities. The next section addresses
how we implement and enforce general statements
like the one used in our simple example.

3 HOW WE IMPLEMENT
POLICIES

KAoS policies are written using concepts defined in
the KAoS Policy Ontology (KPO) and are
represented in OWL. KPO is a generic ontology,
which contains the basic concepts such as actors,
actions, and various generic properties needed to
write policies. An diagram of the ontology
describing a policy is shown in Figure 2.

Figure 2: Policy Ontology Diagram.

We have also extended this ontology with concepts
specific to the mobile robot domain. The KAoS
robot ontology contains descriptions of the various
robot classes and their capabilities such as sonar,
camera, and mobile bases. There is no requirement

A SEMANTICALLY RICH POLICY BASED APPROACH TO ROBOT CONTROL

319

that every action that a robot may take be
represented in the ontology; only those that are
potentially subject to policy constraints.

OWL provides a rich descriptive language, but at
a cost of complexity. In order to free users from this
complexity we have created a graphical interface
that allows users to specify policies without any
knowledge of OWL. As the complexity and number
of policies increase, it is likely that conflicts between
policies will exist. These conflicts can be difficult
or impossible to find if the constraints are coded into
the system. However, KAoS uses the Stanford Java
Theorem Prover (JTP:
http://www.ksl.stanford.edu/software/JTP) to
provide conflict detection, as well as automatic

conflict resolution in some cases. Even if the
conflict cannot be automatically resolved, the system
can still notify the administrator and direct the
policy creators to reconsider the problematic policies
in order to find a solution.

In order to enforce policies on a system, it must
be possible to screen the actions as they are
attempted, translate them into the representation of
the policy language, check the action against
policies and then enforce the result. Robotic
Systems, being mobile in nature, usually rely on
distributed communication. This is particularly true
in multi-robot control. We leverage this in our
implementation to provide policy based control of
robotic systems.

Figure 3: KAoS Architecture.

ICINCO 2006 - ROBOTICS AND AUTOMATION

320

3.1 KAoS Background

KAoS is a collection of generic domain and policy
services that have been successful in providing
policy based management for various platforms
(Suri, 2003) (Tonti, 2003) (Johnson, 2003). KAoS
also provides access to a distributed communication
mechanism. It also has an extension that allows
external systems to control multiple heterogeneous
robots. Figure 3 depicts the main services provided
by KAoS. Domain services allow for the grouping
of entities to facilitate policy creation, making the
use of policies scalable and efficient. Policy
services enable the creation, management, and
disclosure of policies. In addition to storing policy
data centrally, KAoS performs automatic policy
distribution to the local robot platforms. Each
platform contains a Guard, which is a KAoS
component designed to cache policies locally and to
handle local policy checking.
 The Common Services Interface (CSI) is a
software interface to various services including
registration, transport, query, request, subscribe, and
policy disclosure as shown in Figure 3. These
services are available to any entities desiring to
interact with the robots including internal
components like a deliberative layer and other
separate, external agent/robotic systems. The CSI
layer provides a consistent approach for accessing a
robot regardless of whether the code is running
locally with respect to the robot hardware or
remotely. Our KAoS Robot Interface provides the
back-end implementation to enforce policy
constraints on robotic systems that have a native
adapter available.

Each robot typically comes with its own
proprietary and/or unique native software interface
for controlling it. Therefore, all heterogeneous robot
control architectures will require a translation layer
between the common language and the native
programming language, and our system is no
different. Our mobile robot extension to the KAoS
Policy Ontology is the common language. The robot
developers will need a thin translation layer in the
native implementation. This layer is where the
ontological strings are converted to the various
platform specific calls. In order to provide hardware
abstraction, KAoS has defined a set of interfaces for
various components, such as a mobile base, sonar,
and a camera, similar to Player (Gerkey, 2003). By
implementing an interface a robotic system can be
accessed through CSI. Several popular robotic
platforms are supported as shown in figure 3,
including the Pioneer, Amigo, Evolution Robotics

ER-1, and Player. Building algorithms on top of
these interfaces makes the algorithm available to all
robots that implement them. It also allows policy
checking at multiple levels of abstraction. This thin
native adapter enables KAoS Robot Interface to
provide policy enforcement on the given platform.
KAoS makes use of the communication layer in
order to provide policy enforcement. It is as
minimally invasive as possible and only screens
actions that relate to current policies. Actions which
do not relate to any current policies pass through
unaffected and without any significant delay.
Actions that require policy checks incur a small
delay on the order of ten milliseconds. Once a robot
has its native translation layer, it can be subject to
policy constraints without any further modification.

Lastly, we briefly mention Kaa (KAoS adjustable
autonomy). Kaa is software component used to
perform limited automatic adjustments of autonomy
consistent with human-defined policy. Kaa is
designed to use influence-diagram-based decision-
theoretic algorithms to determine what if any
changes should be made to agent autonomy.

Figure 4: Platforms with policy implementations.

4 APPLYING POLICIES TO
ROBOT SYSTEMS

We have demonstrated the use of KAoS policies in
multi-robot systems in three different contexts; a
NASA Human-Robot Teamwork (HRT) project, an
Office of Naval Research (ONR) Naval Automation
and Information management project and a
Transportation Security Robots (TSR) project. A
brief description of each is provided next since they
will be referenced as examples.

A SEMANTICALLY RICH POLICY BASED APPROACH TO ROBOT CONTROL

321

4.1 NASA Application

The NASA HRT work involves a MARS
exploration scenario including an astronaut on a
simulated Extra-Vehicular Activity who had two
robots nearby. The focus of this project was human-
robot teamwork. As such, the policies implemented
reflect teamwork issues like task switching,
delegation and notification. The scenario began
with the astronaut trying to task one of the robots to
take a picture of him.
 Our first policy prohibited the tasked robot to
move due to some previous tasking. This caused the
“take a picture” action to fail because the astronaut
was remote to the robot and the task would require
the robot to move into range before taking the
picture. This example demonstrates a negative
authorization policy being imposed on real robots. It
also highlighted translation across levels of
abstraction, since the restricted action is a subtask of
the high level action. The failure to take a picture
triggered an obligation policy that required
notification of the astronaut about the failure. The
failure also triggered a second obligation policy.
This policy obligated the robot to try to delegate the
“take a picture” action to another entity with the
necessary capabilities, in this case the second robot.
The obligation included getting verification from the
astronaut that delegation was acceptable. We also
included the simple example of obligating robots to
provide a warning before moving. When the second
robot was tasked to take the picture through
delegation, its attempt to move triggered an
obligation to beep before moving. In this scenario,
our robots were only required to implement some
very rudimentary behaviors of moving, beeping, and
taking a picture. All of the teamwork issues were
handled externally through policies created by the
operator.

4.2 ONR Application

Our project for the Office of Naval Research (ONR)
was based on finding a clear lane of approach in
preparation for an amphibious landing. The scenario
involved a single human managing four remote
Pioneer 3-AT robots. The human interacted with the
robots through a multi-modal dialogue system
(Chambers, 2005). The robots coordinated with
each other throughout the mission to divide their
task and update status. This scenario also
demonstrated the breadth of our system, including
matchmaking based on capability, simultaneous
multi-robot control, authorization and obligation

enforcement, robot-robot collaboration, mixed
initiative interaction, and dynamic policy updates.
Policies first came into play when a robot found an
object and was unable to sufficiently classify it. The
robot was obligated to obtain classification
assistance. We also used policies to determine if
robots were allowed to change roles. This project
also demonstrated a new infrastructure for proactive
ad hoc network maintenance. The robots were all
initially assigned to find a clear lane, but if
communications were lost, the network
infrastructure had the ability to move the robots to
regain communications. Since the change in
behavior might alarm a supervisor or be detrimental
to completing the overall task, we used policy to
constrain the behavior and required approval from
the human supervisor. We also demonstrated
dynamic assignment of an area where the robots
were prohibited from operating. The scenario was
defined such that after a clear lane was found, a
staging area for the landing craft would be
established. For safety reasons, the returning robots
were not allowed in this area. This policy was put in
force dynamically during the demonstration. The
resultant robot behavior successfully navigated
around the restricted area while returning. Figure 5
shows the behavior during our demo. The restricted
area, shown as a shaded red square, was graphically
added to the picture to aid in visualization and the
blue arrows indicate the paths chosen to avoid the
area. The change in behavior was completely
handled through the policy infrastructure and
external to any robot implementation.

Figure 5: Restricted Area Policy.

4.3 TSR Application

For the Transportation Security Robots (TSR)
project we focused on two potential uses for Kaa
(KAoS adjustable autonomy). The first was
overriding policy based on context. As in the ONR
application, the operator could create a restricted
area forbidding robot movement in a certain zone.
However, there are certain exemptions that may
apply, for example, “don’t enter this area, unless
there is an emergency”. We used Kaa to monitor the

ICINCO 2006 - ROBOTICS AND AUTOMATION

322

system and determine when an emergency existed.
When Kaa observed an emergency situation inside
the restricted area, a fire for our example, it overrode
the policy to allow robots capable of providing
assistance to enter the area. The second use of Kaa
was to adjust permissions based on context. Policy
sets were established for the various Homeland
Security Threat Levels, as posted by the U. S.
government. Kaa was in charge of monitoring the
threat levels and adjusting the policies accordingly.
As the threat level moved from green to yellow to
red, the actions the robots were authorized to take
would vary accordingly.

5 ADVANTAGES OF USING
POLICIES

Some of the characteristics of KAoS policies that
make them useful for robot control are their
powerful expressiveness, external nature,
transparency, and flexibility.

5.1 Expressive Power

The choice of policy language directly impacts the
expressiveness available in policies. We use OWL
to provide declarative specification of policies at a
broad range of levels. By combining this with JTP,
we are able to reason about relationships and
produce complex context sensitive policies. They
can address the entire system, groups within the
system or individual instances within the system.
They can refer to actions at any level of abstraction
and translate between levels. One example of this is
in our NASA application, where the constraint was
on movement, which was an optional subtask of the
original “take a picture” action.” Most importantly,
policies allow for a context to be explicitly defined,
which helps to prevent over (or under) restricting the
autonomy of the system. Anyone who has worked
with robots has run into a constraint that required a
“work-around”. Policies provide a mechanism to
explicitly define the “work-around” solution based
on context. Context can be any information,
including things that the robot was never
programmed to consider, such as time of day or
outside temperature. As we have seen, one example
occurred in our TSR work, where robots were
prohibited from entering a restricted area, but the
context of an emergency overrode the general
policy.

5.2 External Nature of Policy

There are many ways to apply constraints to a
robotic system. Typically they are coded into the
behaviors or deliberative layer, hidden from the
operator. Policies can be used to separate the
behavioral constraints and preferences of operators
from the underlying functionality. This is an idea
that has been successful in many other areas such as
database and web design. Because these different
aspects of knowledge are decoupled, KAoS policies
can be easily reused across different robots and in
different situations. By putting the burden for policy
analysis and enforcement on the infrastructure,
rather than having to build such knowledge into each
of the robots themselves, we minimize the
implementation burden on developers and ensure
that all robots operate within the bounds of policy
constraints. This is demonstrated by our simple
“Beep before moving” example discussed earlier
and demonstrated in our NASA application. The
obligation applied to all robots that were capable of
moving and warning without needing to include the
code for this behaviour in any individual robot.
Since policy enforcement is handled separate from
the robot implementation, externally imposed
policies provide an additional layer of controllability
that is independent of the robot developer’s code.
Poorly performing robots can be immediately
brought into compliance with externally applied
policy constraints, improving both controllability
and safety. There have been instances in which an
operator has had difficulty in overriding a faulty
system that refused to yield control (Wolff, 1999).
An accident (Williams, 2004) involving an
Unmanned Aerial Vehicle (UAV) trying to taxi is a
good example. Although the operators were very
aware of taxi speed restrictions, the UAV had no
such information, and it blindly followed an
accidental command to taxi at 155 knots. Policies
could be used in this situation to provide an
additional layer of safety checks.

5.3 Transparency

The use of KAoS policies can also help to make the
robot behavior more transparent. Again, constraints
are made explicit, instead of being scattered and
buried in the robot’s code. As robots move from the
lab to the real world, it is unlikely that the operator
of the robot will be the developer. Although
developers have the know-how to tweak robot
programs, operators are typically not as familiar
with such inner workings. They should not have to

A SEMANTICALLY RICH POLICY BASED APPROACH TO ROBOT CONTROL

323

be. Regardless of how the robot has been
programmed, they would like guarantees that certain
behaviors will be executed in ways that are
consistent with their personal and organizational
constraints. Often operators themselves lack
sufficient situation awareness to properly control the
system (Yanco, 2004). Transparency can help
improve situational awareness. Our NASA example
demonstrated how policies can be used to notify
humans about changes and thus maintain situational
awareness.

The benefits of transparency are not restricted to
humans. Deliberative systems are also free to take
advantage of the information available through
policy disclosure mechanisms. Such information can
be used to reason about the implication of policies
and generate a more accurate model of behavior for
the robot itself as well as for other robots or even
humans. The transparency of policies can be used
for planning purposes, resulting in more efficient
plans by considering constraints. This can both
reduce the search space and prevent futile actions
from being attempted. For example in our TSR
demo, robots where restricted from entering an area,
however, an emergency situation presented itself.
Kaa reasoned about the current policies and the
current context and authorized a one time override
of the policy for the given situation.

Finally, policies are viewable and verifiable. As
systems grow, multiple constraints in complex
systems can lead to unexpected (and possibly
undetected) conflict. Often these oversights surface
at very inopportune moments. Polices can be
screened for conflicts prior to activation and in some
cases can be automatically harmonized. More
importantly, the policy creators can be informed of
the problem, so they may take the best course of
action.

5.4 Flexibility

One of the main advantages of using KAoS policies
is that they are a means to dynamically regulate the
behavior of a system without changing code. New
constraints can be imposed at runtime and can be
dynamically changed and updated as the
environment or domain changes. Robotic behaviors
are typically tuned to a specific domain application
and must be re-tuned when the domain changes.
Policies can be used to make these adjustments more
transparent. For example, in open terrain, the
maximum speed can be high, where as in wooded
environments the maximum speed might be less.
With policies, this could be accomplished by

manually changing the policy, or more elegantly by
specifying the appropriate context for each
constraint. For example, the classification threshold
for identifying an object in our ONR application
could be varied based on the environment.

Policy flexibility can also be used to suit the
system to the human, instead of solely training the
human to the system. Through policy, people can
precisely express bounds on autonomous behavior in
a way that is consistent with their appraisal of an
agent’s competence in a given context. This
provides a broad range of controllability, as well as
allowing individuals to tailor the system to their
needs. As trust increases, policy can be altered to
allow greater autonomy. Again using our ONR
example, policy provided a way to limit the robot’s
authority to classify objects based on the operator’s
assessment of its competence in the given context.
As the operator’s confidence in the robot’s abilities
increased, policies could be adjusted accordingly.

As a final note, policies need not be applied
uniformly across all robots. If a particular robot is
performing worse then others, a policy can be
tailored for that individual robot. Policies can be
applied within any organizational boundary defined
in the ontology.

6 CONCLUSION

We have presented our work toward developing a
viable approach to the application of semantically
rich policy in robotic systems operating in the real
world. Our next step is to develop quantitative
metrics to evaluate the benefits of policy based
control. There is research to indicate that a core set
of teamwork policies exists and is reusable across
domains (Tambe, 1997). Accordingly, we will seek
to define reusable policy sets for a variety of areas.
Like any technology, policies can be misused or
poorly implemented. An unsophisticated robot,
insufficiently monitored and recklessly endowed
with unbounded freedom, may pose a danger both to
others and to itself. On the other hand, a capable
robot shackled with too many constraints will never
realize its full potential. The key to effective policy
usage is experience in writing and testing policies.
Fortunately, for this purpose policies provide a more
transparent mechanism than typical robot control
techniques. We can reason about policies, verify
them, determine conflicts, and provide automated
fixes in some circumstances. We believe that
policy-based approaches hold much promise in
improving robot control. Polices can also play a

ICINCO 2006 - ROBOTICS AND AUTOMATION

324

vital role in expressing and enforcing various social
norms including those regarding human robot
interaction (Feltovich, 2004) which will be
increasingly important as robots begin to work along
side humans. Semantically-rich policy
representations like those used in KAoS provide
expressive power needed for context sensitive policy
expression and enforcement. There external nature
of KAoS policies decouples the constraint
specification from the underlying robotic
implementation and as such is more transparent and
flexible than standard approaches.
Policies of this type are not well suited for all
aspects of robot control. Low level control with real
time constraints is an example in which policy usage
would not be appropriate. Our policies are most
effectively applied in areas of human interest.
People do not generally consider the low level
control aspects when trying to work with a robot, but
instead focus on the higher level aspects that
generally do not have such sever real-time
constraints. Policy mechanisms do not replace
sound control theory or robot behavioral schemas,
but supplement them and provide a much more
intuitive way for operators to interact with and
manage multiple robots. Our goal is to explore the
conditions under which the use of policy services
can be most beneficial in promoting effective
humane-machine interaction.

REFERENCES

Allen, J. F., et al 2001. D.K. Byron, M. Dzikovska, G.
Ferguson, L. Galescu, A. Stent, “Towards
conversational human-computer interaction”, AI
Magazine, 22(4), 27-35.

Bradshaw, J. M., et al, 2004. “Making agents acceptable
to people”, Intelligent Technologies for Information
Analysis: Advances in Agents, Data Mining, and
Statistical Learning. (pp. 355-400). Berlin: Springer
Verlag.

Carvalho, M., et al 2002. M. R. Breedy, “Supporting
Flexible Data Feeds in Dynamic Sensor Grids through
Mobile Agents”, Mobile Agent, pp.171-185.

Chambers, N., 2005.James Allen, Lucian Galescu, and
Hyuckchul Jung. A Dialogue-Based Approach to
Multi-Robot Team Control. In Proceedings 3rd
International Multi-Robot Systems Workshop.
Washington, DC. March 14-16.

Feltovich, P.J., et al 2004. Bradshaw, J.M., Jeffers, R.,
Suri, N. & Uszok, A. (2004). Social order and
adaptability in animal and human cultures as
analogues for agent communities: Toward a policy-
based approach. In A. Omacini, P. Petta, & J. Pitt
(Eds.), Engineering societies for the agents world IV

(pp.21-48). Lecture Notes in Computer Science
Series. Heidelberg, Germany: Springer-Verlag.

Gerkey, B. et al. 2003. R. T. Vaughan and A. Howard.
"The Player/Stage Project: Tools for Multi-Robot and
Distributed Sensor Systems" Proceedings of the 11th
International Conference on Advanced Robotics,
pages 317-323, Coimbra, Portugal, June 2003

Johnson, M., et al, 2003. “KAoS semantic policy and
domain services: An application of DAML to Web
services-based grid architectures”, Proceedings of the
AAMAS 03 Workshop on Web Services and Agent-
Based Engineering, Melbourne, Australia.

Mataric, M., 2001. “Learning in behavior-based multi-
robot systems: Policies, models, and other agents.”
Cognitive Systems Research, special issue on
Multidisciplinary studies of multi-agent learning,
2(1):81--93, April.

Sierhuis, M., et al 2003. W. J. Clancey, and R. v. Hoof,
"Brahms: a multi-agent modelling environment for
simulating social phenomena", presented at First
conference of the European Social Simulation
Association (SIMSOC VI), Groningen, The
Netherlands.

Suri, N. et al, 2003. “DAML-based policy enforcement
for semantic data transformation and filtering in multi-
agent systems”, Proceedings of the Autonomous
Agents and Multi-Agent Systems Conference
Melbourne, Australia, New York, NY: ACM Press.

Tambe, M. 1997 Towards Flexible Teamwork Journal of
Artificial Intelligence Research, Volume 7, Pages 83-
124.

Tonti, G. et al, 2003. “Semantic Web languages for policy
representation and reasoning: A comparison of KAoS,
Rei, and Ponder”, International Semantic Web
Conference, Sanibel Island, Florida.

Williams, K. 2004. “Summary of Unmanned Aircraft
Accident/Incident Data: Human Factors Implications”,
Technical Report.

Wolff, M., 1999 “The Automation debate revisited:
Computer Clash”, Flight Safety Australia, September-
October.

Yanco, H., 2004. J. Drury, J. Scholtz, “Beyond Usability
Evaluation: Analysis of Human-Robot Interaction at a
Major Robotics Competition”, Journal of Human-
Computer Interaction.

A SEMANTICALLY RICH POLICY BASED APPROACH TO ROBOT CONTROL

325

