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Abstract: In this paper, we propose a new genetic algorithm (GA) based macromodeling technique for register 
transfer level. This technique allows to estimate the power dissipation of intellectual property (IP) 
components using some statistical knowledge of their primary inputs. During the macromodel construction 
procedure, the sequence of an input stream is generated by a GA using input metrics. Then, a Monte Carlo 
zero delay simulation is performed and the power dissipation is predicted by a macromodel function. In our 
experiments with IP macro-blocks, the results are effective and highly correlated, with an average error of 
1%. Our model is parameterizable and provides accurate power estimation. 

1 INTRODUCTION 

The importance of designing low power digital 
circuits is being increased rapidly. In order to handle 
the ever increasingly complexity, CAD tools have 
been developed that also help in minimizing power 
dissipation.  

In this short paper, we focus on the problem of 
power estimation at register transfer level (RTL) for 
IP-based designs. Various power estimation 
techniques have been introduced previously. These 
techniques can be divided into two categories: 
probabilistic and statistical. Probabilistic techniques 
(Ghose et al, 1992), (Najm et al, 1990), (Marculescu 
et al, 1994) use the probabilities of the input stream 
and their propagation into the circuit to estimate the 
internal switching activities. These techniques are 
very efficient, but they cannot accurately capture 
factors like glitch generation and propagation. On 
the other hand in statistical techniques (Yacoub & 
Ku, 1989), (Huizer, 1990), (Deng, 1994) the circuit 
is simulated under randomly generated input 
patterns and the power dissipation is monitored 
using a power estimator. The Monte Carlo 
simulation technique was developed and presented 
in (Burch et al, 1993). This technique uses input 
vectors that are randomly generated and its power 
dissipation is estimated using power estimator.  

A look-up table (LUT) based macromodel was 
presented in (Gupta & Najm, 1997) and further 
improved in (Gupta & Najm, 1999). The LUT stores 
the estimates for equi-spaced discrete values of the 
input signal statistics. The interpolation method was 
introduced to allow the estimation for the input 
statistics that not correspond to LUT. In (Chen et al, 
1997), (Chen & Roy, 1998) interpolation scheme 
was improved by using power sensitivity concept. 
For better accuracy, numerous power 
macromodeling techniques have been introduced in 
(Gupta & Najm, 1999), (Liu & Papaefthymiou, 
2002).  

Genetic Algorithms (Davis, 1991) have proved 
success in solving electronic design problems 
(O’Dare & Arslan, 1994), (Arslan et al, 1996) and 
have shown a high degree of flexibility in handling 
power constraints (Davis, 1991). They are more 
dynamic to combine power of randomness and 
evolution, and to analyze large solution space.  

In this paper, we present a new genetic algorithm 
based power macromodeling technique for power 
estimation. The input metrics of our macromodel are 
the average input signal probability Pin, average 
input transition density Din, input spatial correlation 
Sin and input temporal correlation Tin. We use 
intellectual property (IP) macro-blocks for our 
experiments.  
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The rest of this paper is organized as follows. In 
Section 2 we give the background of the input 
parameters of our macromodel. In Section 3, we 
explore our genetic algorithm. In Section 4, we 
discuss about our macromodel construction. This 
macromodel is evaluated in section 5. Section 6 
summarizes our work.  

2 CHARACTERIZATION 

Similar power macromodeling techniques were 
presented in (Chen & Roy, 1998), (Gupta & Najm, 
1999), (Liu & Papaefthymiou, 2002). Our 
macromodel consist of a nonlinear function based on 
LUT approach: 
 

             ),,,( ininininavg TSDPfP =                (1) 
 

The function f is obtained by a given IP macro-
block. The components are simulated under different 
sample streams with, Pin, Din, Sin, Tin. This model 
estimates the average power dissipation. 

Given an IP macro-block with the number of 
primary inputs r and the input binary stream 

),...,,...,,(),,...,,{( 2222111211 rr qqqqqqq =
)},...,,( 21 srss qqq of length s, these metrics 

are defined in (Gupta & Najm, 1999), (Gupta & 
Najm, 1999), (Barocci et al, 1999), (Bernacchia & 
Papaefthymiou, 1999):  
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3 EXPLORATION ALGORITHM 

In this section, we analyze our genetic algorithm for 
power macromodeling allowing to estimate the 
power dissipation. The proposed GA for the IP 
system is presented in Figure 1. The flow of our GA 
is explained in next sections.  
 
GA for sequence of input pattern () 
   fitness_value = 0; 
   num_gen = 0; 
   Generation of randomly population; 
   While(num_gen < max_num of  
   Generations) 
      Compute fitness values in 
      Population; 
      Upgrade fitness_value; 
      Crossover; 
      Mutation; 
      Upgrade population; 
      num_gen + = 1; 
   end while; 

Figure 1: Genetic Algorithm (GA). 

3.1 Setting Chromosome 

In GA process, chromosomes are exposed to genetic 
operators like crossover, mutation, selection etc. The 
objective of these operations is to remove poor 
strings and produce healthy strings. In this step, we 
makeup of a given chromosome. It includes the 
number of genes, and the representation of those 
genes. In our problem, the chromosomes are the 
primary inputs. 

3.2 Fitness Function Implementation 

The fitness function is responsible for performing 
evaluation and returning fitness value that reflects 
how optimal the solution is: the higher the number, 
the better the solution. Given fitness values are then 
used in a process of natural selection to choose 
which potential solutions will continue on to the 
next generation, and which will die out. The natural 
selection process does not choose the top n number 
of solutions; the solutions are instead chosen 
statistically that are more likely with a higher fitness 
value. Our algorithm is used with measurements to 
evolve the population of solutions toward a more 
optimal set of solutions. 

3.3 Setup and Creating Population 

GA needs to provide three extra pieces of 
information like fitness function, chromosome setup, 
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and the chromosome population. A large number of 
population size means more potential solutions to 
choose and more generic diversity. Each potential 
solution is represented by a chromosome. A 
population of chromosome is called a Genotype and 
that is we need to create our population. We setup a 
configuration object and return a Genotype with the 
correct number of chromosomes, each one of this 
has its genes set to random values. In other words, it 
generates a random population. It is necessary to 
create initial population for our potential solutions. 
We have specified an initial population as an input 
of GA. The initial population contains M number of 
random strings of length N, where M and N are the 
input parameters used in GA. 

3.4 Evolutionary Process  

After setup and creation of population, our GA 
evolves the population until it contains satisfying 
potential solutions. We choose to evolve the 
population a set number of times and then we check 
what is the best solution produced by our genetic 
algorithm. 

4 MODEL CONSTRUCTION 

Several approaches (Chen & Roy, 1998), (Gupta & 
Najm, 1999), (Liu & Papaefthymiou, 2002) have 
been proposed to construct power macromodel on 
ISCAS-85 benchmark circuits. We have found that 
the same methodology works as well for IP macro-
blocks such as array multipliers or comparators in 
terms of the statistical knowledge of their primary 
inputs. By the following method (Gupta & Najm, 
1999), we found that a good choice of the Pavg in 
(1), is quadratic for array multipliers and 
comparators respectively. The sequence of input 
stream is generated by GA for a desired input 
metrics. Then, a Monte Carlo zero delay simulation 
(Burch et al, 1993) is performed and the power 
dissipation is obtained using a power estimator. 
Different input stream sequences are generated for 
different signal statistics and the corresponding 
power consumptions are measured. Using all these 
measures, the function f in (1) is calculated.  

Table 1: Accuracy of Power Estimates. 

Circuits Average 
Error 

Max Error 

Mult8x8-1 0.76% 2.35% 
Mult8x8-2 1.50% 3.19% 
Mult4x4-1 0.67% 2.30% 
Mult4x4-2 2.15% 3.00% 

Comp-1 1.44% 2.95% 
Comp-2 0.33% 1.43% 

Comp16x16-1 0.58% 0.95% 
Comp16x16-2 0.47% 0.64% 

5 MACROMODEL EVALUATION 

Experimental results show that our GA can produce 
sequences with accurate statistics and highly 
convergence. For the input metrics Pin, Din, Sin, Tin, 
we specify the range between [0.1, 0.9]. We 
generated 450 sequences with 8, 16 and 32 bits 
wide. The sequence length is 2000 and 1000 vectors 
for macro-blocks. In table (1) the first column shows 
the name of the circuits. Columns two and three give 
the average and maximum relative error for the 
estimates obtained with our macromodel. The 
reference values for the circuit’s power dissipation 
are obtained using time delays from the Synopsys 
PowerCompiler. In our experiments, the average 
absolute error is 0.98%, and the average maximum 
error is 2.1%. The maximum worst-case error is no 
more than 3.19%.  

In figure 2 we illustrate the combined scatter plot 
of IP macro-blocks between the macromodel and the 
reference simulated power. Regression analysis to fit 
the model’s coefficients is performed. For different 
blocks, the prediction correlation coefficient is 
measured around 97%. The sequences have high 
convergence and uniformity. Figure 3 plots the 
variation of the power value with the trial interval 
length. This figure shows that the interval length is 
1000. The warm-up length is about 400 while the 
vertical line represents the steady state value at 800. 

6 CONCLUSIONS 

We have presented a new genetic algorithm based 
power macromodeling technique for high-level 
power estimation. Our technique has been applied 
on IP macro-blocks and has demonstrated good 
accuracy. Our model shows an average error of 1% 
and a prediction correlation coefficient of 97%. We 
are currently evaluating our macromodel on 
sequential circuits.  
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Figure 2: Power comparison between four dimensional macromodel and reference simulated power. 
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Figure 3: Power changes with respect to sequence length for different IP blocks. 
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