
DESIGN OF A PROTOTYPE ROBOT VACUUM CLEANER 
From Virtual Prototyping to Real Development 

Leire Maruri, Ana Martinez-Esnaola, Joseba Landaluze 
IKERLAN Research Centre, Arizmendiarrieta 2, E-20500 Arrasate (The Basque Country), Spain 

Sergio Casas, Marcos Fernandez 
ARTEC Group, Valencia University, E-46980 Paterna, Spain 

Keywords: Robot vacuum cleaner, Virtual prototype, Fuzzy logic, SIL (Software-In-the-Loop). 

Abstract: This paper presents the prototype of a robot vacuum cleaner designed and constructed by IKERLAN. It 
details, above all, the hardware and software components used, as well as the navigation algorithm, 
designed using fuzzy logic. In conjunction to this an existing virtual prototype of the robot and the domestic 
environment was updated with a view to fine-tuning and testing the real controller of the autonomous robot 
by means of SIL (Software-in-the-Loop) simulations. Finally, some of the position estimation problems that 
arose in the experimental tests are described. 

1 INTRODUCTION 

Modern living brings with it the need to use time as 
efficiently as possible, one of the key objectives 
being to create as much free-time for ourselves as 
we possibly can. This explains why people 
increasingly surround themselves with appliances 
capable of carrying out essential, yet distinctly 
unappealing, household chores. It is here that 
domestic appliances have a role to play. 

Until not so very long ago, a washing machine 
and fridge were considered sufficient. However, 
when these household appliances, along with the 
tumble dryer, hair dryer, microwave, vacuum 
cleaner, etc. became commonplace in the home, they 
were required not only to perform the task for which 
they were designed, but to do so in the simplest and 
most efficient way possible. What is more, demand 
is increasing with every passing day for new 
household appliances capable of making even the 
most tedious jobs bearable, such as ironing or 
cleaning in general. In an ideal world, the domestic 
appliances of today would even be replaced by new 
gadgets with ability to perform tasks in a completely 
independent way, which is where concepts such as 
domotics and domestic robots come in. 

One such device is the robot vacuum cleaner, a 
very active area of research for several years now, 

with many prototypes having been developed, some 
of which are now appearing on the market (Irobot, 
2006; Electrolux, 2006; Karcher, 2006). 

The robot vacuum cleaner is a special case 
among mobile robot systems. Taking as a starting 
point the principle of a robot capable of navigating 
reactively in theoretically unknown environments 
and designed to avoid variable obstacles, a number 
of different versions of domestic cleaners can be 
obtained (ones that vacuum the floor, wash dishes, 
polish furniture, etc.) by fitting the requisite 
accessories. In order for a robot vacuum cleaner to 
take its place among the numerous domestic 
appliances on the market today, however, it must 
meet some very specific requirements with regard to 
price, simplicity, ease of use, independence from the 
surrounding environment and cleaning efficiency 
among others. 

Over the last few years IKERLAN and the 
ARTEC Group at the University of Valencia have 
been working on the design of a domestic robot, 
particularly as an example of the application of HIL 
(Hardware-in-the-Loop) technology in the design of 
new industrial products. Research was conducted on 
the navigation system (sensors, actuators, and 
navigation and sweeping algorithms) and tested 
using the virtual prototype of a generic robot 
vacuum and a domestic environment in HIL 
simulation (Fernandez, 2003; Martinez, 2004). 

461
Maruri L., Martinez-Esnaola A., Landaluze J., Casas S. and Fernandez M. (2006).
DESIGN OF A PROTOTYPE ROBOT VACUUM CLEANER - From Virtual Prototyping to Real Development.
In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics, pages 461-468
DOI: 10.5220/0001201004610468
Copyright c© SciTePress



 

More recently, a prototype robot vacuum was 
designed and constructed. The virtual prototype of 
the mobile robot and the domestic environment was 
also improved. Among other things, an accurate 
model of the vacuum cleaner was added, other 
dynamically changing elements were included (such 
a ball that appears in the environment) and a version 
for Windows/PC was created. As a result, the 
control programme designed was fine-tuned and 
tested using the virtual prototype, following a SIL 
(Software-in-the-Loop) procedure. 

This paper presents the most significant aspects 
of the robot vacuum cleaner prototype that has been 
designed and constructed; its navigation system, 
based on fuzzy logic; and the improved version of 
the virtual prototype. First of all, the paper briefly 
reviews the current situation with regard to research 
on robot vacuum cleaners, placing special emphasis 
on the designs that are currently available on the 
market. It then goes on to describe the hardware and 
software contained in the robot vacuum cleaner 
designed, as well as the navigation strategy. After 
detailing the virtual prototype, the paper concludes 
by presenting  some of the position estimation 
problems that arose in the experimental tests. 

2 BRIEF REVIEW OF ROBOT 
VACUUM CLEANERS 

After years of fits and starts, the market for robot 
housemaids finally seems to be taking off. New 
models of robot vacuum cleaners are the first signs 
that a nascent commercial robot industry is finally 
taking hold. However, the robot vacuums now being 
sold are not designed to replace the vacuum cleaner 
altogether. The manufacturers describe their 
products as "maintenance" or "continuous" cleaners 
(Kahney, 2003). There are a lot of models of robotic 
vacuum cleaners available today, and they range in 
price from $50 all the way up to $1,800. These 
robots are typically low-slung and compact, meaning 

they can get under furniture normally inaccessible to 
regular upright vacuum cleaners.  

There are three leading robot vacuum companies: 
Europe’s Electrolux and Karcher, and the United 
States’ iRobot (Figure 1). Other cleaning 
manufacturers like Japan’s Hitachi and the UK’s 
Dyson are working on the development of this kind 
of robot, as are Friendly Robotics, FloorBotics, 
Hanool Robotics, Samsung and Lentek. 

The most popular robotic vacuum in the United 
States is iRobot's Roomba, which comes in various 
models ranging from the base-model Roomba Red 
($150) to the super high-tech Roomba Scheduler 
($350). It is a round-shaped vacuum-device that 
works like a pool cleaner, bouncing around a room 
until it covers all - or most of - the floor (Kahney, 
2003). The cleaning system includes a spinning side 
brush that cleans along walls, two counter-rotating 
brushes that capture large debris and a vacuum that 
picks up dust. At the end of a cleaning cycle or when 
the battery is running low, Roomba returns to the 
Home Base to recharge. When dirt hits one of the 
two sensors located immediately above the brushes, 
it turns towards the dirty area, vigorously cleaning 
the area most in need of attention. It also includes 
infrared sensors that prevent Roomba from falling 
off ledges and stairs. The system includes virtual 
walls that create an infrared signal that Roomba will 
not cross, keeping Roomba where you want it to 
clean (Irobot, 2006). 

Electrolux's Trilobite is more complex, and more 
expensive. The $1800 Trilobite creates an internal 
map of the room as it cleans, and recharges 
automatically when its power reserves are low. The 
type of cleaning programme you want can be 
selected (normal, quick or spot) and it has a start 
button for immediate cleaning, or alternatively 
cleaning times may be set in advance. The Trilobite 
sends out harmless ultrasonic signals to spot objects 
and avoid them. It begins by edging along the walls 
to map the size of the room, whilst simultaneously 
cleaning the edges. It then proceeds to clean the 

 
Figure 1: Commercial robot vacuum cleaners: Trilobite, RoboCleaner and Roomba. 

ICINCO 2006 - ROBOTICS AND AUTOMATION

462



 

whole room. A suspension device prevents the 
machine from getting stuck, and a special sensor 
stops it from falling down stairs (Electrolux, 2006). 

Kärcher's RoboCleaner (Karcher, 2006) is 
available for about 1100€. It takes a "random-walk" 
around the house, sensing walls and obstacles with 
its touch-sensitive bumpers. It avoids stairs, and is 
low enough to fit under most furniture. A pair of 
"rubber ears" on top prevents it from getting stuck. 
The RoboCleaner monitors the stream of incoming 
dirt and concentrates on especially dirty spots. The 
owner need only empty the recharging station's dust 
bag when it gets full.  

The British company Dyson is trying to develop 
a robot cleaner (DC06) and has gone back to the 
R&D phase until they can make an affordable, 
autonomous vacuum cleaner.  

Japanese electronics giant Hitachi is working on 
a similar product that also acts as a home security 
guard. The robot cleaner can work independently or 
manually, controlled by computer or cell phone. An 
in-built camera allows the owner to monitor his 
house over the Internet while away. It comes with a 
charging station, to which it returns to recharge its 
batteries and dump its dust load. The robot creates a 
map of the house's layout as it moves around. It 
remembers the layout of furniture and which areas 
of the house have been cleaned and which have not. 
It has a retractable 2-inch hose for cleaning in 
corners. The machine bristles with sensors (light, 
heat and all-around bumpers) for detecting hazards 
and preventing it from getting stuck in corners. 

3 ROBOT VACUUM CLEANER 
DEVELOPED 

3.1 Hardware Structure 

Design and development of the robot vacuum 
cleaner prototype was based on off-the-shelf, low-
cost components. The Rex-12 Round Robot Base 
with Encoders from Zagros Robotics (2006) was 
chosen for the mobile structure and support of all the 
components. It consists of a desk base 30 cm in 
diameter, which has two drive wheels and is 
supported on two casters. The drive wheels are 15 
cm in diameter and the two caster wheels 7.5 cm in 
diameter. The base includes two 12 V drive motors 
for the drive wheels, and each motor has a 500 
pulses per revolution HEDS encoder. 

The platform can easily carry over 15 kg of 
payload at a maximum speed of 24 m per minute. 

The sensor system uses 16 units of the SRF08 
Ultrasonic Rangefinder Sensor from Robot 

Electronics (2006). Communication with the 
ultrasonic sensors is via an I2C bus. A BrainStem 
GP1.0 Module from Acroname (2006) is used to 
read the ultrasonic sensors and measure distances to 
obstacles. The distances measured are sent to the 
robot controller by means of a RS-232 serial port. In 
the prototype a car vacuum cleaner has been used to 
suck up dust. 

The control unit consists of a sandwich of 
PC/104 modules. The modules included are as 
follows: 
• A CPU board, MOPSIcd7-700 MHz from 

Jumptec (2006), with 512 MB of SDRAM and 
an IDE compatible Flash-Disk of 96 MB. 

• ESC629ER Dual DC Servo Motor Control 
Board from RTD (2006) to control the drive 
motors of the desk base. It has also 24 TTL 
level I/O lines which are used to control the car 
vacuum cleaner. A customised circuit was 
developed for that purpose. 

• PCM-3110 1-Slot PCMCIA Module from 
Advantech (2006). 

• Instant Wireless Network PC Card from 
Linksys (2006) for wireless communications. 

• HESC104 Module from Tri-M Engineering 
(2006), a DC-to-DC 60 watt converter for 
embedded applications that supplies ±5 V and 
±12 V. 

• BAT104-SLA45 Battery Pack from Tri-M 
Engineering (2006). This is sealed, lead acid 
battery backup unit for HESC104 power supply. 
It consists of 5DD x 4.5A Hr batteries with 
digital temperature sensors. 

The battery pack and the HESC104 unit supply 
the power needed by the drive motors, the car 
vacuum cleaner and the control unit itself. 

By means of the wireless communication link, 
the robot vacuum cleaner programme is loaded and 
monitoring data acquired. 

Figure 2 shows a photograph of the robot 
vacuum cleaner prototype developed, as well as its 
main components.  

Figure 2: Robot prototype and its components. 

DESIGN OF A PROTOTYPE ROBOT VACUUM CLEANER - From Virtual Prototyping to Real Development

463



 

3.2 Software Structure 

The Operating System used in the CPU board of the 
mobile robot is eLinOS v2.1, an embedded version 
of Linux, with RTAI extension for hard real-time. 
The control program is created in a host computer 
and then downloaded through the wireless link. 

The robot controller has been developed in 
Simulink, where it is tested using a simple virtual 
environment consisting of a circular or rectangular 
room. After ensuring it is operating correctly, the 
code of the navigation algorithm only is created 
using the RTW (Real Time Workshop) utility. This 
code is then integrated into the application along 
with the rest of the functionality (reading sensors 
and the sending of commands to the motors) and 
compiled for eLinOS and Windows. This controller 
is embedded in the mobile robot or can be integrated 
into the virtual prototype in order to test it. 

The controller carries out three basic functions: it 
receives information from the sensors on the 
distances measured; it periodically calls the 
navigation and control algorithm (created with RTW) 
to obtain the wheel velocity commands; and it sends 
these commands to the motors. 

Figure 3 shows the development diagram of the 
embedded application, representing the application 
as the “Control” component built into the CPU 
PC/104, and showing the interaction with the 
peripherals fitted on the robot vacuum cleaner. 

The application functions as per the sequence 
diagram in Figure 4. As soon as it starts up, the 
application configures an interruption timer before 
starting the input and output (sensors and motors) 
and configuring the operating system signals. At the 
end of the initialisation process, it enters a loop that 

performs two of the basic functions: it reads 
information from the sensors and sends the velocity 
commands to the motors. In conjunction, the 
operating system periodically sends (every 10 ms) 
signals via the rigalrm (alarm signal) function. 
These signals are captured by the programme and 
trigger the call to the “navigate” function, which 
implements the navigation control. 

4 NAVIGATION SYSTEM 

The navigation system, implemented in 
Matlab/Simulink, provides a navigation algorithm 
capable of locating a wall in an unknown 
environment and following it, as well as determining 
when the boundaries of the enclosed area it is 
moving in have been defined. It then begins a 
sweeping phase in which it covers most of the 
enclosed area in an efficient manner. The navigation 
system consists, therefore, of three basic stages: 
identifying the enclosed area to be swept; the 
sweeping of internal areas; and the bordering of 
obstacles. Figure 5 shows the statechart diagram of 
the navigation application. 

In the initial stage the robot performs a square 
spiral during which it moves by alternating between 
straight lines and right-angle turns until it finds a 
wall. At this point it moves to the next stage known 
as “wall following”, which, as its name suggests, 
involves the robot skirting along walls. Throughout 
this phase the robot is controlled by the fuzzy 
control system, which attempts to guide it at a fixed 
distance from the wall, delimiting the enclosed area 
in question (Urzelai, 1997).   

Once it has been established that the “wall 
following” phase has marked off an enclosed area 
(as a result of readings received from the motor 

 
Figure 3: Development diagram of the application. 

sd Requirements

Main Control TimerMotors

Control: 
Indefini te Loop

Sensors

Navigate: 
Navigation 
Algorithm Created 
with RTW from 
Simulink.

Initialize

CreateTimer

ConfigureOS

Initial ize

Initialize

Control

Read

SetReference

Timeout

Navigate

 
Figure 4: Sequence diagram of the application embedded.

ICINCO 2006 - ROBOTICS AND AUTOMATION

464



 

encoders), the third and final phase in the 
application, known as “sweeping”, is performed. 
Here, the algorithm encloses the trajectory taken by 
the robot in a cell matrix that enables it to identify 
the swept area and, on the basis of this, a decision 
strategy informs it of which cells need to be swept at 
each point. If at any time an obstacle is detected, the 
robot switches back to wall-following status and 
adopts a fuzzy control strategy (the same as the one 
used in that particular stage). 

4.1 Fuzzy Wall-following Control 

The “wall following” function features three distinct 
modules or parts: pre-processing, fuzzy control and 
post-processing. 

Pre-processing introduces the concept of the 
perception vector (Figure 6). This vector indicates 
the proximity of an obstacle and its direction. The 
angle of the perception vector is that formed by the 
direction the robot advances in. The module of the 
vector expresses the distance the robot is from the 
wall in a standardised way using an ideal distance 
value: 1 if the robot is at the wall, and 0 if it is 
double the ideal distance or further. As a result, the 
fuzzy control system attempts to keep the module of 
the perception vector at 0.5, equivalent to the ideal 
distance. The output in this pre-processing block 
consists of the module of the perception, the angle of 
the perception, the derivative of the perception and 
the loss of perception. This last output indicates 
whether the robot has switched from measuring 
perception to a value of 0 (i.e. when the robot moves 
further than it should from the wall). 

The navigation module calculates the velocity 
commands for the motors. To be able to do this it 

features two strategies represented by the first two 
stages in the statechart diagram (Figure 5): the first 
being a wall-search strategy, and the other a wall-
following strategy designed to identify the sweeping 
area. These two control modes are selected 
according to the value of the perception vector 
module. If the module has a value equal to one, the 
control system will search for a wall and will 
attempt to follow a square spiral pattern until one is 
found, at which point the loss-of-perception signal 
resets to zero and the robot attempts to follow the 
wall thanks to the wall-following control function 
performed by the fuzzy block. 

In the search for walls, the square spiral is 
generated as a result of two types of commands sent 
to the wheels: one in which the robot advances in a 
straight line, with the same command being sent to 
the two wheels; and the other where the robot rotates 
90°, with one wheel receiving a certain velocity 
command and the other the same command but with 
a different sign, thereby ensuring that the robot 
rotates on its axis without lateral displacement. 

When the perception value is anything other than 
zero (meaning that it has found a wall), the fuzzy 
block performs the control. This block has the 
“module of the perception” and the absolute value of 
the “angle of the perception“ as inputs, thereby 
simplifying the fuzzy model, as it is the symmetry of 
the problem that is used. The system uses three 
fuzzy variables: modP (module of the perception); 
angP (angle of the perception); and Giro (the output 
variable for the robot’s angle of rotation). 

The membership functions of the modP (module 
of the perception) input variable appear in Figure 7a. 
As stated above, this variable provides an estimate 
of the distance to the wall.  The membership 
functions of the angP (angle of the perception) 
variable appear in Figure 7b. As has already been 
mentioned, this input is always positive, as it takes 
the absolute value, making use of the system’s 
symmetry. In the event of this angle being negative, 
the sign is changed. 

The only output in the block is Giro: the rotation 
that the robot must perform to prevent it from 
running into, or approaching too close to, the wall, 
depending on the value of the module of the 

sm Requirements

Initial

Spiral

Wall Following

Sweeping

Final

Obstacle

Contour Closed

!Wall
Wall

 
Figure 5: Statechart diagram of the “navegate” function. 

Figure 6: Perception vector and perception angle. 

DESIGN OF A PROTOTYPE ROBOT VACUUM CLEANER - From Virtual Prototyping to Real Development

465



 

perception. By incorporating the following rules into 
the fuzzy controller (Figure 7c), the robot vacuum 
cleaner tries to maintain an angle of 90º between the 
direction of advance and the wall, being the distance 
to the wall the ideal one. 

 
modP/angP Front Medium Back 

Low L1 R2 R4 
Medium L3 Z R3 

High L4 L2 R1 
 
Having established the rotation the robot must 

perform, the post-processing module calculates the 
velocity commands to be sent to each of the wheels. 

4.2 Sweeping Strategy 

Existing robot vacuum cleaners on the market that 
have to move around unknown environments mainly 
use two navigation strategies. The first involves 
random navigation, i.e. the robot moves in a straight 
line until it encounters an obstacle and then changes 
direction randomly, continuing in a straight line 
again until coming across the next obstacle. This 
approach, although not particularly efficient, is very 
easy to be implemented. The second approach 
involves mapping the environment as the robot 
moves so that a reference to the robot position can 
be obtained and the optimal sweeping strategy 
defined. The latter approach was that chosen for the 
design of the sweeping algorithm. 

Once the contour has been determined, it is 
demarcated by a rectangle with as small a surface 
area as possible. This area is divided into cells with a 
predetermined size. Each cell has a status: the cell 
can belong to the contour; the outside of the contour; 
or the inside of the contour (Figure 8). As a result, 
the input is restricted to the inside of the contour.  

From this point on, the behaviour of the 
prototype is no longer controlled by fuzzy rules. The 
robot proceeds to use the matrix obtained in the first 
stage to calculate the points of its next path. 

Therefore, some of the cells will change their status 
from “inside” to “path”. The cells with the “path” 
status are converted into “swept” cells. If the room 
were completely empty, the robot would sweep the 
room in a spiral. 

The process of sweeping inner areas is repeated 
continuously until 3% of the area initially selected 
for the task is left. At this point, the prototype 
detects the zones that are still unswept, known as 
"islands". The robot chooses only those “islands” 
that are larger than the size of the robot vacuum 
cleaner. Then the robot selects the “island” nearest 
to its position and approaches it by the shortest 
route. Each island then becomes a “small room” to 
be cleaned, and sweeping is controlled by the same 
rules of behaviour. Once all the islands have been 
swept, the robot considers the task completed. 

5 VIRTUAL PROTOTYPE OF 
ROBOT VACUUM CLEANER 

As stated above, one of the main objectives of the 
research carried out by IKERLAN and ARTEC was 
to validate the use of HIL methodology in designing 
and implementing the real prototype. Thus, in order 
to provide a realistic environment in which to test 
the robot vacuum cleaner, a real-time realistic 3D 
simulation was developed alongside the real 
prototype. This allowed us to test the HIL strategies 

  
Figure 7: Membership functions of fuzzy variables: a) Perception distance; b) Perception angle; c) Turning angle. 

Figure 8: a) Cells outside of the contour; b) Cells on the 
spiral and the contour; c) Cells to be swept. 

ICINCO 2006 - ROBOTICS AND AUTOMATION

466



 

by having a better feedback and a visual first 
impression of how the control system behaved. 

5.1 Description  

This virtual prototype is a standalone, real-time, 
graphic/dynamic simulation written in C++ that runs 
on both Windows and Linux operating systems. 

The virtual prototype simulation (hereinafter 
referred to as “simulation”) is a multi-threaded real-
time oriented application composed of three main 
subsystems (Fernandez, 2003):  
• 3D real-time graphic subsystem: an OpenGL 

Performer-based module responsible for 
providing realism and visual quality to the 
application. It takes advantage of the scene-
graph representation of the visual information 
while using advanced graphic techniques to 
enhance the user’s sense of “immersion”. 

• Dynamic simulation subsystem: given the task 
of providing the application with realistic 
Newtonian physics; based on the Open 
Dynamics Engine (ODE).  

• Communication subsystem: the module where 
the simulation communicates with the control 
system in order to get actuator feedback and 
provide sensor information. 

5.2 Improvements in Relation to the 
Existing Prototype  

Several changes have been made to the architecture 
of the existing prototype (Fernandez, 2003; 
Martinez, 2004); the most apparent of which is the 
migration to a Windows-based application.  

A subtle, yet important, difference with respect 
to the existing prototype is that this revised version 
of the simulation is able to run independently from 
(provided it is supplied with values for the motor 
velocities), or alongside, the control system 

developed by IKERLAN. This link can be made 
with either the hardware prototype or the software 
controller that substitutes it, and, as such, HIL 
(Hardware-in-the-Loop) becomes SIL (Software-in-
the-Loop). 

Little has changed with respect to the existing 
version of the graphic subsystem, although new, 
more complex 3D models of both the robot vacuum 
cleaner and the environment (with a new set of 
furniture and home-related items to test the robot 
over more challenging conditions than it was done 
using the previous prototype) were built.  

The dynamic subsystem, nonetheless, has 
undergone some dramatic changes in order to adapt 
it to the new robot configuration designed by 
IKERLAN. This includes some new joints, the 
redesign of the locomotion system and a new (and 
very necessary) stabilization system. Without this, 
the simulation would have not been able to meet the 
new time requirements imposed by the increased 
complexity of the new graphic models. Likewise, 
random objects (such as a football, Figure 9a) have 
also been introduced into the simulation, in order to 
test the ability of the robot to react to unexpected 
events and objects which suddenly appear in its path. 

Finally, the communication subsystem was also 
changed in order to provide a software interface with 
the Simulink-based software version of the 
controller. This allows us to test the navigation 
software directly against the virtual prototype, 
instead of having to load it into a hardware platform. 
The solution could thus be termed a loophole within 
the Software in the Loop. 

6 EVALUATION OF RESULTS 

The existing virtual prototype described in 
(Fernandez, 2003) and (Martinez, 2004) is simpler 
and was used to evaluate different sensing 

                       
Figure 9: Virtual Prototype: a) General view with a random object; b) Swept area. 

DESIGN OF A PROTOTYPE ROBOT VACUUM CLEANER - From Virtual Prototyping to Real Development

467



 

alternatives and navigation strategies. The 
conclusions reached (Martinez, 2004) provided the 
starting point for the design and construction of the 
real prototype described and presented in this paper. 
Once the robot had been designed (Figure 2), the 
virtual prototype of the robot and the domestic 
environment was updated and enhanced (Figure 9), 
as described in section 5. The new virtual prototype 
was used to test, above all, the controller in the real 
prototype and particularly the navigation and 
sweeping strategies. The activation of a trace 
mechanism showing the robot’s path, as shown in 
Figure 9b, was extremely useful for checking the 
effectiveness of the sweeping algorithm. 

By the end of the process, the real prototype of 
the robot vacuum cleaner had been tested 
experimentally in simple wall-following and living-
space sweeping tasks. The results for wall following 
were positive (Figure 10), although variations were 
detected in the estimation of the distance to the wall 
whenever the wall material changed (e.g. when the 
robot passed in front of a wooden door). By contrast, 
the results for the sweeping tasks were worse due to 
errors in estimating position using measurements 
from the wheel encoders. These errors led to the fact 
that the algorithm used for the sweeping of enclosed 
areas was inefficient. The main reason for this was 
that due to the wheels slipping the measurements 
provided by the wheel encoders were inaccurate. 
This problem had already been detected in the SIL 
simulation with the virtual prototype whenever there 
was a change in the surface friction coefficient (e.g. 
when the robot moved from a rug onto parquet 
flooring, Figure 9b), but was much more serious in 
the real prototype. 

To draw conclusions from the experimental tests 
conducted: the sensing system must be modified or 
completed before moving on to a commercial 
prototype so that an accurate estimate of the real 
position of the robot (the basis of the designed 
sweeping algorithm) can be obtained. 

7 CONCLUSIONS 

This paper presented the prototype of a robot 
vacuum cleaner designed and constructed by 
IKERLAN. It detailed, above all, the hardware and 
software components used, in addition to the 
navigation algorithm, the design of which was based 
on fuzzy logic. Moreover, an existing virtual 
prototype of the robot and its domestic environment 
were updated, thereby enabling the fine-tuning and 
testing of the real in-built control of the autonomous 
robot using SIL (Software-in-the-Loop) simulations. 

Finally, the problems arising from the experimental 
tests conducted were described in detail, and the 
conclusion reached that the sensing system must be 
improved so that the real position of the robot, 
which forms the basis of the sweeping algorithm 
designed, can be estimated accurately. 

ACKNOWLEDGEMENTS 

The material used in this paper was partly funded by 
the Spanish Ministry of Science and Technology and 
FEDER (research project DPI2002-04438-C02-01). 

REFERENCES 

Acroname. 2006. www.acroname.com  
Advantech. 2006. www.advantech.com  
Electrolux. 2006. http://trilobite.electrolux.co.uk/ 
Fernandez, M., S. Casas, A. Martinez, L. Nuñez, D. 

Guzman, D. Villaverde and J. Landaluze. 2003. 
Virtual Prototyping of a Domestic Robot for Design 
and Navigation Optimisation. In Industrial Simulation 
Conference ISC’2003. 9-11 June, Valencia, Spain.  

Irobot. 2006. http://www.irobot.com/home.cfm  
Jumptec. 2006. www.jumptec.com  
Kahney, L. 2003. Robot Vacs Are in the House. Wired 

News. Retrieved January, 2006, from 
http://www.wired.com/news/technology/0,1282,59237
,00.html 

Karcher. 2006. http://www.robocleaner.de  
LinkSys. 2006. www.linksys.com  
Martinez, A., L. Nuñez, M. Fernandez, S. Casas and J. 

Landaluze. 2004. Virtual Prototyping of a Domestic 
Mobile Robot for Design and Navigation 
Optimisation. In the International Journal of 
Engineering Simulation, ISSN 1468-1137,  vol. 5, 
number 2, pp. 12-20. July. 

Robot Electronics. 2006. www.robot-electronics.co.uk  
RTD. 2006. www.rtd.com  
Tri-M. 2006. www.tri-m.com  
Urzelai, J., J.P. Uribe and J.M. Ezkerra. 1997. Fuzzy 

Controller for Wall Following with a Non-
Holonomous Mobile Robot. Fuzzy IEEE. 

Zagros Robotics. 2006. www.zagrosrobotics.com  

 
Figure 10: Real Prototype in the wall-following task. 

ICINCO 2006 - ROBOTICS AND AUTOMATION

468


