iICricket: A Programmable Brick for Kids’ Pervasive
Computing Applications

Fred Martin, Kallol Par, Kareem Abu-Zahra, Vasiliy Dulsky and Andrew Chanler

University of Massachusetts Lowell,
Computer Science Department, Engaging Computing Group,
1 University Avenue, Lowell MA 01854 USA

Abstract. The iCricket is a new internet-enabled embedded control board with
built-in motor and sensor interface circuits. It is designed for use by pre-college
students and other programming novices. It includes a Logo virtual machine with
extensions that allow networked iCrickets communicate with one another, retriev-
ing sensor values and remotely running each other’s Logo procedures. The un-
derlying implementation uses standard HTTP protocols. The iCricket's key con-
tribution is that it will allow programming novices (children, artists, and other
non-engineers) to implement pervasive computing applications with an easy-to-
use, interactive language (Logo). This paper focuses the iCricket hardware and
software design. Later work will evaluate results of using the design with various
users.

1 Introduction

There is a long history of construction toys for use by children, to encourage their
creativity and inventiveness [1]. In the computer age, researchers developing program-
mable materials for children generally use one of two approaches. Early work, led by
Seymour Papert at the MIT Al Laboratory, was explicitly based on programming. The
Logo language was developed to give children a way to express their ideas in code; the
leading application was making drawings using commands to a virtual or physical robot
“turtle” [2].

Recent work provides children with a form of implicit programming, also known
as “programming by example.” Phil Freirlybot was inspired by the Logo turtle,
but children programmed it by moving it directly on a table with their hand. The ro-
bot recorded their gesture and then played it back with various permutations [3]. The
Topobo project takes inspiration froourlybot but allows children to build their own
mechanical bodies, with any joint having a similar form of record-and-playback pro-
grammaubility [4].

Because of its pedagogical value, we base our work on the former of these two
approaches. Children’s programs become a symbol-based representation of their inten-
tions. These representations then act as mediators in their learning experience [5].

Our earlier work includes development of the MIT Programmable Brick, the Handy
Board, and the Cricket. These technologies have been used for everything from ele-

Martin F., Par K., Abu-Zahra K., Dulsky V. and Chanler A. (2005).

iCricket: A Programmable Brick for Kids’ Pervasive Computing Applications.

In Proceedings of the 2nd International Workshop on Ubiquitous Computing, pages 75-81
DOI: 10.5220/0002574100750081

Copyright © SciTePress

76

mentary children’s construction of science experimentgéaluate level robotic design
courses [6-9].

In this paper, we introduce the iCricket, the latest in aeseof microcontroller
boards designed for use by children, teachers, hobbyrsis;,esearchers.

1.1 Motivations

Over the last 10 years, light-weight TCP/IP stacks haveetdo appear in embedded
devices, including commercial products [10, 11]. Theseb@ged on an inexpensive
8- or 16-bit CPUs with custom TCP stack code. Our goal in desgthe iCricket
is to create a platform that allows children and other prognéng novices to create
applications that use pervasive computing technology.

1.2 Why the iCricket?

Designing a new board is not the only way to make pervasivepeimg accessible to
novices. Alternately, we could have developed programmimgronments for a more
powerful embedded device (e.g., a PDA with a wireless card)sed existing TCP-
enabled devices (e.g., Dallas-Maxim’s TINI product [11]).

Partly, we chose to build on our previous work since the Leggluage is accessible
to children [12], and allows them to interactively desigml gmogram their own sensor
and motor control systems [13]. Also, we had specific goal$hfe iCricket device:

— Integrating motor/sensor circuitry. No existing commaldevice includes jacks
for connecting DC motors and simple analog sensors. Thguedithe iCricket
means that kids and other hardware novices can build furinticsystems without
needing knowledge of electronics.

— Extensions to the Logo language that support meaningfuleasy-to-use com-
munication between peers. Much of our work on the iCricketastained in the
new Logo communications primitives. With just a few linescofde, an iCricket
programmer can link sensors on one iCricket to motors onhamnot

— Minimal hardware design cost. When developing code on thiek€r, the user
takes advantage of the keyboard, screen, and overall catignal power of a con-
ventional desktop or laptop PC. The user’s code is then dedhpito Logo byte-
codes for the iCricket. This arrangement lets the iCridlsetlf be a very simple and
inexpensive device.

— Integrated TCP/IP communications. Standard network padsosuch as HTTP, let
iCrickets communicate with one other and conventional vezhises.

In an important sense, the iCricket’s contribution is a “fehthat is greater than
the sum of its parts.” Individually, the pieces of the iCetKa programmable brick,
the Logo language, an embedded stack) are not new. But takenwdole system,
our intention with the iCricket is to make the ideas of theesrsh community readily
accessible to a wide range of users, who otherwise would g Bin opportunity to
participate in this work.

77

Cricket Logo HTTP HTTP
Virtual Machine Server Client
« generates * makes
User System reply content connection to
by executing other iCricket
Process Process Logo code in
VM System « launched
« foreground * separate Process by call from
app code space for User
controlling TCP system Process
project to execute
Logo proc’s

I I
utility routines

hardware

IR motor sensor CS8900 NIC chip

Fig. 1. The iCricket Microcontroller and Block Diagram

From a technical standpoint, the iCricket’s central infimrais its interface be-
tween the Logo language and the TCP stack. As is describé&e folowing, we have
created a remote procedure call-like mechanism that ali@wekets to execute each
other’s procedures. Also, we developed a call-back meshattiat allows the built-in
web server to transparently execute Logo procedures irr todgenerate server reply
content.

2 Hardware

The iCricket is closely modeled after the Handy Cricket [ldfommercial version of
the MIT Media Lab Cricket [15]. (Please note that the workadé®d in this paper has
no connection to the MIT CSAIL “Cricket Indoor Location Sgst.”)

Figure 1 (left) shows the iCricket device. It is based on Bdratruments’ MSP430
microprocessor, a low-cost 16-bit CPU with a 64k addressesand good on-chip
peripherals. We use the 'F149 variant, which has 60k of maeflash and 2k of inter-
nal RAM. The CPU is coupled with the Crystal SemiconductoB2® ISA ethernet
adapter chip for 10BT networking. We chose this pair of desifor their ease-of-use,
including the availability of prototyping hardware and T/Psample code [16].

The iCricket includes outputs for two DC motors, inputs fouf analog sensors
(with powered sensor ports), IrDA communications, a piegegder, and a JTAG con-
nector (for development purposes). It also has a conneotothe “Cricket Bus,” a
custom 1-wire bus that allows a single iCricket to controLianber of locally-attached
slave devices [15].

3 Software

Figure 1 (right) illustrates the software running on theiéket device. The primary
subsystems are the Logo Virtual Machine, HTTP Server, andfClient. The HTTP
client and server are based on Adam Dunkelsp code [17].

78

3.1 Logo Virtual Machine

The Logo Virtual Machine (VM) is a stack-based, byte-coda@ripreter with 16-bit
integer numerals and support for procedures (includingragmts, return values, and
recursion). The VM includes primitives for interacting wihe iCricket's sensor ports,
motor outputs, and local IR communications [15].

The iCricket extends previous Cricket VMs by introducingtearallel Logo threads.
The User Process runs the application code that would darti€ricket project—e.g.,
taking sensor readings and controlling local motor outpatsed on them. The System
Process is a separate execution area that is used by the HavEr &nd Client to
execute Logo procedures as part of their operation.

The iCricket VM adds public global variables (called xglt#)aand public proce-
dures (called xdo’s) which can be accessed by the Cliené8system.

3.2 HTTP Server

When responding to incoming connection requests, the i€'gHTTP Server has
two primary functions. First, it processes the messagel®eppy a client (another
iCricket or any web browser). This may contain requests axete procedures and/or
set variable values. Then, it constructs a reply packet¢chvhnnounces the values of
all of its xglobal variables and contains custom contentgated by Logo code.

For background, consider the embeddable HTTP server cademied by Jones
in a 2001 article [18]. This server supported “dynamic cohte HTML files with an
API to provide the content.” In this design, a new tad)ATA x>, was used to insert
dynamic content into the HTML stream. The parser searchethéDATA keyword,
then used the embedded variable name to retrieve the aciuiint.

The iCricket takes this further. We generate reply contgnhaving the HTTP
Server make a callback to a specially-named Logo procedursvier) that is pro-
vided by the Logo application programmer. Thus, the iCriclat only reports variable
values (the xglobals), but also allows arbitrary Logo prhees to execute and supply
response data.

Theanswer procedure itself contains a series of calls teegpl y primitive. These
build up a table of hame-string/integer-value pairs in a RBaded table. When the
answer procedure concludes, control returns to the HTTP Servetlznthble is ex-
ported, producing the reply content.

This design allows the user to create custom reply contemribiyng just a few lines
of Logo code. If an iCricket has a temperature sensor pluggedts sensor A port, it
can publish the sensor’s value with:

to answer
reply "tenperature sensora
end

The server reply itself is an XML file which can be viewed in abn@owser and
parsed by another iCricket's HTTP Client. For example,ahewer procedure above
would produce XML like:

79

<?xm version="1.0"7?>
<icricket>

<r n="tenperature" v="68"/>
<g n="xgl obal 1" v="0"/>
</icricket>

The “r" tag indicates a value reported by thepl y primitive. Xglobal variables de-
clared in the user’s code are automatically published iniki& reply; these are indi-
cated by the “g” tag.

3.3 HTTP Client

The HTTP Client allows one iCricket to connect to anotherdkit. The Client sends an
HTTP request with the GET syntax (e.@ET i ndex. xm ?xgl ob1=0&f an=1").
Here, the Server iCricket would set &gl ob1 to 0 and then would execute its pro-
ceduref an with an argument of 1. The Server then sends back an XML réyaliythe
Client will parse.

The Client’s actions are scripted with two Logo primitivEhet el | primitive
accepts a name-string and integer-value; these are buitt apcommand table. The
t al k primitive initiates communication with the remote iCritki uses the command
table to generate the HTTP GET request and then sends it tpvitre IP address.

The Client then receives the Server's XML reply and pars@stdt another table.
Two Logo primitivesr epl y? andget r epl y, examine this table. Respectively, they
test for the existence of a name-string and return its value.

4 The iCricket IDE and Application Examples

To build applications with the iCricket, the programmer suhe iCricket IDE on a
normal PC or Mac. The IDE includes a compiler (which traredahe programmer’s
Logo into bytecodes), a downloader (for installing the bgttes into the iCricket), and
a command console (to run code interactively on the iCrjcket

The command console is the primary way for interacting withi@ricket. Here,
the user can type commands, and they are immediately campitevnloaded, and
executed. This gives the iCricket the flavor of an interactiystem. Also, the user can
print debug information, which is displayed in the IDE.

Suppose a user wishes to create a thermostat project withCriakets: a “Temp
iCricket” (has a temperature sensor) and a “Fan iCricketh{mls a fan). This can be
done at least two ways: a polling method, in which the Fancikat asks the Temp
iCricket for temperature readings, and an interrupt metkdutere the Temp iCricket
issues commands to the Fan when the temperature changes.

Let's look at the polling method first. The
Temp iCricket needs to report its temper-
ature reading. The way to do this is to
have it report the temperature in its an-
swer procedure:

to answer
reply "tenp sensora
end

80

To test if this is working, the user can connect to the iCridkem a standard web
browser. This would yield a XML file that looked like the exalghown earlier, re-
vealing the iCricket’s local temperature measurement.

Next, the code for the Fan iCricket isto startup

constructed. It has a procedure named al k "t enp-1 P-addr

startup (which automatically runs ifelse getreply "tenp > 70
when the iCricket is powered on) that[a, on][a, off]

repeatedly polls the Temp iCricket, andst art up

based on the temperature, decides to turand

the fan on or off:

Alternately, an interrupt method can be employed.

Based on the local temperature readingxdo fan :n

the Temp iCricket tells the fantoturnonifel se :n = 1

or off. To allow itself to be commanded, [a, on][a, off]

the Fan iCricket provides axdo proce- end

dure:

to startup

waituntil [sensora > 70]
tell "fan 1

talk "fan-1P-addr

wai tuntil [sensora < 70]

The xdo procedure can be interactively
tested from the iCricket IDE. After it
is working, the Temp iCricket is pro-
grammed. It uses theai t unti | prim- tell "fan 0

itive to wait until a temperature threshold A - rohddr
has been crossed, and then sends the ap:

propriate on/off command to the Fan: e:}grt up

5 Discussion and Future Work

The iCricket system provides simple and effective way tolemgnt pervasive com-
puting applications. Sensors and actuators can easily trgected to the internet, and
multiple iCrickets can coordinate their actions.

As of this writing, the iCricket system as described is fimtl. From a technical
standpoint, our future work plan includes augmenting ba&rnet services (DHCP;
DNS), manufacturing a larger set of prototypes, and bujditore demos. Also, we
plan a middleware layer that would run on conventional cates, interfacing iCrick-
ets with internet services in general.

More broadly, our research focus is the pedagogical valubefCricket when it
is used by children and other programming novices. By gigimitdren the opportunity
to work with this new technology, we will study its effectivess as a design tool for
children, its impact on their attitudes toward technolagyd its value in encouraging
imaginative applications.

We are planning a variety of venues for bringing the techgwlto children, includ-
ing programs in school, after-school, and with communitstrexs.

81

We also plan to make iCrickets available to the research aamityn Please connnect

to our live demo at cri cket . cs. um . edu and give us feedback.

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Petroski, H.: Back to the future. Pris9{2000)
. Papert, S.: Mindstorms: Children, Computers, and Powerfusldgasic Books (1980)
. Frei, P, Su, V., Mikhak, B., Ishii, H.: curlybot: designing a newsslaf computational

toys. In: CHI '00: Proceedings of the SIGCHI conference on Huffaators in computing
systems, ACM Press (2000) 129-136

. Raffle, H.S., Parkes, A.J., Ishii, H.: Topobo: a constructsseebly system with kinetic

memory. In: CHI '04: Proceedings of the 2004 conference on Hufaetors in computing
systems, ACM Press (2004) 647-654

. Ackermann, E.: Direct and mediated experience: Their role inilegrnin Lewis, R.,

Mendelsohn, P., eds.: Lessons from Learning. Proceedings fith@ C3/WG3.3 Working
Conference (1993)

. Martin, F.: Children, Cybernetics, and Programmable Turtles. Mastesis, Massachusetts

Institute of Technology, Cambridge, MA (1988)

. Martin, F.: Circuits to Control: Learning Engineering by Designing LE&@bots. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA (1994)

. Matrtin, F.: Robotic Explorations: A Hands-On Introduction to Engiimeer Prentice-Hall

(2000)

. Resnick, M., Berg, R., Eisenberg, M.: Beyond black boxes:dsnig transparency and aes-

thetics back to scientific investigation. Journal of the Learning Scieh(2300) 7-30

Inc., N.: SitePlayer Embedded Internet Server, NetMediavumez. si t epl ayer. com
(2005)

Products, M.I.: TINI (Tiny InterNet Interface), Dallas Semidantor/Maxim Inc:ww.
maxi m i c. com TI NI pl at f or m cf m(2005)

Kafai, Y.: Learning through making games: Children’s develagnoédesign strategies in
the creation of a computational artifact. In Kafai, Y., Resnick, M., :edenstructionism in
Practice. Lawrence Erlbaum Associates (1996) 71-96

Martin, F., Mikhak, B., Resnick, M., Silverman, B., Berg, R.: Mindstorms and beyond:
Evolution of a construction kit for magical machines. In Druin, A., Hendl., eds.: Robots
for Kids: Exploring New Technologies for Learning. Morgan Kaufmg8000) 9-33
Martin, F.: The Handy Crickehandyboar d. cont cri cket/ (2005)

Martin, F., Mikhak, B., Silverman, B.: Metacricket: A designeiisflar making computa-
tional devices. IBM Systems Jourriz® (2000)

Dannenberg, A.: MSP430 Internet Connectivity. TechnicaloRepLAA137A, Texas In-
struments (2004)

Dunkels, A.: Full TCP/IP for 8-Bit Architectures. In: Proceedired MOBISYS 2003, San
Francisco, CA (2003)

Jones, M.T.: An Embeddable HTTP Server: Web-enabling eddgedevices. Dr. Dobbs
Journal (2001)

