A Unit Testing Framework for Network Configurations *

Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche

telecommunications, networks & security Research Group
Department of Computer Science, University of Fribourg
Chemin du Muée 3, 1700 Fribourg, Switzerland

Abstract. We present in this paper a unit testing framework for network config-
urations which verifies that the configuration meets prior defined requirements of
the networks behavior. This framework increases the trust in the correctness, se-
curity and reliability of a networks configuration. Our testing framework is based
on a behavioral simulation approach as it is used in hardware design [1]. The unit
testing framework is part of the SNSF VeriNeC project [2].

1 Introduction

The difficulty of administration of networks increases with a network’s size and het-
erogeneity. The VeriNeC project offers a network configuration solution, which tackles
and solves these problems. VeriNeC offers an implementation-independent solution for
configuring nodes in a network using XML as the configuration language. Using an
implementation-independent configuration facility simplifies the task of configuration
and solves the problem of heterogeneity. There is a single configuration facility the ad-
ministrator will use. VeriNeC can handle the configuration of the different nodes and
services in the network from the abstract XML configuration. Therefore it transforms
an abstract XML configuration into an actual configuration and deploys it over a given
configuration facility such as SNMP, SSH, SCP or any other.

VeriNeC offers a centralized configuration facility integrated into a graphical user
interface, which helps to reduce the problem of handling vast networks. But there is
more to VeriNeC: Large network configurations suffer easily from misconfiguration,
causing the network to behave in an undesired way. A simulator facilitates testing ex-
isting applications in the configured network and helps understanding the behavior re-
sulting from a given configuration. Misconfiguration can also lead to security holes in
a network. Such security holes comprise unnecessary availability of services, unneces-
sary open firewall ports, unnecessary or wrong entries in a routing table, transport of
security relevant data over unencrypted and insecure channels, and the use of empty or
weak passwords.

This paper presents a tool for testing automatically a network’s configuration with
respect to a given set of tests; i.e. a unit testing framework for network configuration,
which helps to increase trust in the correctness, security and reliability of a network.

* Supported by th&wiss National Science Foundation under grant number 200021-100645/1.

Jungo D., Buchmann D. and Ultes-Nitsche U. (2005).

A Unit Testing Framework for Network Configurations.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 77-82
DOI: 10.5220/0002573500770082

Copyright © SciTePress

78
2 Network Configuration

Network nodes and the services they provide are configuried) @ XML syntax.
As we want to focus on functionality of services and not sfiegroducts, the XML
schema is an abstract representation of actual implen@msatrepresenting all kinds
of features found in concrete configurations of given seringplementations. To con-
figure actual devices, thigandator module is used to generate implementation specific
configurations.

A node configuration consists of a section for its hardwatepsand a list of ser-
vices it runs. Services are for example a server for the domaine system (DNS) or a
chain-ruled packet-filtering firewall. We aimed at idenitify the important features of
each service and at expressing them conceptually in thereshdJsing VeriNeC, one
does not configure a bind8 DNS server, but just the informateeded to automatically
generate the necessary configuration files for variousttptggorms.

2.1 Applying the Configuration

As the aim of VeriNeC is finally to configure a real network, #iestract XML network
configuration needs to be distributed, applying it to actoathines.

Applying the configuration is divided into two parts. The ffiis the configuration
language/grammar which is used natively to configure theendtis can be a Unix-
style configuration file, an ini file, a batch file for an SNMPecif, a batch file for Win-
dows Management Instrumentation (WMI), a bunch of regiseétyiregs or any other
kind of configuration syntax used in the actual configurationtext. The second part
considers the protocol with which the configuration file istdbuted to the target ma-
chine. Such protocols can be simple file transfer protocoth @s (s)ftp or smb to
transfer plain-text configuration files, ssh, rsh and regeexecute remote commands,
SNMP to transmit the configurations, or any other existingficuration protocol. Split-
ting the configuration process into translating the XML toide specific configuration
data and deploying that data to the machines makes thatgsroeedular, highly flexible
and extensible.

The configuration schema defines the data structure for gieglot. It contains
commands to execute before and after the configuration dadpyilied, information
on the deployment method, and the device specific configuratata to deploy. Con-
figuration data can either be the content in a plain text filerbitrary* XML.

The actual translation from abstract XML configuration filesonfiguration doc-
uments uses the XML style sheets transformation [3] langu&@bere is onéranslator
document for each implementation of each service. XSLT dwmis for new services
or new implementations of an existing service can easilydged to extend VeriNeC.

Translation is the point where we may encounter implemiamaipecific problems.
Some implementations of a service may not support all feattirat can be expressed
in the abstract XML configuration. VeriNeC tells the user tee he/she will lose
configuration details using service implementation speogtrictors. The restrictors

1 Of course, the deployment implementation must know what to do with this YXddlit better
won't really be arbitrary

79

are implemented as XSLT documents, generating warningsrédolematic tags in the
abstract configuration.

The deployment is implemented in Javadi&tributor pushes the configuration data
generated by the translation process to the target system.

The translators generate device specific data, the digtrithowever very generic.
This allows to keep the number of deployment mechanismsl syidalcan use one for
file distribution using various file transfer protocols arttieys for the configuration
protocols SNMP and WMI.

3 Simulation

The network simulator [4] was initially developed to test tiehavior of a configuration.
The simulator is a partial rebuild of the Internet layer mdé&¢ We have chosen the
discrete event-based simulation framewdesmoj [6] to model the network, because
desmoj allows to combine the event-based approach with the preméssted simula-
tion approach. We have implemented stateless protocolgegt driven-modules and
stateful protocols as process-driven modules. The simukinsists of a set of net-
work nodes and services that can be configured using the &€rilML configuration
format.

3.1 The Simulator’s Architecture

The network simulator is a partial rebuild of the Internatdamodel with some of
its protocols. As interface to existing applications we énahosen Java sockets with
extended functionality. This makes it possible to use aiistiex application using Java
sockets together with the simulator. During the simulati@replace the default factory
by a factory that creates Socket implementations whichreetithe whole traffic to the
simulator. Because the Java sockets are constructed bysroEgueSocket! mpl Factory,
any Java application using Java sockets redirects itstraffithe simulator sockets to
the simulator, allowing the use of any socket applicatiothimi the simulator. This
helps us avoiding implementing these applications ouesebnd allows testing any
application on the network with the simulator.

The simulator offers the possibility to test whether anyegiapplication works
within the configured network as expected. A graphical ustarface [7] displays the
simulator’s log file by means of graphical animation, whiehgs to understand why a
configuration part behaves in a certain way.

The network simulator needs events that start a simulaBanh input events can
be any of the schedulable events in the simulator. Sendéugiving, dropping, and
routing a packet, launching, or finishing an applicationse of the existing events
that can initially be fed into the simulator. Interesting avents that cause other evehts.

Initially the simulator schedules the input events withie tised simulation frame-
work, which are then fired on the scheduled time. Normallyheagent causes other

2 E.g. sending an IP Packet causes creating layer 2 events by serallRgithcket over a layer 2
protocol, receiving the IP Packet, and passing its data to a higher-i®tetpl, causing layer
4 events as well.

80

<event s>
<event tinme="0" node="client" |ayer="5" service="application"
src="client" dst="webserver" id="uniquel">
<application progranr"wget" paraneters="http://webserver/index.htm"
type="Il aunch"/ >

<event time="1" node="client" |ayer="5" service="application" id="uniquel">
<appl i cation progranms"dns" type="|ookup" paraneters="webserver"/>
<reason configi d="dns00001" />
<event tinme="2" node="client" |ayer="4" service="udp" id="uniquel"
packetid="dns1l" src="134.21.3.8" dst="134.21.6.8">
<udp type="packetsend" srcport="45401" dstport="53"/>
</ event s>

Fig. 1. A sample output file of a HTTP client causing a DNS lookup

events to happen. Figure 1 shows the result of the procesgatidvent. It shows a tree
structure of events with the initial input event as the réothild event is an event that
is caused by its parent. Each event gives hints about whiofigtoation part caused
the node or service to behave the way it did. This can be aestwgifiguration rule or
a set of rules. These hints help the user to debug the configuraith respect to the
observed (simulated) protocol run initiated by the rootgve

The simulator output is hardly human readable and compegien Therefore an
animated graphical user interface displays all eventstefést.

4 \erification

The Simulator with its GUI helps to understand the effecta aktwork configuration

and helps to find out why the configuration may not work as ddsit is, however, not

suitable to verify automatically whether a configuratiotisfees a given set of proper-
ties. Therefore a unit testing framework for the networkfgurations was chosen to
carry out the task of testing the network configurations. @ihi¢ testing framework for

the network configurations uses the services of the eadigcribed network simulator
to test the behavior against a given list of rules with desirehavior.

4.1 A Low-level Verification Language

Test cases are generally structured in five phases: Befgrsimulation is run, checks
can be executed on each node that concern the configurasieh ($o-called static
analysis) and not its impact on the behavior. A candidatestich a test is the test for
weak passwords. The password attributes are chosen kga#imexpression. Within
theconfi gt est element there exist a couple of possible tests like the pasktest,
which are implemented in Java.

In the second phase a series of tests is executed which stestjdvhether the
simulation could reach expected goals. For example, wevtesther the HTTP daemon
is running on the server node. These tests are withipthet est elements. Figure 2
presents a test whether or not the HTTP daemon is runningrb8@on the destination
host. If we did not test this and at a later stage a simulatdad because no HTTP is
running on the server node, we would have no information avby the test failed.

81

The next phase is the setup phase, where the whole testiiigrament is set up and
the input events are scheduled. This is followed by exenuicthe test in the testing
environment against a given set of properties. As a last 8tefiesting environments is
deconstructed.

Figure 2 shows a network configuration test example. A tessisb of a configu-
ration which is referenced by the configuration attributeéhie testcase element. The
input event element contains a list of input events whicHedénto the simulator. The
simulation’s resulting log can then be explored by a serfeests, which consist of
xpath expressions and a target value, which xpath expression should evaluate to in
order for the test to pass. On failing tests, the output from simulator gives hints
about which configuration part caused the node or serviceliau® such that the test
failed. Tests need either be grouped by it , and or theor -operator. Existing test
expressions ar@sser t equal s, assert cont ai ns andassert exi st s.

<testcase nane="http">
<confi gtests>
<weakpassword node="webserver"
passwor d="/ node/ ser vi ces/ aut henti cati on/ user/ @assword" />
</ confi gt ests>
<pretest>
<and><assertequal s node="webserver" expressi on="/node/services/httpd/ @ort"
expect edresul t ="80" /></and>
</ pretest>
<i nput events configuration="ny_net_config"><events>...</events></inputevents>
<t est>
<or ><assertexi st expression="//event[@rc="client’ and @st="webserver’]
[appl i cation[@rogram=’ wget’ and @ype=' success’]"></or>
</test>
</testcase>

Fig. 2. An example that ensures the availability of the HTTP service from a gieee n

The pretest concerns tests that are executed prior to thdation tests. Pretests
cover tests directly related to the static configuratiooiinfation. Candidates for these
tests are checking for weak passwords or testing whetheyuareel service for a tests
is configured and running. Within a test case, there existdpetial nodes, namest-
ample.com andeve.com, which both represent nodes on the Internet, but which do not
exist in the network configuration itself. Gexample.com, a number of services are
running. Its purpose is testing the reachability of thesgises on the Internetxam-
ple.comis connected to the netwothternet. Each node directly connected to this net-
work should reaclexample.com. The other special nodeye.com, which represents the
evil (wo)man-in-the-middle, sniffing every unencrypted (@akly encrypted) packet
passing the Internet, is also directly connected to therieteeve.com is directly con-
nected to each unencrypted (or weakly encrypted) wireldgd and listens passively
to each packet which passes such a network. In the netwdikgesit, eve.com helps
finding configuration problems where confidential data carelae by means of sniff-

3 Weakly encrypted means that the encryption can be broken easily amaribmitted messages
are not properly protected.

82

ing. eve.com can also try to attack the network actively from the Intermethrough
wireless connections, by trying to connect to any servicthéinnetwork and sending
faked or invalid packets.

5 Conclusion

The immense complexity of network configuration makes usirigrmal verification
mechanism difficult. The complexity of formal network verdtion results from the
complex functionality of nodes and services in a network,damount of configuration
information and its impact on network behavior, and the w&t of networks and
configuration files.

To cater for the practical impossibility to formally verithe network behaviour
fully formally, we have developed a test framework based oatevork simulator, which
simulates the behavior of a network with respect to a giverfigaration. The correct
behavior of the configured network is defined as a set of cainssrthat must be met by
the network configuration. A constraint can be, for instarice availability of a given
service from every node inside a company’s private netwshich must be invisible to
the outside. The set of possible constraints depends oretirk and the used under-
lying simulation techniques. Possible future extensionsur approach are constraints
on data throughput — network throughput has been neglegtéainow in the VeriNeC
context for the sake of focussing on functional network bérae.g. correct routing,
packet filtering, etc.).

References

1. Haque, K., Michelson: The Art of Verification With Vera. Verificatioer@ral (2001)

2. Ultes-Nitsche, U., Jungo, D., Buchmann, D.: Verified networKigomation. Technical report,
University of Fribourg, http://diuf.unifr.ch/tns/projects/verinec/ (262a05)

3. Clark, J.: Xsl transformations (xslt). Technical report, W3C, httwuthmw3.org/TR/xslt
(1999)

4. Jungo, D., Buchmann, D., Ultes-Nitsche, U.: The role of simulaticametwork configura-
tion engineering approach. In: ICICT 2004, Multimedia Services andeldying Network
Infrastructure, Cairo, Egypt, Information Technology Institute (2004

5. Tanenbaum, A.S.: Computer Networks. 4th edn. Prentice HalBj200

6. Bernd Page, T.L., Claassen, S.: Objektorientierte Simulation in Jévdemn Framework
DESMO-J. BoD GmbH, (Norderstedt)

7. Loeffel, R.: Verinec studio, ein gui fuer den verinec simulator. igdar thesis, University of
Fribourg (2004)

