
A Unit Testing Framework for Network Configurations ⋆

Dominik Jungo, David Buchmann and Ulrich Ultes-Nitsche

telecommunications, networks & security Research Group
Department of Computer Science, University of Fribourg

Chemin du Muśee 3, 1700 Fribourg, Switzerland

Abstract. We present in this paper a unit testing framework for network config-
urations which verifies that the configuration meets prior defined requirements of
the networks behavior. This framework increases the trust in the correctness, se-
curity and reliability of a networks configuration. Our testing framework is based
on a behavioral simulation approach as it is used in hardware design [1]. The unit
testing framework is part of the SNSF VeriNeC project [2].

1 Introduction

The difficulty of administration of networks increases with a network’s size and het-
erogeneity. The VeriNeC project offers a network configuration solution, which tackles
and solves these problems. VeriNeC offers an implementation-independent solution for
configuring nodes in a network using XML as the configuration language. Using an
implementation-independent configuration facility simplifies the task of configuration
and solves the problem of heterogeneity. There is a single configuration facility the ad-
ministrator will use. VeriNeC can handle the configuration of the different nodes and
services in the network from the abstract XML configuration. Therefore it transforms
an abstract XML configuration into an actual configuration and deploys it over a given
configuration facility such as SNMP, SSH, SCP or any other.

VeriNeC offers a centralized configuration facility integrated into a graphical user
interface, which helps to reduce the problem of handling vast networks. But there is
more to VeriNeC: Large network configurations suffer easily from misconfiguration,
causing the network to behave in an undesired way. A simulator facilitates testing ex-
isting applications in the configured network and helps understanding the behavior re-
sulting from a given configuration. Misconfiguration can also lead to security holes in
a network. Such security holes comprise unnecessary availability of services, unneces-
sary open firewall ports, unnecessary or wrong entries in a routing table, transport of
security relevant data over unencrypted and insecure channels, and the use of empty or
weak passwords.

This paper presents a tool for testing automatically a network’s configuration with
respect to a given set of tests; i.e. a unit testing framework for network configuration,
which helps to increase trust in the correctness, security and reliability of a network.

⋆ Supported by theSwiss National Science Foundation under grant number 200021-100645/1.

Jungo D., Buchmann D. and Ultes-Nitsche U. (2005).
A Unit Testing Framework for Network Configurations.
In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 77-82
DOI: 10.5220/0002573500770082
Copyright c© SciTePress



2 Network Configuration

Network nodes and the services they provide are configured using an XML syntax.
As we want to focus on functionality of services and not specific products, the XML
schema is an abstract representation of actual implementations, representing all kinds
of features found in concrete configurations of given service implementations. To con-
figure actual devices, theTranslator module is used to generate implementation specific
configurations.

A node configuration consists of a section for its hardware setup and a list of ser-
vices it runs. Services are for example a server for the domain name system (DNS) or a
chain-ruled packet-filtering firewall. We aimed at identifying the important features of
each service and at expressing them conceptually in the schemas. Using VeriNeC, one
does not configure a bind8 DNS server, but just the information needed to automatically
generate the necessary configuration files for various target platforms.

2.1 Applying the Configuration

As the aim of VeriNeC is finally to configure a real network, theabstract XML network
configuration needs to be distributed, applying it to actualmachines.

Applying the configuration is divided into two parts. The first is the configuration
language/grammar which is used natively to configure the node. This can be a Unix-
style configuration file, an ini file, a batch file for an SNMP client, a batch file for Win-
dows Management Instrumentation (WMI), a bunch of registry settings or any other
kind of configuration syntax used in the actual configurationcontext. The second part
considers the protocol with which the configuration file is distributed to the target ma-
chine. Such protocols can be simple file transfer protocols such as (s)ftp or smb to
transfer plain-text configuration files, ssh, rsh and rexec to execute remote commands,
SNMP to transmit the configurations, or any other existing configuration protocol. Split-
ting the configuration process into translating the XML to device specific configuration
data and deploying that data to the machines makes that process modular, highly flexible
and extensible.

The configuration schema defines the data structure for deployment. It contains
commands to execute before and after the configuration data is applied, information
on the deployment method, and the device specific configuration data to deploy. Con-
figuration data can either be the content in a plain text file orarbitrary1 XML.

The actual translation from abstract XML configuration filesto configuration doc-
uments uses the XML style sheets transformation [3] language. There is onetranslator
document for each implementation of each service. XSLT documents for new services
or new implementations of an existing service can easily be added to extend VeriNeC.

Translation is the point where we may encounter implementation specific problems.
Some implementations of a service may not support all features that can be expressed
in the abstract XML configuration. VeriNeC tells the user whether he/she will lose
configuration details using service implementation specific restrictors. The restrictors

1 Of course, the deployment implementation must know what to do with this XML, so it better
won’t really be arbitrary

78



are implemented as XSLT documents, generating warnings forproblematic tags in the
abstract configuration.

The deployment is implemented in Java. Adistributor pushes the configuration data
generated by the translation process to the target system.

The translators generate device specific data, the distributor is however very generic.
This allows to keep the number of deployment mechanisms small. We can use one for
file distribution using various file transfer protocols and others for the configuration
protocols SNMP and WMI.

3 Simulation

The network simulator [4] was initially developed to test the behavior of a configuration.
The simulator is a partial rebuild of the Internet layer model [5]. We have chosen the
discrete event-based simulation frameworkdesmoj [6] to model the network, because
desmoj allows to combine the event-based approach with the process-oriented simula-
tion approach. We have implemented stateless protocols as event driven-modules and
stateful protocols as process-driven modules. The simulator consists of a set of net-
work nodes and services that can be configured using the VeriNeC XML configuration
format.

3.1 The Simulator’s Architecture

The network simulator is a partial rebuild of the Internet layer model with some of
its protocols. As interface to existing applications we have chosen Java sockets with
extended functionality. This makes it possible to use any existing application using Java
sockets together with the simulator. During the simulationwe replace the default factory
by a factory that creates Socket implementations which redirect the whole traffic to the
simulator. Because the Java sockets are constructed by means of theSocketImplFactory,
any Java application using Java sockets redirects its traffic via the simulator sockets to
the simulator, allowing the use of any socket application within the simulator. This
helps us avoiding implementing these applications ourselves and allows testing any
application on the network with the simulator.

The simulator offers the possibility to test whether any given application works
within the configured network as expected. A graphical user interface [7] displays the
simulator’s log file by means of graphical animation, which helps to understand why a
configuration part behaves in a certain way.

The network simulator needs events that start a simulation.Such input events can
be any of the schedulable events in the simulator. Sending, receiving, dropping, and
routing a packet, launching, or finishing an application aresome of the existing events
that can initially be fed into the simulator. Interesting are events that cause other events.2

Initially the simulator schedules the input events within the used simulation frame-
work, which are then fired on the scheduled time. Normally each event causes other

2 E.g. sending an IP Packet causes creating layer 2 events by sending the IP Packet over a layer 2
protocol, receiving the IP Packet, and passing its data to a higher-level protocol, causing layer
4 events as well.

79



<events>
<event time="0" node="client" layer="5" service="application"
src="client" dst="webserver" id="unique1">
<application program="wget" parameters="http://webserver/index.html"
type="launch"/>

<event time="1" node="client" layer="5" service="application" id="unique1">
<application program="dns" type="lookup" parameters="webserver"/>
<reason configid="dns00001" />

<event time="2" node="client" layer="4" service="udp" id="unique1"
packetid="dns1" src="134.21.3.8" dst="134.21.6.8">
<udp type="packetsend" srcport="45401" dstport="53"/>

</events>

Fig. 1.A sample output file of a HTTP client causing a DNS lookup

events to happen. Figure 1 shows the result of the processed input event. It shows a tree
structure of events with the initial input event as the root.A child event is an event that
is caused by its parent. Each event gives hints about which configuration part caused
the node or service to behave the way it did. This can be a single configuration rule or
a set of rules. These hints help the user to debug the configuration with respect to the
observed (simulated) protocol run initiated by the root event.

The simulator output is hardly human readable and comprehensible. Therefore an
animated graphical user interface displays all events of interest.

4 Verification

The Simulator with its GUI helps to understand the effects ofa network configuration
and helps to find out why the configuration may not work as desired. It is, however, not
suitable to verify automatically whether a configuration satisfies a given set of proper-
ties. Therefore a unit testing framework for the network configurations was chosen to
carry out the task of testing the network configurations. Theunit testing framework for
the network configurations uses the services of the earlier described network simulator
to test the behavior against a given list of rules with desired behavior.

4.1 A Low-level Verification Language

Test cases are generally structured in five phases: Before any simulation is run, checks
can be executed on each node that concern the configuration itself (so-called static
analysis) and not its impact on the behavior. A candidate forsuch a test is the test for
weak passwords. The password attributes are chosen by anxpath expression. Within
theconfigtest element there exist a couple of possible tests like the password test,
which are implemented in Java.

In the second phase a series of tests is executed which shouldtest, whether the
simulation could reach expected goals. For example, we testwhether the HTTP daemon
is running on the server node. These tests are within thepretest elements. Figure 2
presents a test whether or not the HTTP daemon is running on port 80 on the destination
host. If we did not test this and at a later stage a simulation failed because no HTTP is
running on the server node, we would have no information about why the test failed.

80



The next phase is the setup phase, where the whole testing environment is set up and
the input events are scheduled. This is followed by execution of the test in the testing
environment against a given set of properties. As a last step, the testing environments is
deconstructed.

Figure 2 shows a network configuration test example. A test consist of a configu-
ration which is referenced by the configuration attribute inthe testcase element. The
input event element contains a list of input events which arefed into the simulator. The
simulation’s resulting log can then be explored by a series of tests, which consist of
xpath expressions and a target value, which thexpath expression should evaluate to in
order for the test to pass. On failing tests, the output from the simulator gives hints
about which configuration part caused the node or service to behave such that the test
failed. Tests need either be grouped by thenot, and or theor-operator. Existing test
expressions are:assertequals, assertcontains andassertexists.

<testcase name="http">
<configtests>
<weakpassword node="webserver"
password="/node/services/authentication/user/@password" />
</configtests>
<pretest>

<and><assertequals node="webserver" expression="/node/services/httpd/@port"
expectedresult="80" /></and>

</pretest>
<inputevents configuration="my_net_config"><events>...</events></inputevents>
<test>

<or><assertexist expression="//event[@src=’client’ and @dst=’webserver’]
/application[@program=’wget’ and @type=’success’]"></or>

</test>
</testcase>

Fig. 2.An example that ensures the availability of the HTTP service from a given node

The pretest concerns tests that are executed prior to the simulation tests. Pretests
cover tests directly related to the static configuration information. Candidates for these
tests are checking for weak passwords or testing whether a required service for a tests
is configured and running. Within a test case, there exist twospecial nodes, namedex-
ample.com andeve.com, which both represent nodes on the Internet, but which do not
exist in the network configuration itself. Onexample.com, a number of services are
running. Its purpose is testing the reachability of these services on the Internet.exam-
ple.com is connected to the networkInternet. Each node directly connected to this net-
work should reachexample.com. The other special node,eve.com, which represents the
evil (wo)man-in-the-middle, sniffing every unencrypted (or weakly encrypted3) packet
passing the Internet, is also directly connected to the Internet.eve.com is directly con-
nected to each unencrypted (or weakly encrypted) wireless LAN and listens passively
to each packet which passes such a network. In the network testing unit,eve.com helps
finding configuration problems where confidential data can beread by means of sniff-

3 Weakly encrypted means that the encryption can be broken easily and thetransmitted messages
are not properly protected.

81



ing. eve.com can also try to attack the network actively from the Internetor through
wireless connections, by trying to connect to any service inthe network and sending
faked or invalid packets.

5 Conclusion

The immense complexity of network configuration makes usinga formal verification
mechanism difficult. The complexity of formal network verification results from the
complex functionality of nodes and services in a network, the amount of configuration
information and its impact on network behavior, and the vastsize of networks and
configuration files.

To cater for the practical impossibility to formally verifythe network behaviour
fully formally, we have developed a test framework based on anetwork simulator, which
simulates the behavior of a network with respect to a given configuration. The correct
behavior of the configured network is defined as a set of constraints that must be met by
the network configuration. A constraint can be, for instance, the availability of a given
service from every node inside a company’s private network,which must be invisible to
the outside. The set of possible constraints depends on the network and the used under-
lying simulation techniques. Possible future extensions to our approach are constraints
on data throughput — network throughput has been neglected up to now in the VeriNeC
context for the sake of focussing on functional network behavior (e.g. correct routing,
packet filtering, etc.).

References

1. Haque, K., Michelson: The Art of Verification With Vera. Verification Central (2001)
2. Ultes-Nitsche, U., Jungo, D., Buchmann, D.: Verified network configuration. Technical report,

University of Fribourg, http://diuf.unifr.ch/tns/projects/verinec/ (2004–2005)
3. Clark, J.: Xsl transformations (xslt). Technical report, W3C, http://www.w3.org/TR/xslt

(1999)
4. Jungo, D., Buchmann, D., Ultes-Nitsche, U.: The role of simulation ina network configura-

tion engineering approach. In: ICICT 2004, Multimedia Services and Underlying Network
Infrastructure, Cairo, Egypt, Information Technology Institute (2004)

5. Tanenbaum, A.S.: Computer Networks. 4th edn. Prentice Hall (2003)
6. Bernd Page, T.L., Claassen, S.: Objektorientierte Simulation in Java mit dem Framework

DESMO-J. BoD GmbH, (Norderstedt)
7. Loeffel, R.: Verinec studio, ein gui fuer den verinec simulator. Bachelor thesis, University of

Fribourg (2004)

82


