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Abstract. An extensible and modular architecture called IAM that addresses 
this information-routing problem while leveraging significant existing work on 
composable Internet services and adaptation for heterogeneous devices is 
described here. IAM's central abstraction is the concept of a trigger, a self-
describing chunk of information bundled with the spatial and/or temporal 
constraints that define the context in which the information should be delivered. 
The IAM architecture manages triggers at a centralized infrastructure server and 
arranges for the triggers to be distributed to pervasive computing devices that 
can detect when the trigger conditions have been satisfied and alert the user 
accordingly. The main contribution of the architecture is an infrastructure-
centric approach to the trigger management problem. We argue that pervasive 
computing devices benefit from extensive support in the form of infrastructure 
computing services in at least two ways. First, infrastructure adaptation services 
can help manage communication among heterogeneous devices. Second, access 
to public infrastructure services such as MapQuest and Yahoo can augment the 
functionality of trigger management because they naturally support the time and 
location dependent tasks typical of pervasive-computing users. We describe our 
experience with a functional prototype implementation that exploits GPS to 
simulate an AutoPC. 

1   Introduction 

The Internet-connected ScreenFridge [11] the Microwave Bank [4] and the new 
AutoPC [6] appear to be primitive first steps in the direction of pervasive computing. 
If these efforts sound a bit outlandish, there's a good reason: the devices are solutions 
in search of a problem. Yet the devices do have something in common with Web 
browsers, pagers, cell phones, grocery lists, and to-do notes stuck on the door. We are 
in undated with information of all kinds, arriving over various media, and targeted for 
various tasks do this tomorrow, check up on that when you're in the office, call me 
back, and so on. This suggests that one natural target for pervasive computing is data 
management-getting information into the temporal or spatial context in which it will 
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be most useful, and using pervasive computing devices to accept or deliver it. It has 
been argued [12] that pervasive computing will have succeeded when computers- 
“disappear into the infrastructure" and we find ourselves using computer-assisted 
task-specific devices, as opposed to computing devices per se. In particular, we 
describe a simple pervasive computing architecture to address the above problem, 
along with an implemented prototype using off-the-shelf PC's and pervasive 
computing devices.  

We take an infrastructure-centric point of view: like PDA's and handheld devices, 
pervasive computing devices will be fundamentally dependent on infrastructure 
“glue" in order to be truly useful. For PDA's, the original rationale behind this 
assertion was the need for adaptation: since a primary application of the devices is 
information retrieval from the Internet, infrastructure support is needed to adapt these 
devices to a network infrastructure not designed for them [7]. The analogous 
argument for pervasive computing is that humans receive and deal with information 
in a variety of temporal and spatial contexts, and although pervasive computing 
devices are useful as “end-unit" sensors and actuators to assist with information 
management tasks, infrastructure support is needed to tie them together and address 
the distributed information management problem. 

1.1   A real-time situation 

Considering the following scenario: Opening your refrigerator to take out a drink, you 
notice that there is only one can left. You scan its UPC with the scanner attached to 
your refrigerator. This action adds drink to your shopping list. You plan to have 
guests over this weekend, and make a note on your ScreenFridge that you need to 
replenish your supply of drinks by Friday. The next day, on your drive home from 
work, you happen to approach a local supermarket. Your GPS-enabled AutoPC, 
previously informed by your refrigerator that purchases need to be made, signals that 
you are near a grocery store, and if it is convenient, that you should stop by the 
supermarket on the way home. Suppose you do not act on the opportunity, and Friday 
rolls around and you still have not visited the supermarket; in this case, a message to 
buy drinks is sent to your pager, or an alarm is triggered in your PDA, or both. The 
key observation that follows from the above example is that information is rarely 
useful at the time and place it is generated. Rather, the information must be re-
presented later, where and when it can be acted on. That is, information is most useful 
when it is delivered in the correct temporal or spatial context. 

1.2   Ideal Infrastructure 

This simple example illustrates two important ways in which pervasive computing 
relies on infrastructure support. The first, and obvious, dependence is for 
communication: items are added to the “shopping list" by your refrigerator but the list 
itself needs to be accessible elsewhere. The information has to be transported between 
devices. The less obvious but more important dependence is on infrastructure 
services. By these we refer to publicly-accessible interactive ser- vices that perform 
on-demand computation over large datasets. In the context of the present work, an 

50



infrastructure service is simply one that does not run on any of the pervasive 
computing devices themselves it may run in the public Internet or in a private home-
area network. Infrastructure Ser- vices may be necessary for any of several reasons: 
Data rapidly changing: Timely information, such as traffic reports, news, and stock 
quotes, changes too rapidly to make continuous distribution practical for 
intermittently connected users. Furthermore, devices such as PDA's and the AutoPC 
may not have constant connectivity; therefore, such services require infrastructure 
support. 
Unwieldy datasets: One example of an unwieldy dataset is a UPC database. In the 
example given in the previous section, the refrigerator may need to translate the UPC 
to a product name so that the shopping list is readable by humans. Although the 
refrigerator might cache the UPC's of frequently-purchased products, a general UPC 
translation service would necessarily be infrastructural.  
Computation: The computation required to generate a result may exceed the storage 
or CPU resources available to a small device. For example, some online mapping 
services such as MapQuest support queries of the form “Given a starting location, 
find the geographically closest businesses of a given type."  
Examples of Web-based infrastructure services that have the above properties include 
mapping and driving directions services, zip code lookup, search engines and business 
directories, upto-the-minute financial information, and online auctions. Several 
aspects of our motivating example assume the ability to leverage such services: 
translating UPC's to product names, locating a supermarket through a directory 
service such as Yahoo!, converting the address to GPS coordinates (“geocoding") 
through programmatic interfaces to mapping services such as MapQuest, and possibly 
sending a text-based, on-demand notification to a pager or similar device through an 
Internet gateway, such as Airtel. Recognizing the need for infrastructural support for 
pervasive computing devices, we present IAM, a uniform architecture for addressing 
the information management and infrastructure dependence issues exposed by the 
example given in the previous section. In the following sections, we describe the IAM 
architecture, discuss our prototype implementation in progress, and show how this 
approach promises rapid deployment by leveraging other existing research, both in 
design philosophy and implementation. 
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Fig. 1. Overall IAM Architecture 

2   IAM Architecture 

2.1   Triggers 

The notion of a trigger is central to IAM. We use the term trigger to mean 
information paired with its useful context. Conceptually, a trigger is some action that 
should be taken when a previously stated condition is satisfied. The trigger is not 
novel to IAM; it has been in use in the database community for years. However, IAM 
extends the classical database notion of a trigger by allowing decentralized evaluation 
of triggers. Triggers are pushed to end devices, such as DA's or AutoPC's, allowing 
evaluation to occur at those devices. Although in some cases evaluation could occur 
at a central location such as a server, in other cases the end device is the only 
appropriate device to evaluate the trigger, because information such as location may 
be local to the device and not known by others. IAM provides the ability to (a) 
determine which devices should receive which triggers, (b) route the selected triggers 
to the devices, and (c) possibly assist in determining when to fire them. The IAM 
architecture is shown in Figure 1. The system is well-connected to the Internet 
infrastructure and consists of several components. FrontEnds are used for input into a 
Semantic Translator, which in turn interfaces with a Trigger Manager. Also, a Unit 
Manager exists for each type of end-device and the function of each component is 
described. 

2.2   Managing Triggers 

Conceptually, a trigger is composed of a condition and an action. When the condition 
evaluates to true, some action should occur. Typically, the desired goal is the 
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completion of some high-level task. The high level task is translated by the system's 
Semantic Translator to a corresponding set of triggers. Some tasks may be represented 
as a single trigger, such as an alarm for a specific time. Others may be represented as 
a combination of several triggers. In the supermarket example, the high-level task can 
be mapped to two distinct triggers: 1) A trigger that is fired when a certain spatial 
constraint is satisfied, or 2) a trigger that is fired when a certain temporal context is 
met. A term is a primitive that evaluates to true when a particular spatial or temporal 
constraint is satisfied. All triggers are stored in the IAM system; a subset is forwarded 
to those devices that can evaluate the trigger's condition.  

2.3   Example illustrated 

Coming back to the example the chain of events in relation to the proposed 
architecture: 
I. A user scans the UPC of a bottle, and enters a requirement to buy drinks by Friday. 
The scanner sends this information to the IAM FrontEnd designed for the scanner's 
interface. In general, for every input format, there is a FrontEnd that collects 
information about high-level tasks. 
II. The FrontEnd then forwards the information to the Semantic Translator which 
translates high-level tasks into sets of triggers. Since IAM is well-connected to the 
Internet, it can retrieve pertinent information such as the location and hours of local 
supermarkets using a publicly-accessible service such as Yahoo or MapQuest. Using 
this information, the translator produces two triggers from the high-level task “Buy 
drinks by Friday": 
 Trigger 1: 
   - Condition: (location € R) ^ (t > T1) ^ (t <     
                        T2) 
   - Data: “Since you are driving home from      
work and passing by a grocery store at location R, you could stop to buy drinks for 
Friday." 
 Trigger 2: 
    - Condition: (t = T) 
    - Data: “Buy drinks today." 

Note that the condition in Trigger 1 is composed of three terms: (location € 
R),  
(t > T1), (t < T2). The time terms represent the period of time associated with the 
user's drive home from work. In general, a condition can be composed of an arbitrary 
number of terms, connected by logical operators. 
III. IAM then inspects its list of accessible end-devices; each of the end-devices and 
its corresponding properties were made known to IAM, by previous registration. 
Hence IAM is aware of information such as processing power and connectivity of 
each end-device, and is capable of distributing triggers to end-devices. The first 
trigger above is be routed to an AutoPC equipped with GPS, and the second trigger 
routed to a PDA. 
IV. Each end-device stores the trigger(s) assigned to it, and when the appropriate 
context is satisfied, renders the data to the user. For example, when the AutoPC nears 
a supermarket during open hours, the user is informed of the event, perhaps by the 
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AutoPC's text-to-speech facility. Because IAM knows each device's capabilities, it 
can ensure that each device only receives data that it can suitably render.  
V. When the event is acted on, the user will indicate that the high-level task has been 
accomplished to the AutoPC, which will in turn inform IAM. Because the AutoPC is 
weakly connected, it can notify IAM via email that the task has been acted on. IAM 
can then proceed to cancel other triggers that were created from the same high-level 
task, as they are now unnecessary. The next time other devices communicate with 
IAM, extraneous triggers will be deleted from those devices as well. 

3   Model Implementation 

3.1   Overview 

Triggers are the mechanism by which reminders are produced in a context where the 
information is useful. A trigger object contains trigger data, condition, and an optional 
special handler, which replaces the default handler if special actions are to be taken. 
The user directly enters trigger information into the IAM System, which determines 
which devices are capable of processing specific triggers and distributes the triggers 
accordingly. We use the term Mobile Information Appliance (MIA) to refer 
generically to a device that can act as the endpoint of a trigger. 
IAM comprises the following components: 
The Frontend provides an interface through which the user can enter trigger 
information-conditions to be met for the trigger to go off and the actions that need to 
be taken when the trigger goes off. Although the prototype supports only Web form 
entry of trigger conditions directly (eliminating the need for a Semantic Translator), 
keeping the frontend separate from the Trigger Manager allows incremental addition 
of more sophisticated input mechanisms, e.g. a simulated ScreenFridge.  
The Trigger Manager runs in the infrastructure and stores all the triggers entered by 
the user. This component must be up and accessible all the time. This forwards the 
triggers to the appropriate end-points upon request using the various unit mangers. 
The Unit Manager is an MIA specific component residing in the infrastructure. It 
hides the peculiarities of each type of MIA from the Trigger Manager and helps in 
transferring triggers from the Trigger Manager to the MIA's. 
The Trigger Acceptor resides on the MIA and communicates with the appropriate 
unit manager in the infrastructure to download triggers if and when necessary. 
The Trigger Handler resides on the MIA and is responsible for evaluating the trigger 
condition and executing the appropriate handler. The Trigger Handler consists of 
three elements. Term Evaluators interface with the device clock or GPS receiver to 
evaluate the temporal and spatial terms in the condition; when a term changes in 
value, a callback is sent to the Condition Evaluator. The Condition Evaluator re-
evaluates the Boolean expression of terms each time a callback from the Term 
Evaluator is received; when the expression evaluates to true, the Data Handler is 
invoked to renders the trigger's data to the user using whatever notification 
mechanism is appropriate to the MIA (window popup, text-to-speech conversion, 
alarm sound, etc.) 
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3.2   Details of Implementation 

We have leveraged several existing “off the shelf" software tools and technologies for 
putting together the system: Ninja [8], TeleType software [13] (for GPS), and 
Microsoft Windows CE. We are using a GPS enabled Philips Nino (running WinCE), 
which we expect to replace with an AutoPC in actual use. In the current 
implementation, the MIA (Nino) communicates with the Unit Manager using the 
standard Windows CE serial cradle. The Trigger Acceptor, a piece of native WinCE 
code that runs on the Nino, initiates a connection to the Unit Manager, a Ninja 
ISPACE service running in the infrastructure. Triggers are transferred between the 
Trigger Acceptor and the Unit Manager using a simple TCP-based serialization 
protocol. In a real implementation, we expect to use a two-way wireless connection 
rather than the cradle and allow for the possibility of proactively pushing triggers to 
an MIA capable of asynchronous receiving (rather than waiting for an explicit request 
from the MIA). The Unit Manager gets the triggers from the Trigger Manager, 
another Ninja ISPACE service that maintains a database of trigger objects in an 
XML-like serialized form. The Trigger Handler on the WinCE device converts from 
the internal representation of the trigger to a C++ trigger object. The term evaluators 
in the Trigger Handler access the GPS data and register for time-based notifications 
via the WinCE API. Although primitive, the prototype demonstrates the feasibility of 
the IAM system. We implemented the motivating example scenario using this 
prototype: the user enters a trigger through the frontend asking the system to remind 
him if he is near the supermarket in a specified time interval, and when the GPS 
coordinates indicate that the user is close to the supermarket and the current time is 
within the specified limits, a window pops up on the Nino. 

 
Fig. 2. IAM system 

The high degree of modularity of the prototype should allow us to improve it by 
incrementally adding more sophisticated user input mechanisms and incorporating 
new devices. 
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4   Related Works 

4.1   Pervasive Computing 

In The Design of Everyday Things [14], Donald Norman advocates moving 
information “into the world" as a sound design technique for everyday objects. 
Pervasive computing using the IAM architecture is a concrete instantiation of this 
principle: at the moment a useful piece of information is created, it can be routed to an 
information management system whose responsibility is to ultimately deliver it into 
the physical context in which it will be useful. In Weiser and Want's seminal Tab 
system , the wearable devices called Tabs  relied on extensive infrastructure support 
to provide functionality such as tracking a user around a building, automatically 
opening doors for her, forwarding her calls to the phone nearest her current location, 
and having a terminal retrieve her preferences when she sits down to use it. We 
believe the intimate connection between truly pervasive computing and strong 
infrastructure support, as demonstrated in the Tab system, is fundamental ”hence our 
strategy of combining a flexible and robust framework for “programming the 
infrastructure", i.e. Ninja, with a novel data-management architecture whose central 
whose central abstraction is the context-sensitive trigger and whose primary 
responsibility is the creation, management,  and routing of triggers, with infrastructure 
support. Steve Mann's head-mounted augmented reality system [9] allows a 
computer-generated image to be super- posed with the “real" image that is seen 
through the glasses. Among other things, the overlaid image can be used to annotate 
the virtual counterparts of real-life objects; for example, a virtual “buy drink" sign 
hung on the supermarket can be seen as the user passes by the supermarket while 
wearing the glasses. By treating the glasses as a device capable of instantiating a 
location-based trigger, IAM provides a unified framework for supporting such reality 
augmentation devices.  
IAM can enhance the “smartness" of smart spaces by coupling automatic actuation 
with the correct context; for example, your alarm clock might go off half an hour 
earlier than usual, based on its knowledge of a meeting you have scheduled  and the 
report of an accident on your route to work. 

4.2   Infrastructure Computing 

The UC Berkeley TACC [5] framework enables the creation of interactive Internet 
applications by composing modules that either implement new functionality or 
leverage the functionality of another already-deployed remote service. For example, 
an early TACC application was a “meta-search" engine that queried various existing 
search engines  and ranked the collated results; this application could be composed 
with a thin-client browser adaptor [10] to deliver an efficient multi-engine search 
service to a handheld PDA device with a limited user interface. In this sense, TACC 
was a primitive attempt to provide a framework for programming the Internet using 
existing services as building blocks. The Java-based Ninja [8] framework improves 
on TACC by providing strongly-typed composable programmatic interfaces for 
service modules and providing a core set of services and primitives for building and 

56



composing modules. We used Ninja as a starting point for building IAM. The need 
for interoperability among diverse devices and heterogeneous networks has been 
extensively addressed via work on transformational and other adaptation proxies 
TACC demonstrated the value of putting transformation services into the 
infrastructure; since the IAM Trigger Manager already acts as a centralized resource 
in our pervasive computing architecture, it is a natural place to collocate 
transformation capability. 

4.3   Triggers 

Triggers have been in use in the relational database community since at least SQL 
version 3 [14]. In that context, a trigger is a specification of some actions to take 
whenever a modification to a database table results in some constraint on the relation 
being met. We have extended the basic trigger in two ways. First, recognizing that 
dynamic attributes such as location and time are fundamental to our task of moving 
information to the right context, we have provided the ability to instantiate triggers 
based on these attributes. We rely on the specific abilities of pervasive-computing 
devices to accomplish this. Second, we allow partial and distributed evaluation of 
triggers. Specifically, we look for affinities between terms in the trigger condition and 
the specific abilities of each device. 

5   Issues addressed 

5.1   Handling multiple users 

Most information transmitted to and from pervasive devices is likely to be private by 
default. How- ever, we believe many users will prefer to avoid the complexity of 
operating a Home Base in their home, delegating this instead to an Internet data   
center or comparable infrastructure installation. Note that many people already use 
public infrastructure for email and gatewaying messages to pagers, so the idea of 
using public infrastructure for private data is not without precedent. We intend to 
build IAM as a shared infrastructure for private data, but leave open the possibility to 
extend the system to support group-accessible triggers. 

5.2   Trigger Consistency and User Interface 

In the initial prototype, triggers are entered using a Web-form interface. If IAM is to 
be widely accepted, other interfaces must be designed to make it easy for users enter 
trigger information. As the motivating example suggests, one possible interface is the 
UPC scanner on the ScreenFridge; this interface is an easy way to enter “shopping-
list" reminders, but it is clearly limited to the particular context. Therefore, 
architecture is designed so that any number of such interfaces modules, or Frontends, 
can easily be added.  
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5.3   Semantic translation 

When easier-to-use interfaces are integrated into the system, there must be a 
mechanism to translate high-level “requests" such as scanning an item on a UPC 
scanner into a set of primitive triggers. In many cases, a user-preferences file will aid 
the translation; such a file could include locations of interest (e.g., grocery stores 
within a certain radius of a user's home), the user's default schedule, and a link to the 
user's actual schedule. In keeping with the composable applications philosophy, we 
are making this translation mechanism separable from and composable with the 
Trigger Manager to allow maximum flexibility for future work in this area. 

5.4 Multiterm conditions 

Since certain condition parameters, such as those that depend on rapidly-changing 
information, are best evaluated in the infrastructure, there may exist conditions where 
some terms should be on the device and some terms should be evaluated at the IAM 
trigger manager. As was the case with trigger consistency, this problem is 
complicated by the fact that some devices are only intermittently connected. 

6   Conclusions  

The architecture described in the previous sections brings coherence to a number of 
other problems whose relationships to each other were previously not obvious. It 
provides a framework that naturally accommodates such diverse devices as the 
AutoPC, the ScreenFridge, and augmented reality glasses.  
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