Expanding Database Systems into self—verifying Entities

Kéare J. Kristoffersen and Yvonne Dittrich

IT University of Copenhagen
DK-2300 S, Denmark

Abstract. The paper presentgork-in-progress&iming at deploying runtime ver-
ification techniques to check whether the state changes in a database system
conform with temporal business rules given as expressions in temporal logic.
A framework for tailoring enterprise database systems with temporal business
rules is defined and an algorithmic framework for checking temporal business
rules at runtime is presented. A prototypical implementation of a runtime verifier
(called Verification Server) based on this algorithmic framework is presented and
discussed.

1 Introduction

Runtime verification is a branch of verification in which a running program is super-
vised by a concurrrently runninggrifier. In this paper we shall empldymed runtime
verification, in which time will be an important parameter in the task of the verifier.
Our idea is to use such a mechanism to monitor a running database system and hereby
at runtime check whether a sequence of states of a traditional database obey a set of
temporal business rules. In [5] an interesting framework for proving temporal proper-
ties of a databasprior to execution is presented. That task is much harder and the
proof of correctness cannot be automated. In our approach, the proof (or dis—proof) is
established along with the execution of the database.

Temporal Business Rules and corresponding mechanism to check their success or
failure might be hard coded in business systems. Many such systems exists, like e.g. in
a library where customers (automatically) get a reclaim of their borrowed material after
one month. However, this approach restricts the flexibility to re-define temporal rules
at all or at least to anticipated areas. Using runtime verification techniques provides the
possibility to formulate and change general temporal business rules and to check them
without changing the business application.

Section 2 introduces the temporal logic we use as basis for temporal business rules
and the algorithmic base we developed for the checking these at runtime. Section 3
presents the design of an early prototype of the Verification Server. Finally, in Section 4,
we sum up our findings so far and present our future line of research on the subject.

* This work is supported by the project NEXT which is a joint effort between Microsoft Business
Solutions and the IT University of Copenhagen.

J. Kristoffersen K. and Dittrich Y. (2005).

Expanding Database Systems into self-verifying Entities.

In Proceedings of the 3rd International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 65-70
DOI: 10.5220/0002563000650070

Copyright © SciTePress

66

2 Temporal Business Rules

A state of a database is a p&ir,t) wheres is a discrete component representing a
snapshot of all the data (or more precisely those data tbagkwvantfor the temporal
business rules)ands a time stamp. Using, boolean constraints may be decided, such
as if the balance of a bank account is below a certain thrdsAdemporal business rule
for a database is a specification on how the intestatkof the database may evolve over
time, and what should happen when a rule is satisfied (or thesig) by the data in the
database: IF TC THEN ActiaieLSE Action,, where TC is a temporal condition and
Actions 1 and 2 are some action to be performed. The core deoyporal conditions
are given byTimed LTL LT L., in the following abstract syntax (see also [1]):

O u=p|d1 Voo | b1 Ado | ~¢ | ALWAYS ¢ | ALWAYS, ¢
| EVENTUALLY ¢ | EVENTUALLY. ¢,

wherep € AP andc € IN.

The syntactic elements are: Atomic propositions, AP, whih be the occurence of
insert, update, delete or that an attribute in the datalsassove/below a certain thresh-
old. Further, logical connectives and then temporal opes&l WAYS andEVENTUALLY
both of which may be equipped with a time boundintuitively they mean the fol-
lowing: WhereALWAYS ¢ denotes that the formula must hold in all timepoints,
ALWAYS. ¢ only requiresp to hold in the coming: time units. Conversely, the formula
EVENTUALLY. ¢ requires that formula@ is satisfiedbeforec time units have passed,
and thus it is a more restrictive operator tH&VENTUALLY which only requires the
sub—formula to hold at some point arbitrarily long away ia thture. We shall use the
standard abbreviation such as expressing implicationastéogical connectives, e.g.
D1 = ¢ for =gy V @2 and to usérue instead of-p V p. Using this language we may
formulate a temporal business rule for a vehicle assistaoagany in which the tem-
poral condition is the following, stating that assistantesst not be given too frequent:

ALWAYS (new(C.Assistance) = ALWAYS3o —new(C.Assistance)).

Checking Temporal Business Rul&ke algorithm in the verification server works by
a rewriting principle. For each new state encountered fitwendatabase, the algorithm
rewritesthe temporal constraints to a new formula which states wiailgl hold from
now on. Such a new formula is called a residual formula. Inalgerithm below the
residual of formulap with respect to a timed statg is denoted by)/o;.

Algorithm: Runtime Verification procedure

Leto = opo; ... be a timed trace, lep be a formula, lekxists(o;, time) be a
predicate which is true exactly whencontainso; andt¢; = time and let forceEvalua-
tion() be a method which returns the systems current stitiee @urrent time.

U= ¢/og;i = L;time := 1; sit := SIT (V)
while ¢ # true A # false do
if exists(o;,time) A s; # s;—1 then
Y i=1p/o;
sit := SIT(¢)

67

1+ +
end if
if time = sit then
0; := forceEvaluation()
Y i=1p/o;
sit := SIT(¢)
i+ +
end if
time + +
end while
returny

Occasionally, the satisfaction (or falsification) of a fadanis not triggered by a
change of state in the database, but rather by the elapseeatone. To ensure that the
algorithm is timely complete we let the verification servempute the coming smallest
interesting timepoint (SIT) and insert an artificial statewch a time poirlt See [4] for
a complete description of the algorithm. The rewrite piteiis a timed extension of
the one in [3].

3 The prototypes

Based on the notation and algorithm introduced in the lagi®ea second prototype
of the verification server was implemented. The verificasenver is designed as an
independent program running parallel to the business rmygsté the company. A first
prototype parsed a rule in LTL notation and verified tracetafeschanges to a simple
(one-table) database complied with the rule. Recently teegdrototype was extended
to handle more than one rule with a more general way to intevil the database of
the business system. For each rule, an independent thretadted that takes care of the
verification of that rule. This also allows the differentesito be based on different time
units. In the momentary version, the verification serverigsdhe database for relevant
state changes once each time unit specified as the basic titnef the given rule. In
parallel a prototype for a rule builder is developed. We espldifferent alternatives
for the user interface to find a notation for the temporal ihess rules and a way to
construct them that both leads to correctly formulated esgions in LTL and allows
for a meaningful interpretation from a business point ofwie

The system so far looks as depicted in figure 1. When the bissinksexpert wants
to insert a new rule, he opens thde builder (1)°. The system provides him with an
overview of the attributes he can base his rules on by qugithie database for its data
model (2). He selects a table. When he is satisfied and prdsseave button the rule
builder constructs an XML file (3) containing the LTL repration of the rule, the
time unit the rule is based on and sgl statements to acceskathalefining the states
the rule is observing. He then has to define what should haippease of the violation

1 The discrete component of the artificial state is the one appearing in thierecesit state
emitted by the database.
2 The numbers refer to the numbers in figure 1.

68

Rule Builder

()]

@

XML Flle Notifier

® Email
sMs

Business System
—
Thread1 | | Thread2 | | Threads
©
® ©) Email

Fig. 1. The system architecture.

of this rule in the administrator interface of thetifier. (4) He decides that an e-mail
should be sent to the responsible person. érdication servel5) parses the rule and
creates and internal representation of the rule for thestoamation algorithm. A new
thread is started for the rule and parameterised with theertive sql queries and the
time unit for the rule (6). Each thread independently aceeise database to obtain the
information on state changes that are of interest whenyiegfthe fulfillment of the
rule (7). When a rule is violated a natification is sent to théfien. (4) The notifier
sends an e-mail (8) to the one responsible for expensivermmess as specified by the
business rule expert.

4 Conclusions and future research

The prototypes described in the previous section provideafpf concept for this gen-
eral way of checking temporal business rules. Our protosyiséem can handle several
temporal rules based on the state of different items in theb@se. The thread based
design allows to define different time units for the differares. It is possible to define
different reactions, in case a temporal rule is broken. dessending a notification the
Verification Server continues checking that the databaaegds comply with the dif-
ferent rules. However there are several issues that stialbject to future exploration.
We plan to set up the verification server with a database tdrastier student projects
here at our university to explore the following issues.

Using the production Database as is, or defining a specifiw vidne solution the data-
base prototypes implement today offers the whole datalmatieetbusiness expert to
define temporal rules. Also the verification server acceiseslatabase without re-
quiring any specific functionality on the database sidesHualutions is very general
and requires no changes at the database side. However, imalised database, the
data belonging together from the business point of view tisroflistributed over sev-
eral tables. Data might be stored in a specific way due to reaugnts in the business
systems. Production databases often contain a huge anfdaabtes of which only few

might be interesting when defining temporal business rilefining a specific view for

the verification server would on the one hand allow to protigeuser with a concise

69

overview of the kind of data relevant for the formulation efrtporal business rules. It
would have the additional advantage that it would allow targe the database without
interfering with the already defined temporal rules. On tifrephand it would constrain
the formulation of rules to what is provided in the view. Aadpas changes in the tem-
poral business rules do not go beyond that scope, the chaagdse implemented by
the business expert. In case other parts of the databasédbeeccessed, a database
expert has to extend the view.

Checking the whole data of only accessing chanljethe momentary implementation
of the communication between the database and the veudficaérver, the verification
server queries the production table for data that fulfilésdtiferent boolean expressions
the rules are based on. This way relevant changes will adicetiyg be recognized. For
large databases this might lead to performance problemsciedly when short time
intervals are used as a base for the rules.

Another solution would be to only access changes to the dadaruwbservation.
This would require to create a buffer and specific triggernsaast of the database based
on the definition of the rules in the rule builder. This shobkl possible but would
require to change the business database itself. The ruléebunodule would have
to keep track of the changes it implemented in the databagevanld have to undo
them in a controlled way when a temporal rule is change oreélras third possibility
would be to implement an asynchronous observer patterreleetthe database and the
verification server. Here again, the database would have &alapted based on the rules
defined by the user to create the events the verification isaeexls for checking the
temporal business rules.

Finding a suitable user interfac&kesearch on End-User Development has shown that
users are able to handle complex computations defined imaafavay when the for-
malisms are presented in a professionally meaningful v&ig][We plan to experiment
with different kinds of user interfaces in order to find a able way to represent the
data temporal rules can be formulated about and to supp®uigar in deploying the
possibilities that formalism offers. From a technical pahview the notifier and the
rule builder are two very different parts of the system. Fabusiness perspective the
definition of temporal rules and the definition of what sholéppen in case of a vi-
olation belong together. Here the two tailoring interfanesst be integrated. Another
issue that needs more exploration is the requirements ssghtam poses on the or-
ganization: when business rules can be (re-)defined, tlamation has to implement
procedures to decide what rules to implement.[7][2]

PerformanceSo far, we only tested the verification server based on tognpies. Im-
plementing a sharp version together with the project datlod our university will
give us the opportunity to evaluate the design and perfocenahthe verification server
when interacting with a small but realistic database. Th#opmance of the concrete
verification algorithm as well as the influence of the différdesign possibilities for
the interaction with the database can then be evaluated umafe realistic conditions.

70
Acknowledgments

Thanks to Bente B. Petersen, Divya R. Malemane, Bue Pedadéd@inD. Olsen who
together developed the different prototypes the artidaged on as part of their Master
Theses.

References

1. Alur, R., Henzinger, T.: Logics and Models of Real Time: A Sunigal Time: Theory in
Practice, Lecture Notes in Computer Science 600, Springer-Verlag2)lpp. 74-106.

2. Dittrich, Y., Lindeberg, O.: Designing for Changing Work and Buss@ractices. In: N.
Patel (ed.). Evolutionary and Adaptive Information Systems. IDEugmpublishing, (2002).

3. Havelund, K., Ruso, G.: Monitoring Programs using Rewriting. Awtted Software Engi-
neering (ASE’01), San Diego, California, (2001), IEEE Computeri&y.

4. Kristoffersen K., Pedersen, C., and Andersen, H. R.: Runtigrdisation of Timed LTL
using Disjunctive Normalized Equation Systems. Appears in Issue 8ERctronic Notes
in Theoretical Computer Science (2003).

5. Kung, C. H.: A Temporal Framework for Database Specificatia@h\#rification. Proceed-
ings of the Tenth International Conference on Very Large Data B&Bgapore, August,
(1984).

6. Patern, F., Klann, M., Wulf, V.: Research Agenda and RoadnmapBEUD. Deliv-
erables of the Network of Excellence on End-User Development, Deeeni2003).
(http://giove.cnuce.cnr.it/eud-net.htm)

7. Trigg, R., Bagdker, S. From Implementation to Design: Tailoring andetnergence of Sys-
tematization in CSCW. Proceedings of the CSCW 94, ACM-Press, New, Y0894), pp.
45-55.

8. Stiemerling, O., Kahler, H., Wulf, V.: How to make software softees@ning tailorable
applications. Proceedings of the Designing Interactive Systems (D29Y}.

